超宽带UWB无线通信技术

合集下载

UWB超宽带

UWB超宽带

UWB超宽带什么是UWB超宽带?UWB(Ultra-WideBand)超宽带是一种通过在超宽频带范围内传输数据的无线通信技术。

它基于短脉冲信号,能够在极短的时间内传输大量数据。

UWB超宽带技术在无线通信领域具有广泛应用,包括室内定位、物体追踪、雷达和无线传感器网络等。

UWB超宽带的特点1.宽频带范围: UWB超宽带技术的一项主要特点是其宽频带范围。

通常,UWB的频带范围从几百兆赫兹(MHz)到几千兆赫兹(GHz),因此能够支持高速数据传输和较长的传输距离。

2.低功率: UWB超宽带技术在传输数据时使用低功率,这使得它可以在不干扰其他无线设备的情况下工作。

3.高精度定位: UWB超宽带技术可以实现高精度的室内定位。

由于UWB信号能够穿透墙壁和障碍物,因此可以在室内环境中实现准确的物体定位。

4.抗多径干扰:多径干扰是指由于信号在传播过程中碰撞、反射和折射等原因导致信号传输路径的多样性。

UWB超宽带技术通过使用信号的多径特性来抵消多径干扰,提高信号传输的可靠性。

UWB超宽带的应用1. 室内定位UWB超宽带技术在室内定位方面具有特殊优势。

通过将UWB设备部署在建筑物内部,可以实现对人员和物体的高精度定位。

这在商场、医院和仓库等场所可以提供实时的位置信息,便于管理和安全监控。

2. 物体追踪利用UWB超宽带技术,可以实现对物体的追踪。

通过将UWB标签附着在物体上,可以准确追踪其位置和运动轨迹。

这在物流管理、仓库管理和供应链领域具有广泛应用。

3. 雷达应用UWB超宽带技术在雷达领域也得到了广泛应用。

与传统雷达相比,UWB雷达具有更高的分辨率和更好的目标检测能力。

它可以在不同的天气和环境条件下提供高质量的目标识别和跟踪。

4. 无线传感器网络UWB超宽带技术在无线传感器网络中起到重要作用。

通过使用UWB传感器,可以实现对环境参数(如温度、湿度和压力等)进行高精度和实时的测量。

这在工业自动化、环境监测和智能家居等领域有着广泛的应用前景。

uwb是什么意思啊

uwb是什么意思啊

uwb是什么意思啊
uwb 是什么意思?它与蓝牙、红外等技术有哪些区别呢?下面我们就来简单介绍一下:1. UWB(超宽带)技术,是基于 UWB 技术开发出的一种全新的宽带无线连接方式。

它不仅具备传统 WLAN( Wi- Fi)所拥有的802.11n 标准,而且还利用 UWB 的超大频谱范围特性在802.11N 的基础上进行扩展和提升,使之成为一种新型的 WLAN,其最高可达到100Mbps。

因此, UWB 是继蓝牙、 WLAN 之后的第三代无线通信技术。

2.蓝牙、红外等都属于无线数据传输技术,只能实现点对点的数据交换,而 UWB 则支持多点同步传输,也即是说,它既可以将数据从一台设备传送给另一台设备,也可以将数据从一个设备传送给多个设备。

3.相比较蓝牙和红外等传输技术, UWB 的优势非常明显。

它不仅能够提供更快速的数据传输,而且还具有很强的抗干扰能力。

4.另外, UWB 技术除了在无线数据传输领域得到应用外,还被广泛地运用于物联网、智慧城市等领域。

如今,在北京等一些城市已经率先试点了 UWB 技术,该项技术或许会逐渐走入千家万户中去。

今天上网的时候发现了这个,我认为应该是有人恶作剧吧!不过这样做确实没有什么意义啊,反正你又打不着他,只要让大家知道就好啦!另外,有谁听说过 UWB 技术吗?我觉得这种技术挺厉害的,毕竟是刚推出的嘛,所以才引起了那么多人的关注。

虽然这个技术很牛逼,但是并不适合在生活中普及,因为这种技术本身就太神秘了,想必真正见识过这种技术的人并不多。

UWB的名词解释

UWB的名词解释

UWB的名词解释无线超宽带(Ultra-Wideband,简称UWB)是一种现代通信技术,通过发送短脉冲信号来传输数据。

这种技术使用了宽带频谱,以更高的速率传输信息,其主要特点是信号的带宽远远超过传统无线通信技术。

传统的无线通信技术一般采用单一频带传输数据,而UWB则在较大的频谱范围内传输数据,这使得UWB具有很强的抗干扰能力。

由于UWB信号的短暂性质,它几乎不会与其他无线设备发生冲突,从而能够在复杂的无线环境中工作。

UWB技术的广泛应用领域之一是室内定位。

传统的室内定位技术往往需要在建筑物内放置大量基站,这对于成本和布局来说都是具有挑战性的。

而UWB可以在室内通过对信号传播的时间、相位和强度的测量,实现高精度的定位,不仅可以用于室内导航,还可以用于安全监控和物品追踪等领域。

此外,UWB还广泛应用于雷达系统中。

传统雷达系统一般使用脉冲信号来探测目标并测量其距离,但在这种技术中,多个目标的重叠距离难以精确测量。

而UWB雷达在测量目标之间的距离时,可以通过测量信号传播的时间差来实现高精度的距离测量。

除了室内定位和雷达系统,UWB还可以用于短距离通信。

由于UWB信号的高速率和低功率特性,它可以用于短距离高速数据传输。

这不仅在个人消费电子设备中有应用前景,也在无线传感器网络和工业自动化等领域具有潜力。

然而,尽管UWB在多个领域都显示出巨大的潜力,但目前其广泛应用仍面临着一些挑战。

首先,由于UWB技术属于新兴技术,其标准化和认证仍在进行中。

这使得不同厂商的产品可能并不兼容,限制了UWB技术的普及和应用。

其次,UWB技术的高频段使用可能会干扰其他无线设备,因此需要对频谱资源进行合理的规划和管理。

这需要制定相关的法规和标准来确保不同无线设备之间的和谐共存。

最后,UWB技术在室外环境中没有明显优势,因为其高速率和高精度的特性在较远距离下可能无法有效利用。

因此,在选择使用UWB技术时,需要综合考虑其性能和应用场景的匹配程度。

物联网中的UWB是什么,UWB技术介绍

物联网中的UWB是什么,UWB技术介绍

新版UWB技术介绍UWB技术使用两种方式传输数据:一种是无线收发,利用卫星信号进行传输,另一种是通过无线通信的方式传输数据。

无线收发采用的模式主要是同步、异步和自适应多址。

UWB系统是近几年来非常热门的一个技术了,在民用市场已经有很大优势了,但由于技术发展太快,现在很多都没有进行商用了,所以我们先从最新版的UWB技术开始介绍吧!一、超宽带超宽带(Ultra-wideband, UWB)是一种利用无线电信号进行数据传输的技术,是一种非授权频段的超宽带(UWB)系统。

超宽带通信系统的工作频率为1~10 GHz,波长为5~100μm,工作在C波段。

UWB具有高数据速率、低时延、穿透能力强、抗多径干扰等优点。

UWB是利用脉冲重复频率(PRS)和脉冲间隔时间(PLD)实现高速数据传输的技术。

脉冲重复频率指单位时间内脉冲发射次数,可分为连续或离散形式。

PRS可以根据频率来划分,常用的是20 MHz~100 MHz; PLD可以划分为2~4路数字信号处理模块组成;脉冲间隔时间(PL, pulse latency,即PL/PLD)主要用于实现时钟恢复等功能;脉冲重复频率与PRS有关,但更多地取决于天线形式、接收灵敏度、载波频率等因素,可通过测量PRS和PLD 的PL/DL值来计算。

二、时隙UWB技术的时隙分为两类:同步和异步。

同步时隙:同步信号使用固定时隙,每个载波接收信号,并在发送时同步它的相位和幅度;异步时隙:每个载波接收一个相位和幅度变化的正弦信号,将其解调成一个时间片,然后通过时频转换成一个时间片。

UWB系统中使用同步和异步的时隙。

由于UWB的波束窄且功率低,在对目标进行定位时通常使用UWB信号来传输数据,而不是传统的无线电系统使用多个射频天线来发射信号,而射频天线只能用于接收数据。

因此在使用UWB通信时,必须考虑发射功率问题,通常需要考虑的功率包括几个方面:首先是发射时间点选择;其次是在接收端需要设置接收器来识别是否来自目标位置;最后才是根据接收到的信号类型进行选择正确的波束。

超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解作者:王德强李长青乐光新近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。

许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。

为了使读者对UWB技术有所了解,本讲座将分3期对UWB 技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。

1 UWB的产生与发展超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。

1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。

此后,超宽带这个术语才被沿用下来。

其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。

图1给出了带宽计算示意图。

可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。

为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。

美国NTIA等通信团体对此大约提交了800多份意见书。

2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。

根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。

根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。

为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。

超宽带(UWB)无线通信技术介绍

超宽带(UWB)无线通信技术介绍
从频域来看,超宽带有别于传统的窄带和宽带,它的频带更宽。窄带是指相对带宽(信号带宽与中心频率之比)小于1%,相对带宽在1%到25%之间的被称为宽带,相对带宽大于25%,而且中心频率大于500MHz的被称为超宽带。
从时域上讲,超宽带系统有别于传统的通信系统。一般的通信系统是通过发送射频载波进行信号调制,而UWB是利用起、落点的时域脉冲(几十纳秒)直接实现调制,超宽带的传输把调制信息过程放在一个非常宽的频带上进行,而且以这一过程中所持续的时间,来决定带宽所占据的频率范围。
3.1 UWB与IEEE802.11a
IEEE802.11a是IEEE最初制定的一个无线局域网标准之一,它主要用来解决办公室局域网和校园网中用户与用户终端的无线接入,工作在5GHzU-NII频带,物理层速率54Mbps,传输层速率25Mbps。采用正交频分复用(OFDM)扩频技术;可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,以及TDD/TDMA的空中接口,支持语音、数据、图像业务。IEEE802.11a用作无线局域网时的通信距离可以达到100m,而UWB只能在10m以内的范围通信。根据英特尔照FCC的规定而进行的演示结果显示,对于10m以内的距离,UWB可以发挥出高达数百Mbps的传输性能,但是在20m处反倒是IEEE802.11a/b的无线局域网网设备更好一些。因此在目前UWB发射功率受限的情况下,UWB只能用于10m以内的高速数据通信,而10m到100m的无线局域网通信,还需要由802.11来完成,当然与UWB相比,802.11的功耗大,传输速率低。
3.2 UWB与Bluetooth
自从2002年2月14日,FCC批准UWB用于民用无线通信以来,就不断有人将UWB评论为蓝牙(Bluetooth)的杀手,因为从性能价格比上看,Bluetooth是现有无线通信方式中最接近UWB的,但是从目前的情况看UWB不会取代Bluetooth。首先从应用领域来看,Bluetooth工作在无须申请的2.4GHz ISM频段上,主要用来连接打印机、笔记本电脑等办公设备。它的通信速率通常在1Mbps以下,通信距离可以达到10m以上。而UWB的通信速率在几百Mbps,通信距离仅有几米,因此二者的应用领域不尽相同。其次,从技术上看,经过多年的发展,Bluetooth已经具有较完善的通信协议。Bluetooth的核心协议包括物理层协议和链路接入协议,链路管理协议及服务发展协议等等,而UWB的工业实用协议还在制定中。还有,Bluetooth是一种短距离无线连接技术标准的代称,蓝牙的实质内容就是要建立通用的无线电空中接口及其控制软件的公开标准,从这方面讲,UWB可以看作是采用一种特殊无线电波来高速传送数据的通信方式,严格地讲,它不能构成一个完整的通信协议或标准。考虑到UWB高速、低功耗的特点,也许在下一代Bluetooth标准中,UWB可能被用做物理层的通信方式。最后,从市场角度分析,蓝牙产品已经成熟并得到推广和使用,而UWB的研究还处在起步阶段。基于以上原因,在未来的几年内,UWB和Bluetooth更有可能既是竞争对手,又是合作朋友。

uwb技术原理

uwb技术原理

UWB技术原理详解1. 引言超宽带(Ultra-Wideband,简称UWB)技术是一种用于无线通信的调制和传输技术。

与传统的窄带通信技术相比,UWB技术具有更大的频谱带宽、更低的功率密度和更高的数据传输速率。

本文将详细解释UWB技术的基本原理。

2. UWB技术概述UWB技术是一种基于短脉冲的无线通信技术,其核心思想是通过在时间域上使用非常短且宽带的脉冲来传输信息。

这些脉冲通常持续时间仅为纳秒级别,但频谱却非常宽广,覆盖几个GHz甚至更多。

由于这种特殊的脉冲形式,UWB技术能够实现高速数据传输、高精度定位以及低功耗通信等应用。

3. UWB脉冲生成在UWB系统中,脉冲生成是实现高速数据传输和定位功能的关键步骤之一。

一般来说,UWB系统中使用两种方法来生成宽带脉冲:直接序列扩频(Direct Sequence Spread Spectrum,简称DSSS)和脉冲形状调制(Pulse Shape Modulation,简称PSM)。

3.1 直接序列扩频(DSSS)DSSS是一种将窄带信号扩展到宽带信号的技术。

在UWB系统中,DSSS通过将窄脉冲与一个高速伪随机码序列进行乘积运算来生成宽带脉冲。

这个伪随机码序列通常是一个具有良好相关性特性的码片序列,其周期远远小于脉冲持续时间。

具体而言,DSSS的过程如下: - 步骤1:将要传输的信息数据进行调制,得到基带信号。

- 步骤2:将基带信号与伪随机码序列进行乘积运算。

- 步骤3:将乘积结果进行滤波处理,得到宽带脉冲。

3.2 脉冲形状调制(PSM)PSM是一种通过调制脉冲形状来实现宽带通信的方法。

在UWB系统中,PSM通过改变脉冲的幅度、宽度和相位等参数来实现信息传输。

常见的PSM技术包括正弦调制、高斯调制和Hermite-Gauss调制等。

具体而言,PSM的过程如下: - 步骤1:将要传输的信息数据进行调制,得到基带信号。

- 步骤2:根据基带信号的特性,设计合适的脉冲形状函数。

uwb原理

uwb原理

uwb原理
uwb原理是指超宽带技术(uwb),它是一种新型无线通信技术,
它可以提供极高的传输速率,超过100M bps。

不同于传统的无线通信
技术,它使用比传统技术更长的脉冲,从而可以传输更多的信息,而
且可以利用纳秒级的时间精度来传输信息,从而实现精确定位。

UWB的基本原理是利用超宽带脉冲的短暂存在,其时域技术可以实
现精确定位。

它可以使用很小的功率传播非常宽的信号波形,从而可
以精确测量发射和接收之间的距离,即时延迟(toa)。

由于它使用短
时间脉冲,所以可以有更高的频谱效率,即可以在非常窄的带宽内传
输大量的信息,而且对信号干扰非常稳健。

UWB的另一个优势是它的无线定位特性,可以准确的测量多个无线
节点之间的相对距离,从而实现精确的位置定位。

它还可以通过基于
多普勒散射技术(mimo)测量发射端和接收端之间的多普勒散射。

UWB还可以用于安全保障,因为它可以检测到信号的慢速衰减功率,这意味着可以确定接收到信号的距离,而且UWB还可以反向识别信号,从而实现信息的安全传输。

总之,UWB技术具有极高的传输速率,可以准确无误的定位,且具
有良好的安全性,是一种先进的无线通信技术,在我们日常生活中有
着广泛的应用。

UWB技术应用介绍

UWB技术应用介绍

UWB技术应用介绍UWB技术(Ultra-Wideband)是一种具有超宽带特性的无线通信技术,其频率范围非常广泛,一般包括从几百兆赫兹到数千兆赫兹,甚至数十千兆赫兹的频段。

相比传统无线通信技术,UWB技术具有更高的数据传输速率,更低的功耗以及更广泛的应用领域。

在UWB技术的应用中,最重要的是其高速数据传输能力。

由于UWB技术的频率范围广泛,因此可以提供更高的传输带宽,一般能够达到数千兆比特每秒的传输速率。

这种超高速传输能力使得UWB技术在实时高清视频传输、无线VR/AR应用以及大规模数据传输等领域有着广泛的应用前景。

第二个重要的应用领域是室内定位和跟踪。

UWB技术可以实现非常精确的距离测量,其测距精度一般可达到几乎厘米级别。

这使得UWB技术能够在室内环境中实现高精度的定位和跟踪,例如在仓库管理、智能家居以及智能医疗设备中应用。

此外,UWB技术还可以实现室内环境中的人员密度检测和人员流量管理等功能。

UWB技术还可以实现无线电频谱的共享和利用。

由于UWB技术的频率范围非常广泛且无需占用特定频段,因此可以有效利用频谱资源,避免不同无线设备之间的干扰。

与传统的频谱共享技术相比,UWB技术可以实现更高的频谱利用效率。

这使得UWB技术在军事应用、无人驾驶以及物联网等领域有着广泛的应用前景。

总结起来,UWB技术是一种具有超宽带特性的无线通信技术,具有高速数据传输能力、精确定位和跟踪能力以及频谱共享和利用能力。

应用领域包括高清视频传输、室内定位和跟踪、雷达和无线通信、无线电频谱共享和利用等。

随着技术的进一步发展,UWB技术有望在更多领域得到广泛应用。

UWB(超宽带Ultra Wide Band)定位技术优劣势及成本比较

UWB(超宽带Ultra Wide Band)定位技术优劣势及成本比较

UWB(超宽带Ultra Wide Band)定位技术优劣势及成本比较目录一、UWB定位技术优劣势分析 (2)1. UWB定位技术原理介绍 (2)2. UWB定位算法: (2)3. UWB定位技术的优劣势 (3)4. UWB定位技术的应用场景 (5)5. UWB定位系统前景展望 (8)二、RFID定位和UWB定位的成本比较分析 (8)三、UWB定位和蓝牙定位的成本对比分析 (10)四、WIFI定位和UWB定位的成本分析对比 (11)一、UWB定位技术优劣势分析1.UWB定位技术原理介绍超宽带(Ultra Wide Band,UWB)技术是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。

UWB技术具有系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,截获能力低,定位精度高等优点,尤其适用于室内等密集多径场所的高速无线接入。

2.UWB定位算法:目前无线定位技术是指,即定位算法目前最常用的用来判定移动用户位置的测量方法和计算方法主要有:时差定位技术、信号到达角度测量(AON)技术、到达时间定位(TOA)和到达时间差定位(TDON)等。

其中,TDO1技术是目前最为流行的一种方案,除了用于CSM系统,在其他诸如AMPS和CDMA系统中也广泛应用,UJWB定位采用的也是这种技术。

目前UWB定位系统也可以提供3D 定位功能,此定位系统采用TDOA 和NOA 两种定位算法,已达到3D)定位的效果系统构成:接下来以UJWB 精确定位系统为例介绍:Ubisense UJWB精确定位系统包含三个组成部分:传感器sensor、有源定位标签tag和定位平台iTocateTRM,在该系统中,定位标签tag利用UWB脉冲信号发射出位置信息给传感器sensor,传感器接受到信号后采用TDOA和\OA定位算法对标签位置进行分析,最终通过有线以太网传输到iT ocate服务器。

UWB超宽带信号处理理论和工程系统

UWB超宽带信号处理理论和工程系统

UWB超宽带信号处理理论和工程系统UWB超宽带(Ultra-Wideband)技术是一种非常有潜力的无线通信技术,它具有带宽宽广、抗干扰能力强、定位精度高等优点,因此在智能交通、室内定位、医疗监护等领域有着广阔的应用前景。

UWB超宽带信号的处理理论和工程系统是实现这一技术的关键要素。

在UWB超宽带通信系统中,信号的处理是非常重要的。

处理信号的目标是提取信息,减小噪声和干扰,以达到可靠传输的目的。

处理UWB超宽带信号的基本原理是利用信号的带宽优势,通过传输多个窄带子载波或时频编码来实现高数据传输率。

在信号处理中,包括信号调制、解调、传输、接收等过程。

首先,信号调制是将数字信号转换为模拟信号或者将模拟信号转换为数字信号的过程。

在UWB超宽带通信系统中,使用调制技术将数字数据转换为具有宽带特性的调制信号,包括脉冲位置调制(PPM)、正交振幅调制(OAM)、正交相位调制(OPM)等。

这些调制技术通过在频谱上分配更多的带宽来提高传输速率,并提供多径干扰的抵消能力。

其次,信号解调是将接收到的信号转换为数字信号或模拟信号的过程。

在UWB超宽带通信系统中,解调技术是对接收到的调制信号进行解码,还原出原始的数字数据。

常用的解调技术包括卷积解码、最大似然解调等。

这些解调技术可以有效地提高信号的恢复精度和信噪比。

另外,信号传输是指将调制好的信号通过信道进行传输的过程。

在UWB超宽带通信系统中,信道传输常受到多径衰落、频率选择性衰落以及多路干扰等影响。

为了解决这些问题,可以采用自适应传输技术、码间干扰抑制技术等,以提高信号的传输质量和可靠性。

最后,信号接收是将接收到的信号进行解码、降噪等处理,以获取原始数据的过程。

在UWB超宽带通信系统中,接收端常采用多脉冲压缩、边沿检测等技术,通过复杂的信号处理算法还原出原始数据。

这些算法可以有效地抵抗多径干扰、瑞利衰落以及其他噪声干扰。

除了信号处理的理论算法,实现UWB超宽带通信系统还需要设计工程系统。

uwb fcc法规

uwb fcc法规

uwb fcc法规
摘要:
1.UWB 技术简介
2.FCC 法规对UWB 技术的规定
3.UWB 技术在遵守FCC 法规的前提下的应用前景
正文:
【1.UWB 技术简介】
UWB(Ultra-Wideband,超宽带)技术是一种短距离高速无线通信技术,其主要特点是带宽宽、发射功率低、通信速率高、多径衰落抵抗能力强等。

UWB 技术最初是为军事应用而研发的,后来逐渐应用于民用领域,如室内定位、通信、物联网等。

【2.FCC 法规对UWB 技术的规定】
FCC(Federal Communications Commission,美国联邦通信委员会)是负责美国通信行业的政府机构,其对UWB 技术的使用有严格的规定。

根据FCC 的规定,UWB 设备需要在特定的频段内工作,这些频段的范围为
3.1GHz 至10.6GHz。

此外,UWB 设备的发射功率也有严格的限制,以避免对其他无线通信设备产生干扰。

【3.UWB 技术在遵守FCC 法规的前提下的应用前景】
尽管FCC 对UWB 技术有严格的规定,但在遵守这些规定的前提下,UWB 技术有着广阔的应用前景。

首先,UWB 技术可以用于室内定位,其高精度的定位能力可以为室内导航、物联网等应用提供支持。

其次,UWB 技术
可以用于短距离通信,其高速率、低延迟的特点使其成为新一代无线通信技术的有力竞争者。

最后,UWB 技术还可以用于生物医学领域,如通过UWB 信号对人体进行无创检测等。

浅谈UWB超宽带无线通信技术

浅谈UWB超宽带无线通信技术

2008 NO.18SCIENCE & TECHNOLOGY INFORMATION信 息 技 术1 UWB简介超宽带无线通信技术(UWB-Ultra WideBand)是一种使用1GHz以上带宽的无线通信技术,又称脉冲无线电(Impulse-Radio)技术。

它整合了无线USB、无线1394 等成熟的连接技术,被认为是未来几年电信热门技术之一。

UWB不需要载波,而是利用纳秒至微微秒级的非正弦波窄脉冲来传输数据,需占用很宽的频谱范围,有效传输距离在10米以内,传输速率可达500Mbps。

FCC规定,UWB可以使用的频率范围为从3.1GHz到10.6GHz之间7.5GHz的带宽。

该技术适用于高速、近距离的无线个人通信。

2 UWB 的特点由于UWB 独特的工作原理,使其具有一些其他通信系统没有的优点。

①系统结构实现简单,实现成本低。

由于UWB不使用载波,不需要传统收发器所需的上、下变频,也不需要本地振荡器、功用放大器和混频器等,因在结构上,系统实现较为简单;另外,UWB系统可全数字化实现,它只需要以一种数学方式产生脉冲,并对其进行调制,所以调制电路可以全部集成在一块芯片上,可大大降低设备的造价。

②传输速率高。

UWB以宽频带来获得高速率,在10米范围内,根据经过修改的信道容量公式,其传输速率可以达到500Mbps,是实现个人通信与无线局域网的理想选择。

③功耗低。

UWB只在需要传输数据时才发送脉冲,信号的功率谱密度极低,发射系统比现有的传统无线电技术功耗低得多。

在高速通信时系统的耗电量仅为几百μW~几十mW。

民用的UWB设备功率一般是传统移动电话所需功率的1P100左右,是蓝牙设备所需功率的1P20左右。

军用的UWB电台耗电也很低。

因此,UWB设备在电池寿命和电磁辐射上,相对于传统无线设备有着很大的优越性。

④保密性好。

由于UWB信号采用了跳时扩频,其射频带宽可以达到1GHz以上,它的发射功率谱密度很低,信号隐蔽在环境噪声和其他信号之中,用传统的接收机无法接收和识别,必须采用与发端一致的扩频码脉冲序列才能进行解调,因此增加了系统的安全性。

(完整版)超宽带(UWB)技术

(完整版)超宽带(UWB)技术
由于超宽带无线电发射的是持续时间极短的单周期脉冲且占空 比极低,多径信号在时间上是可分离的。因此适合室内等复杂环 境下的高速传输。大量的实验表明,对常规无线电信号多径衰落 深达10~ 30 dB 的多径环境, 对超宽带无线电信号的衰落最多不
微波通信
到5 dB。 6、定位精确
超宽带无线电具有极强的穿透能力,可在室内和地下进行精确 定位,而GPS 定位系统只能工作在GPS 定位卫星的可视范围之 内; 与GPS 提供绝对地理位置不同,超短脉冲定位器可以给出相 对位置, 其定位精度可达厘米级。 7、抗干扰性能强(电磁兼容性),误码率低
获的可能性低、系统复杂度低、厘米级的定位精度等优点。 1、简单系统结构
UWB发射器直接用脉冲小型微带天线。由于UWB 不需要对载 波信号进行调制和解调,故不需要混频器、滤波器、RF/ IF 转换器 及本地振荡器等复杂器件,同时更容易集成到CMOS 电路中。 2、高速数据传输
理论上,一个宽度为0的脉冲具有无限的带宽,因此,脉冲信号要想够窄的
微波通信
围内变化,从而利用载波的状态变化来传输信息。相反的,超宽 带以基带传输。 UWB通信系统模型见下图。
按照FCC 的规定,从3. 1GHz 到10. 6GHz 之间的7. 5GHz 的带宽 频率为UWB 所使用的频率范围。
微波通信
二、UWB的技术特点 UWB具有对信道衰落不敏感、发射信号功率谱密度低、被截
由于不使用载波,仅在发射窄脉冲时消耗少量能量,从而节约了发 射连续载波时的大量能耗。这一特色还使UWB 可通过缩小脉冲 宽度,在提高带宽的同时而不增加功耗,这打破了过去传输技术中功 耗和带宽成正比的定律。民用的UWB 设备功率一般是传统移动 电话所需功率的1/ 100 左右,是蓝牙设备所需功率的1/ 20 左右。 军用的UWB 电台耗电也很低。因此,UWB 设备在电池寿命和电

超宽带UWB无线通信中的调制技术

超宽带UWB无线通信中的调制技术

超宽带UWB无线通信中的调制技术超宽带(UWB,Ultra Wide Band)无线技术在无线电通信、雷达、跟踪、精确定位、成像、武器控制等众多领域具有广阔的应用前景,因此被认为是未来几年电信热门技术之一。

目前“超宽带”的定义只是针对信号频谱的相对带宽(或绝对带宽)而言,没有界定的时域波形特征。

因此,有多种方式产生超宽带信号。

其中,最典型的方法是利用纳秒级的窄脉冲(又称为冲激脉冲)的频谱特性来实现。

1 UWB基本原理FCC(美国通信委员会)对超宽带系统的最新定义是:相对带宽(在-10dB点处)(fH-fL)/fc>20%(fH,fL,fc分别为带宽的高端频率、低端频率和中心频率) 或者总带宽BW>500MHz。

它与现有的无线电系统比较,在花费更小的制造成本的条件下,能够做到更高的数据传输速率(100~500MbPs)、更强的抗干扰能力(处理增益50dB以上),同时具有极好的抗多径性能和十分精确的定位能力(精度在cm 以内)。

发射超宽带(UWB)信号最常用和最传统的方法是发射一种时域上很短(占空比低达0.5%)的冲激脉冲。

这种传输技术称为“冲击无线电(IR)”。

UWB-IR又被称为基带无载波无线电,因为它不像传统通信系统中使用正弦波把信号调制到更高的载频上,而是用基带信号直接驱动天线输出的;由信息数据对脉冲进行调制,同时,为了形成所产生信号的频谱而用伪随即序列对数据符号进行编码。

因此冲击脉冲和调制技术就是超宽带的两大关键所在。

2 UWB的调制技术超宽带系统中信息数据对脉冲的调制方法可以有多种。

脉冲位置调制(PPM) 和脉冲幅度调制(PAM)是UWB 最常用的两种调制方式。

通常UWB信号模型为:(1)其中,w (t) 表示发送的单周期脉冲,dj,tj分别表示单脉冲的幅度和时延。

PAM是一种通过改变那些基于需传输数据的传输脉冲幅度的调制技术。

在PAM调制系统中,一系列的脉冲幅度被用来代表需要传输的数据。

(完整版)UWB—超宽带无线通讯技术及应用

(完整版)UWB—超宽带无线通讯技术及应用

1 UWB技术背景和概述
➢1.3 UWB 技术背景
为了避免对现有的通信系统带来干扰,必需将超宽带系统的 发射功率限定在一定范围内,即在超宽带通信频率范围内的 每个频率上都规定一个最大的允许功率,这个功率值一般通 过辐射掩蔽(emission mask)来决定.
(1)
(2)
探地雷达 穿墙成像
墙内成像 监视系统
1 UWB技术背景和概述
➢1.3 UWB 技术背景
Emitted Signal Power
GPS PCS
WIFI, Bluetooth 802.11b
WIFI 802.11a
-41 dBm/MHz
UWB Spectrum
1.6 1.9 2.4
3.1
5
10.6
Frequency (GHz)
1 UWB技术背景和概述
➢ 2.1 UWB 使用基带窄脉冲波形
脉冲无线电(Impulse Radio)是早期超宽带系 统的代名词,专指采用冲激脉冲(超短脉冲) 作为信息载体的非正弦载波无线电技术。
该技术有别于传统使用正弦载波的窄带无线系 统,属于基带、无载波通信的范畴。
2.UWB无线通信技术原理
➢ 2.1 UWB 使用基带窄脉冲波形
医疗成像
室内UWB设备辐射掩蔽
室外手持设备
1 UWB技术背景和概述
➢1.3 UWB 技术背景
FCC(美国联邦通信局):
对UWB系统所使用的频谱范围规定
带宽规定: 绝对带宽 (Absolute Bandwidth) 相对带宽 (Fractional Bandwidth)
绝对带宽大于500MHz 相对带宽大于25%
基带窄脉冲形式是UWB通信最早采用的信号形 式,一般来说它的工作脉宽是纳秒级的

uwb超宽带无线通信技术(高精度定位)

uwb超宽带无线通信技术(高精度定位)

uwb超宽带⽆线通信技术(⾼精度定位)UWB(定位技术)超宽带⽆线通信技术⼀、UWB调制技术超宽带⽆线通信技术(UWB)是⼀种⽆载波通信技术,UWB不使⽤载波,⽽是使⽤短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到⼀个频率范围内。

它源于20世纪60年代兴起的脉冲通信技术。

传统通信⽅式使⽤的是连续波信号,即本地振荡器产⽣连续的⾼频载波,需要传送信息通过例如调幅,调频等⽅式加载于载波之上,通过天线进⾏发送。

现在的⽆线⼴播,4G通信,WIFI等都是采⽤该⽅式进⾏⽆线通信。

下图是⼀个使⽤调幅⽅式传递语⾳信号的的连续波信号产⽣⽰意图。

图1 连续波调幅信号⽽脉冲超宽带IR-UWB(Impluse Radio Ultra Wideband)信号,不需要产⽣连续的⾼频载波,仅仅需要产⽣⼀个时间短⾄nS级以下的脉冲,便可通过天线进⾏发送。

需要传送信息可以通过改变脉冲的幅度,时间,相位进⾏加载,进⽽实现信息传输。

下图是使⽤相位调制⽅式传输⼆进制归零码的IR-UWB信号产⽣⽰意图。

图2 IR-UWB调相信号从频域上看,连续波信号将能量集中于⼀个窄频率内,⽽UWB信号带宽很⼤,同时在每个频点上功率很低,如图3所⽰。

图3 IR-UWB信号频谱在⽆线定位中,使⽤IR-UWB信号相对于窄带信号的主要优势为,IR-UWB信号能准确分⽴⽆线传输中的⾸达信号和多径反射信号,⽽窄带信号不具备该能⼒。

主要有三种应⽤:成像、通信与测量和车载雷达系统,再宏观⼀点,可以分为定位、通信和成像三种场景。

·通信:因为⼤带宽,所以UWB⼀度被认为是USB数据传输的⽆线替代⽅案,蓝⽛的问题是传输速度太慢。

UWB还常⽤于军⽤保密通信,这主要也是因为UWB脉冲的能量很低,很容易低于噪声门限,不容易被其它⽆线电系统监听到。

UWB通过在较宽的频谱上传送极低功率的信号,能实现数百Mbit/s⾄2Gbit/s 的数据传输速率。

⽽且具有穿透⼒强、功耗低、抗⼲扰效果好、安全性⾼、空间容量⼤、能精确定位等诸多优点,可以说是个超级“潜⼒股”,很有可能在将来成为家庭主⽤的⽆线传输技术。

uwb物理层参数

uwb物理层参数

uwb物理层参数
UWB(Ultra Wideband)是一种超宽带无线通信技术,其定义来自美国联邦通信委员会和DARPA。

它的工作频带为3.1~10.6GHz,系统带宽与系统中心频率之比大于20%或系统带宽至少为500MHz。

这种技术的主要特点包括超宽的频带,其频率覆盖从3G~5G,6G~10G共7G的频段,单信道带宽超过500MHz;功率低,按FCC等法规,其输出功率被限制在-41dBm/MHz,按单个信道500MHz计算,其信道功率为-14.3dBm;以及使用超短脉冲,维持时间为零点几纳秒。

UWB物理层规范由IEEE 802.15.4z标准定义,包括了LRP (Low Rate Pulse) 和HRP (High Rate Pulse) 两种类型。

在处理数据帧方面,UWB PHY层的数据帧主要包括三个部分:同步头、物理层头以及PDU数据段。

此外,UWB还具有丰富的处理流程和相关参数,例如SHR preamble,用于AGC设置、天线分集选择、定时采集、粗频偏和细频偏恢复、分组和帧同步、信道估计以及测距前沿信号跟踪等等。

总的来说,UWB物理层参数涵盖了频带宽度、输出功率、脉冲宽度等多个方面,与其独特的工作原理和丰富的技术规格密切相关。

超宽带测距原理

超宽带测距原理

超宽带测距原理详解引言超宽带(Ultra-Wideband,UWB)技术是一种无线通信技术,其特点是具有极宽的频带,能够在较低的功率水平下传输大量的信息。

超宽带测距技术利用超宽带信号的短脉冲特性和多径传播的现象,实现高精度的测距。

本文将详细解释超宽带测距原理的基本原理,包括超宽带信号的特点、多径传播的影响、测距算法等。

1. 超宽带信号的特点超宽带信号是一种频带极宽的脉冲信号,其信号带宽通常大于500 MHz。

超宽带信号的特点主要有以下几个方面:1.1 短脉冲宽度超宽带信号的脉冲宽度通常非常短,一般在纳秒级别。

短脉冲宽度使得超宽带信号具有较高的时间分辨率,可以实现对信号的精确测量。

1.2 宽带性超宽带信号的信号带宽非常宽,可以达到几个GHz甚至更大。

宽带性使得超宽带信号能够在频域上对多径传播的影响进行有效补偿,提高测距的精度。

1.3 低功率密度超宽带信号的功率密度通常较低,远低于传统窄带信号。

低功率密度使得超宽带信号具有较好的抗干扰性能,可以在复杂的无线信道环境中实现可靠的测距。

2. 多径传播的影响多径传播是指无线信号在传播过程中经历了多个路径的传播,到达接收端时形成了多个到达时刻略有差异的信号。

多径传播会对测距产生一定的影响,主要表现在以下几个方面:2.1 多普勒效应多径传播导致信号的传播路径长度不同,从而引发多普勒效应。

多普勒效应是指当信号源或接收器相对于传播介质运动时,信号的频率发生变化。

多普勒效应会对测距产生误差,需要进行补偿。

2.2 多径干扰多径传播使得接收端接收到多个到达时刻略有差异的信号,这些信号之间可能存在相位差,从而引发多径干扰。

多径干扰会降低信号的质量,影响测距的准确性。

2.3 多径衰落多径传播会导致信号的幅度在空间上发生变化,即产生多径衰落现象。

多径衰落会使得信号的能量在不同的路径上有所损失,从而影响测距的精度。

3. 超宽带测距算法超宽带测距算法是基于超宽带信号的特点和多径传播的影响,通过对接收到的信号进行处理,实现对信号源与接收器之间距离的估计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超宽带(UWB)无线通信技术
摘要本文介绍了UWB的概念、主要技术特点,并把UWB与目前较为广泛使用的IEEE802.11、Bluetooth等短距离无线通信技术进行了比较,最后对UWB的应用前景进行了分析与展望。

UWB(Ultra Wide Band,超宽带)是一种以极低功率在短距离内高速传输数据的无线技术。

这种原来专属军方使用的技术随着2002年2月美国联邦通信委员会(FCC)正式批准民用而备受世人的关注。

UWB具有一系列优良独特的技术特性,是一种极具竞争力的短距无线传输技术。

1、UWB的概念
超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,即不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。

UWB是利用纳秒级窄脉冲发射无线信号的技术,适用于高速、近距离的无线个人通信。

按照FCC的规定,从3.1GHz到10.6GHz之间的7.5GHz的带宽频率为UWB 所使用的频率范围。

从频域来看,超宽带有别于传统的窄带和宽带,它的频带更宽。

窄带是指相对带宽(信号带宽与中心频率之比)小于1%,相对带宽在1%到25%之间的被称为宽带,相对带宽大于25%,而且中心频率大于500MHz的被称为超宽带。

从时域上讲,超宽带系统有别于传统的通信系统。

一般的通信系统是通过发送射频载波进行信号调制,而UWB是利用起、落点的时域脉冲(几十纳秒)直接实现调制,超宽带的传输把调制信息过程放在一个非常宽的频带上进行,而且以这一过程中所持续的时间,来决定带宽所占据的频率范围。

2、UWB的主要技术特点
UWB是一种“特立独行”的无线通信技术,它将会为无线局域网LAN和个人局域网PAN的接口卡和接入技术带来低功耗、高带宽并且相对简单的无线通信技术。

UWB解决了困扰传统无线技术多年的有关传播方面的重大难题,具有对信道衰落不敏感、发射信号功率谱密度低、被截获的可能性低、系统复杂度低、厘米级的定位精度等优点。

UWB具有以下特点:
2.1抗干扰性能强
UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。

接收时将信号能量还原出来,在解扩过程中产生扩频增益。

因此,与IEEE 802.11a、IEEE 802.11b和蓝牙相比,在同等码速条件下,UWB具有更强的抗干扰性。

2.2传输速率高
UWB的数据速率可以达到几十Mbit/s到几百Mbit/s,有望高于蓝牙100倍,也可以高于IEEE 802.11a和IEEE 802.11b。

2.3带宽极宽
UWB使用的带宽在1GHz以上,高达几个GHz。

超宽带系统容量大,并且可以和目前的窄带通信系统同时工作而互不干扰。

这在频率资源日益紧张的今天,开辟了一种新的时域无线电资源。

2.4消耗电能小
通常情况下,无线通信系统在通信时需要连续发射载波,因此,要消耗一定电能。

而UWB不使用载波,只是发出瞬间脉冲电波,也就是直接按O和1发送出去,并且在需要时才发送脉冲电波,所以,消耗电能小。

2.5保密性好
UWB保密性表现在两方面:一方面是采用跳时扩频,接收机只有已知发送端扩频码时才能解出发射数据;另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。

2.6发送功率非常小
UWB系统发射功率非常小,通信设备可以用小于1mW的发射功率就能实现通信。

低发射功率大大延长系统电源工作时间。

况且,发射功率小,其电磁波辐射对人体的影响也会很小。

这样,UWB的应用面就广。

3、UWB及其相关技术的比较
UWB技术与现有其它无线通信技术有着很大的不同,它将会为无线局域网(LAN)和个人局域网(PAN)的接入带来低功耗、高带宽并且相对简单的解决方案。

超宽带技术解决了困扰传统无线电技术多年的诸如信道衰落、高速率时系统复杂、成本高和功耗大等重大难题,但是UWB通信不会很快取代现有的其它无线通信技术。

3.1UWB与IEEE802.11a
IEEE802.11a是IEEE最初制定的一个无线局域网标准之一,它主要用来解决办公室局域网和校园网中用户与用户终端的无线接入,工作在5GHzU-NII频带,物理层速率54Mbps,传输层速率25Mbps。

采用正交频分复用(OFDM)扩频技术;可提供25Mbps的无线ATM 接口和10Mbps的以太网无线帧结构接口,以及TDD/TDMA的空中接口,支持语音、数据、图像业务。

IEEE802.11a用作无线局域网时的通信距离可以达到100m,而UWB只能在10m 以内的范围通信。

根据英特尔照FCC的规定而进行的演示结果显示,对于10m以内的距离,UWB可以发挥出高达数百Mbps的传输性能,但是在20m处反倒是IEEE802.11a/b的无线局域网网设备更好一些。

因此在目前UWB发射功率受限的情况下,UWB只能用于10m以
内的高速数据通信,而10m到100m的无线局域网通信,还需要由802.11来完成,当然与UWB相比,802.11的功耗大,传输速率低。

3.2UWB与Bluetooth
自从2002年2月14日,FCC批准UWB用于民用无线通信以来,就不断有人将UWB 评论为蓝牙(Bluetooth)的杀手,因为从性能价格比上看,Bluetooth是现有无线通信方式中最接近UWB的,但是从目前的情况看UWB不会取代Bluetooth。

首先从应用领域来看,Bluetooth工作在无须申请的2.4GHz ISM频段上,主要用来连接打印机、笔记本电脑等办公设备。

它的通信速率通常在1Mbps以下,通信距离可以达到10m以上。

而UWB的通信速率在几百Mbps,通信距离仅有几米,因此二者的应用领域不尽相同。

其次,从技术上看,经过多年的发展,Bluetooth已经具有较完善的通信协议。

Bluetooth的核心协议包括物理层协议和链路接入协议,链路管理协议及服务发展协议等等,而UWB的工业实用协议还在制定中。

还有,Bluetooth是一种短距离无线连接技术标准的代称,蓝牙的实质内容就是要建立通用的无线电空中接口及其控制软件的公开标准,从这方面讲,UWB可以看作是采用一种特殊无线电波来高速传送数据的通信方式,严格地讲,它不能构成一个完整的通信协议或标准。

考虑到UWB高速、低功耗的特点,也许在下一代Bluetooth标准中,UWB可能被用做物理层的通信方式。

最后,从市场角度分析,蓝牙产品已经成熟并得到推广和使用,而UWB的研究还处在起步阶段。

基于以上原因,在未来的几年内,UWB和Bluetooth更有可能既是竞争对手,又是合作朋友。

结合上述讨论,可以用表1对三种短距离无线通信做个简单的比较。

4、UWB的应用前景
UWB技术具有系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,低截获能力,定位精度高等优点,尤其适用于室内等密集多径场所的高速无线接入,非常适于建立一个高效的无线局域网(WLAN)或无线个域网(WPAN)。

UWB最具特色的应用将是视频消费娱乐方面的无线个人局域网(PANs)。

具有一定相容性和高速、低成本、低功耗的优点使得UWB较适合家庭无线通信的需求。

现有的无线通信方式,802.11b和蓝牙的速率太慢,不适合传输视频数据;54 Mb/s速率的802.11a标准可以处理视频数据,但费用昂贵。

而UWB 有可能在10m范围内,支持高达110 Mb/s的数据传输率,不需要压缩数据,可以快速、简单、经济地完成视频数据处理。

超宽带系统同时具有无线通信和定位的功能,可方便地应用于智能交通系统中,为车辆防撞、电子牌照、电子驾照、智能收费、车内智能网络、测速、监视、分布式信息站等提供高性能、低成本的解决方案。

UWB也可应用在小范围、高分辨率、能够穿透墙壁、地面和身体的雷达和图像系统中,诸如军事、公安、消防、医疗、救援、测量、勘探和科研等领域,用做隐秘安全通信、救援应急通信、精确测距和定位、透地探测雷达、墙内和穿墙成像、监视和入侵检测、医用成像、贮藏罐内容探测等。

UWB还可应用于传感器网络和智能环境,这种环境包括生活环境、生产环境、办公环境等,主要用于对各种对象(人和物)进行检测、识别、控制和通信。

当然,UWB未来的前途还要取决于各种无线方案的技术发展、成本、用户使用习惯和
市场成熟度等多方面的因素。

表1几种短距离无线通信比较
5、结论
超宽带技术的采用对于解决当今在通信领域中的容量与有限的频谱资源分配等问题提供了一条有效的途径。

在业界的推动下,UWB技术将日臻成熟,目前,已经有一些公司推出了UWB芯片和相关产品。

可以预料UWB技术将在未来高速信息网络中发挥重要的作用。

相关文档
最新文档