超宽带(UWB)无线通信技术介绍

合集下载

UWB超宽带

UWB超宽带

UWB超宽带什么是UWB超宽带?UWB(Ultra-WideBand)超宽带是一种通过在超宽频带范围内传输数据的无线通信技术。

它基于短脉冲信号,能够在极短的时间内传输大量数据。

UWB超宽带技术在无线通信领域具有广泛应用,包括室内定位、物体追踪、雷达和无线传感器网络等。

UWB超宽带的特点1.宽频带范围: UWB超宽带技术的一项主要特点是其宽频带范围。

通常,UWB的频带范围从几百兆赫兹(MHz)到几千兆赫兹(GHz),因此能够支持高速数据传输和较长的传输距离。

2.低功率: UWB超宽带技术在传输数据时使用低功率,这使得它可以在不干扰其他无线设备的情况下工作。

3.高精度定位: UWB超宽带技术可以实现高精度的室内定位。

由于UWB信号能够穿透墙壁和障碍物,因此可以在室内环境中实现准确的物体定位。

4.抗多径干扰:多径干扰是指由于信号在传播过程中碰撞、反射和折射等原因导致信号传输路径的多样性。

UWB超宽带技术通过使用信号的多径特性来抵消多径干扰,提高信号传输的可靠性。

UWB超宽带的应用1. 室内定位UWB超宽带技术在室内定位方面具有特殊优势。

通过将UWB设备部署在建筑物内部,可以实现对人员和物体的高精度定位。

这在商场、医院和仓库等场所可以提供实时的位置信息,便于管理和安全监控。

2. 物体追踪利用UWB超宽带技术,可以实现对物体的追踪。

通过将UWB标签附着在物体上,可以准确追踪其位置和运动轨迹。

这在物流管理、仓库管理和供应链领域具有广泛应用。

3. 雷达应用UWB超宽带技术在雷达领域也得到了广泛应用。

与传统雷达相比,UWB雷达具有更高的分辨率和更好的目标检测能力。

它可以在不同的天气和环境条件下提供高质量的目标识别和跟踪。

4. 无线传感器网络UWB超宽带技术在无线传感器网络中起到重要作用。

通过使用UWB传感器,可以实现对环境参数(如温度、湿度和压力等)进行高精度和实时的测量。

这在工业自动化、环境监测和智能家居等领域有着广泛的应用前景。

UWB的名词解释

UWB的名词解释

UWB的名词解释无线超宽带(Ultra-Wideband,简称UWB)是一种现代通信技术,通过发送短脉冲信号来传输数据。

这种技术使用了宽带频谱,以更高的速率传输信息,其主要特点是信号的带宽远远超过传统无线通信技术。

传统的无线通信技术一般采用单一频带传输数据,而UWB则在较大的频谱范围内传输数据,这使得UWB具有很强的抗干扰能力。

由于UWB信号的短暂性质,它几乎不会与其他无线设备发生冲突,从而能够在复杂的无线环境中工作。

UWB技术的广泛应用领域之一是室内定位。

传统的室内定位技术往往需要在建筑物内放置大量基站,这对于成本和布局来说都是具有挑战性的。

而UWB可以在室内通过对信号传播的时间、相位和强度的测量,实现高精度的定位,不仅可以用于室内导航,还可以用于安全监控和物品追踪等领域。

此外,UWB还广泛应用于雷达系统中。

传统雷达系统一般使用脉冲信号来探测目标并测量其距离,但在这种技术中,多个目标的重叠距离难以精确测量。

而UWB雷达在测量目标之间的距离时,可以通过测量信号传播的时间差来实现高精度的距离测量。

除了室内定位和雷达系统,UWB还可以用于短距离通信。

由于UWB信号的高速率和低功率特性,它可以用于短距离高速数据传输。

这不仅在个人消费电子设备中有应用前景,也在无线传感器网络和工业自动化等领域具有潜力。

然而,尽管UWB在多个领域都显示出巨大的潜力,但目前其广泛应用仍面临着一些挑战。

首先,由于UWB技术属于新兴技术,其标准化和认证仍在进行中。

这使得不同厂商的产品可能并不兼容,限制了UWB技术的普及和应用。

其次,UWB技术的高频段使用可能会干扰其他无线设备,因此需要对频谱资源进行合理的规划和管理。

这需要制定相关的法规和标准来确保不同无线设备之间的和谐共存。

最后,UWB技术在室外环境中没有明显优势,因为其高速率和高精度的特性在较远距离下可能无法有效利用。

因此,在选择使用UWB技术时,需要综合考虑其性能和应用场景的匹配程度。

物联网中的UWB是什么,UWB技术介绍

物联网中的UWB是什么,UWB技术介绍

新版UWB技术介绍UWB技术使用两种方式传输数据:一种是无线收发,利用卫星信号进行传输,另一种是通过无线通信的方式传输数据。

无线收发采用的模式主要是同步、异步和自适应多址。

UWB系统是近几年来非常热门的一个技术了,在民用市场已经有很大优势了,但由于技术发展太快,现在很多都没有进行商用了,所以我们先从最新版的UWB技术开始介绍吧!一、超宽带超宽带(Ultra-wideband, UWB)是一种利用无线电信号进行数据传输的技术,是一种非授权频段的超宽带(UWB)系统。

超宽带通信系统的工作频率为1~10 GHz,波长为5~100μm,工作在C波段。

UWB具有高数据速率、低时延、穿透能力强、抗多径干扰等优点。

UWB是利用脉冲重复频率(PRS)和脉冲间隔时间(PLD)实现高速数据传输的技术。

脉冲重复频率指单位时间内脉冲发射次数,可分为连续或离散形式。

PRS可以根据频率来划分,常用的是20 MHz~100 MHz; PLD可以划分为2~4路数字信号处理模块组成;脉冲间隔时间(PL, pulse latency,即PL/PLD)主要用于实现时钟恢复等功能;脉冲重复频率与PRS有关,但更多地取决于天线形式、接收灵敏度、载波频率等因素,可通过测量PRS和PLD 的PL/DL值来计算。

二、时隙UWB技术的时隙分为两类:同步和异步。

同步时隙:同步信号使用固定时隙,每个载波接收信号,并在发送时同步它的相位和幅度;异步时隙:每个载波接收一个相位和幅度变化的正弦信号,将其解调成一个时间片,然后通过时频转换成一个时间片。

UWB系统中使用同步和异步的时隙。

由于UWB的波束窄且功率低,在对目标进行定位时通常使用UWB信号来传输数据,而不是传统的无线电系统使用多个射频天线来发射信号,而射频天线只能用于接收数据。

因此在使用UWB通信时,必须考虑发射功率问题,通常需要考虑的功率包括几个方面:首先是发射时间点选择;其次是在接收端需要设置接收器来识别是否来自目标位置;最后才是根据接收到的信号类型进行选择正确的波束。

UWB

UWB

一、什么是UWB超宽带UWB由Ultra Wideband缩写而成,它是一种无载波通信技术。

超宽带和其它的“窄带”或者是“宽带”主要有两方面的区别:超宽带的带宽,按照美国联邦通信委员会(FCC)的定义信号带宽大于1.5GHz,或信号带宽与中心频率之比大于25%为超宽带;信号带宽与中心频率之比在1%~25%之间为宽带,小于1%为窄带,可见UWB的带宽明显大于目前所有通信技术的带宽。

超宽带的无载波传输方式。

传统的“窄带”和“宽带”都是采用无线电频率(RF)载波来传送信号,载波的频率和功率在一定范围内变化,从而利用载波的状态变化来传输信息。

相反的,超宽带以基带传输。

按照FCC 的规定,从3. 1GHz 到10. 6GHz 之间的7. 5GHz 的带宽频率为UWB 所使用的频率范围。

二、UWB技术原理发射端将比特符号通过数字滤波器进行脉冲整形,然后转换成模拟信号发射出去,接收信号依次通过低噪声放大器(LAN)、可变增益放大器(VGA)和ADC后成为离散信号,接下来就可用DSP技术实现信号检测、估计、分集接收、判决译码等处理。

目前产生脉冲信号源的方法有两类:(1)光电方法(2)电子方法UWB的调制技术:(1)脉冲幅度调制(PAM)(2)脉冲位置调制(PPM)UWB技术的研究主要围绕以下几个方面:(1)可控窄脉冲产生技术(2)信道传播特性与信道模型(3)调制技术(4)多址技术(5)信号检测技术等。

三、UWB的主要特点1.简单系统结构UWB发射器直接用脉冲小型微带天线。

由于UWB 不需要对载波信号进行调制和解调,故不需要混频器、滤波器、RF/ IF 转换器及本地振荡器等复杂器件,同时更容易集成到CMOS 电路中。

2.高速数据传输理论上,一个宽度为0的脉冲具有无限的带宽,因此,脉冲信号要想发射出去并有足够带宽,必须有足够陡峭的上升/下降沿和足够窄的宽度。

3.功耗低由于不使用载波,仅在发射窄脉冲时消耗少量能量,从而节约了发射连续载波时的大量能耗。

uwb技术原理

uwb技术原理

UWB技术原理详解1. 引言超宽带(Ultra-Wideband,简称UWB)技术是一种用于无线通信的调制和传输技术。

与传统的窄带通信技术相比,UWB技术具有更大的频谱带宽、更低的功率密度和更高的数据传输速率。

本文将详细解释UWB技术的基本原理。

2. UWB技术概述UWB技术是一种基于短脉冲的无线通信技术,其核心思想是通过在时间域上使用非常短且宽带的脉冲来传输信息。

这些脉冲通常持续时间仅为纳秒级别,但频谱却非常宽广,覆盖几个GHz甚至更多。

由于这种特殊的脉冲形式,UWB技术能够实现高速数据传输、高精度定位以及低功耗通信等应用。

3. UWB脉冲生成在UWB系统中,脉冲生成是实现高速数据传输和定位功能的关键步骤之一。

一般来说,UWB系统中使用两种方法来生成宽带脉冲:直接序列扩频(Direct Sequence Spread Spectrum,简称DSSS)和脉冲形状调制(Pulse Shape Modulation,简称PSM)。

3.1 直接序列扩频(DSSS)DSSS是一种将窄带信号扩展到宽带信号的技术。

在UWB系统中,DSSS通过将窄脉冲与一个高速伪随机码序列进行乘积运算来生成宽带脉冲。

这个伪随机码序列通常是一个具有良好相关性特性的码片序列,其周期远远小于脉冲持续时间。

具体而言,DSSS的过程如下: - 步骤1:将要传输的信息数据进行调制,得到基带信号。

- 步骤2:将基带信号与伪随机码序列进行乘积运算。

- 步骤3:将乘积结果进行滤波处理,得到宽带脉冲。

3.2 脉冲形状调制(PSM)PSM是一种通过调制脉冲形状来实现宽带通信的方法。

在UWB系统中,PSM通过改变脉冲的幅度、宽度和相位等参数来实现信息传输。

常见的PSM技术包括正弦调制、高斯调制和Hermite-Gauss调制等。

具体而言,PSM的过程如下: - 步骤1:将要传输的信息数据进行调制,得到基带信号。

- 步骤2:根据基带信号的特性,设计合适的脉冲形状函数。

UWB技术

UWB技术

一、何谓UWB技术所谓UWB技术,也叫超宽带技术。

简单的说UWB技术是基于短的能量脉冲序列、通过正交频分调制或直接排序将脉冲扩展到一个频率范围,利用纳秒至微微秒级的非正弦波窄脉冲传输数据的一种无载波通信技术,由于其不适用载波,该技术传输速度较之其他的技术快很多,同时其功耗也小很多。

超宽带使用的电波带宽为数CHZ,它搞出普通的带宽20MHZ的无线LAN的带宽几百倍。

二、时间调制技术的基本原理目前的无线通信系统大多采用恒包络直接扩频调制方式,而使很多人忽略了采用脉冲跳时调制的无线通信方式,即时域通信技术。

当前,超宽带无线电的实现基本上是采用冲激无线电技术。

它不是基于正弦载波的无线电系统的概念,而是一种采用冲激脉冲作为信息载体的非正弦系统。

(一)时间调制超宽带TM-UWB的关键技术——时间调制技术。

TM-UWB技术的一般工作原理是发送和接收脉冲间隔严格受控的高斯单周期超短时脉冲,其宽度通常在200ps-500ps之间,脉冲与脉冲之间的间即,即重复周期通常在25ns-1000ns之间,超短时单周期脉冲决定了信号的带宽很宽,超宽带接收机直接将射频信号转换为墓带数字信号和模拟输出信号。

只用一级前端交叉相关器就把电磁脉冲序列转换成基带信号,不用传统通信设备中的中频级,极大地降低了设备复杂性。

单比特的信息常被扩展到多个单脉冲上,接收机将这几个脉冲相加以恢复发射信息。

(二)时间调制超宽带宽(TM--UWB)系统的性能特点。

基于时间脉冲位置调制的超宽带无线时域技术有以下特点:用超短周期脉冲进行通信,此信号本身为超宽带信号,谱密度极低,信号的中心频率在650MHz-SGHz之间,在亚毫瓦量级的平均功率下的传输距离达数英里,抗干扰和抗多径的能力强,具有很宽的带宽和多个信道可以利用,与扩频系统相比,时域通信系统结构简单,成本相对较低。

具体来讲:1、隐蔽性好。

无线电波空间传播的“公开性”是无线电通信较之有线通信的固有不足。

uwb超宽带无线通信技术(高精度定位)

uwb超宽带无线通信技术(高精度定位)

UWB(定位技术)超宽带无线通信技术一、UWB调制技术超宽带无线通信技术(UWB)是一种无载波通信技术,UWB不使用载波,而是使用短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到一个频率范围内。

它源于20世纪60年代兴起的脉冲通信技术。

传统通信方式使用的是连续波信号,即本地振荡器产生连续的高频载波,需要传送信息通过例如调幅,调频等方式加载于载波之上,通过天线进行发送。

现在的无线广播,4G通信,WIFI等都是采用该方式进行无线通信。

下图是一个使用调幅方式传递语音信号的的连续波信号产生示意图。

图1 连续波调幅信号而脉冲超宽带IR-UWB(Impluse Radio Ultra Wideband)信号,不需要产生连续的高频载波,仅仅需要产生一个时间短至nS级以下的脉冲,便可通过天线进行发送。

需要传送信息可以通过改变脉冲的幅度,时间,相位进行加载,进而实现信息传输。

下图是使用相位调制方式传输二进制归零码的IR-UWB信号产生示意图。

图2 IR-UWB调相信号从频域上看,连续波信号将能量集中于一个窄频率内,而UWB信号带宽很大,同时在每个频点上功率很低,如图3所示。

图3 IR-UWB信号频谱在无线定位中,使用IR-UWB信号相对于窄带信号的主要优势为,IR-UWB信号能准确分立无线传输中的首达信号和多径反射信号,而窄带信号不具备该能力。

主要有三种应用:成像、通信与测量和车载雷达系统,再宏观一点,可以分为定位、通信和成像三种场景。

·通信:因为大带宽,所以UWB一度被认为是USB数据传输的无线替代方案,蓝牙的问题是传输速度太慢。

UWB还常用于军用保密通信,这主要也是因为UWB脉冲的能量很低,很容易低于噪声门限,不容易被其它无线电系统监听到。

UWB通过在较宽的频谱上传送极低功率的信号,能实现数百Mbit/s至2Gbit/s 的数据传输速率。

而且具有穿透力强、功耗低、抗干扰效果好、安全性高、空间容量大、能精确定位等诸多优点,可以说是个超级“潜力股”,很有可能在将来成为家庭主用的无线传输技术。

UWB技术应用介绍

UWB技术应用介绍

UWB技术应用介绍UWB技术(Ultra-Wideband)是一种具有超宽带特性的无线通信技术,其频率范围非常广泛,一般包括从几百兆赫兹到数千兆赫兹,甚至数十千兆赫兹的频段。

相比传统无线通信技术,UWB技术具有更高的数据传输速率,更低的功耗以及更广泛的应用领域。

在UWB技术的应用中,最重要的是其高速数据传输能力。

由于UWB技术的频率范围广泛,因此可以提供更高的传输带宽,一般能够达到数千兆比特每秒的传输速率。

这种超高速传输能力使得UWB技术在实时高清视频传输、无线VR/AR应用以及大规模数据传输等领域有着广泛的应用前景。

第二个重要的应用领域是室内定位和跟踪。

UWB技术可以实现非常精确的距离测量,其测距精度一般可达到几乎厘米级别。

这使得UWB技术能够在室内环境中实现高精度的定位和跟踪,例如在仓库管理、智能家居以及智能医疗设备中应用。

此外,UWB技术还可以实现室内环境中的人员密度检测和人员流量管理等功能。

UWB技术还可以实现无线电频谱的共享和利用。

由于UWB技术的频率范围非常广泛且无需占用特定频段,因此可以有效利用频谱资源,避免不同无线设备之间的干扰。

与传统的频谱共享技术相比,UWB技术可以实现更高的频谱利用效率。

这使得UWB技术在军事应用、无人驾驶以及物联网等领域有着广泛的应用前景。

总结起来,UWB技术是一种具有超宽带特性的无线通信技术,具有高速数据传输能力、精确定位和跟踪能力以及频谱共享和利用能力。

应用领域包括高清视频传输、室内定位和跟踪、雷达和无线通信、无线电频谱共享和利用等。

随着技术的进一步发展,UWB技术有望在更多领域得到广泛应用。

超宽带(UWB)技术

超宽带(UWB)技术

微波通信
输出信号s(t)可表示为:
s(t )
j

d

j
p(t jTs )
若使用PPM调制器代替PAM调制器,得到的信号可表示为:
d j 1 s(t ) p(t jTs ) 2 j
UWB 技术采用脉冲位置调制(PPM )单周期脉冲来携带信息和 信道编码,一般工作脉宽为0. 1~1.5 ns,重复周期为25~1 000 ns 。
微波通信
批准将UWB 用于民用产品以来, UWB的民用主要包括以下3 个 方面:地质勘探及可穿透障碍物的传感器(imaging system) ;汽车 防冲撞传感器等(vehicle radar system) ;家电设备及便携设备之间 的无线数据通信( communication and measurements system) 。 1、UWB 技术一个介于雷达和通信之间的重要应用是精确地理定 位,例如使用UWB 技术的能够提供三维地理定位信息的设备。 UWB 地理定位系统最初的开发和应用是在军事领域,其目的是战 士在城市环境条件下能够以0. 3 m的分辨率来测定自身所在的位 置。目前其主要商业用途之一为路旁信息服务系统.它能够提供突 发且高达100Mbps 的信息服务,其信息内容包括路况信息、建筑物 信息、天气预报和行驶建议,还可以用作紧急援助事件的通信。
微波通信
典型高斯单调周期脉冲的时域和频域如下图所示。
实际通信中使用一长串的脉冲,周期性重复的单脉冲时域和频域 特性如下图所示。
微波通信
频谱中出现了强烈的能量尖峰,这是由于时域中信号重复的周期 性造成了频谱的离散化。这些尖峰将会对传统无线电设备和信号 构成干扰,而且这种十分规则的脉冲序列也没有携带有用信息。改 变时域的周期性可以减低这种尖峰,即采用脉冲位置调制(PPM ) 。

超宽带技术概述

超宽带技术概述

超宽带(UWB)技术一、UWB技术简介UWB(Ultra Wide Band)是一种短距离的无线通信方式。

其传输距离通常在10m以内,使用1GHz以上带宽,通信速度可以达到几百Mbit/s以上。

UWB不采用载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此,其所占的频谱范围很宽,适用于高速、近距离的无线个人通信。

美国联邦通讯委员会(FCC)规定,UWB的工作频段范围从3.1GHz到10.6GHz,最小工作频宽为500MHz。

超宽带传输技术和传统的窄带、宽带传输技术的区别主要有如下两方面:一个是传输带宽,另一个是是否采用载波方式。

从传输带宽看,按照FCC的定义:信号带宽大于1.5G或者信号带宽与中心频率之比大于25%的为超宽带。

超宽带传输技术直接使用基带传输。

其传输方式是直接发送脉冲无线电信号,每秒可以发送数1O亿个脉冲。

然而,这些脉冲的频域非常宽,可覆盖数Hz~数GHz。

由于UWB发射的载波功率比较小,频率范围很广,所以,UWB对传统的无线电波影响相当小。

UWB的技术特点显示出其具有传统窄带和宽带技术不可比拟的优势。

二、UWB技术的发展历程现代意义上的超宽带UWB 数据传输技术,又称脉冲无线电( IR , Impulse Radio) 技术,出现于1960年,当时主要研究受时域脉冲响应控制的微波网络的瞬态动作。

通过Harmuth、Ross和Robbins等先行公司的研究, UWB 技术在70 年代获得了重要的发展,其中多数集中在雷达系统应用中,包括探地雷达系统。

到80 年代后期,该技术开始被称为"无载波"无线电,或脉冲无线电。

美国国防部在1989 年首次使用了"超带宽"这一术语。

为了研究UWB在民用领域使用的可行性,自1998 年起,美国联邦通信委员会( FCC) 对超宽带无线设备对原有窄带无线通信系统的干扰及其相互共容的问题开始广泛征求业界意见,在有美国军方和航空界等众多不同意见的情况下,FCC 仍开放了UWB 技术在短距离无线通信领域的应用许可。

UWB——超宽带无线通信技术

UWB——超宽带无线通信技术

智能互联的黑马:UWB超宽带无线通信技术一、UWB技术是什么?UWB技术是一种使用1GHz以上频率带宽的无线载波通信技术。

它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很大,尽管使用无线通信,但其数据传输速率可以达到几百兆比特每秒以上。

使用UWB技术可在非常宽的带宽上传输信号,美国联邦通信委员会(FCC)对UWB技术的规定为:在3.1~10.6GHz频段中占用500MHz 以上的带宽。

二、UWB相比传统通信技术有什么优势?传统通信方式使用的是连续波信号,即本地振荡器产生连续的高频载波,需要传送信息通过例如调幅,调频等方式加载于载波之上,通过天线进行发送。

现在的无线广播、4G通信、Wi-Fi等都是采用该方式进行无线通信。

下图是一个使用调幅方式传递语音信号的连续波信号产生示意图。

而IR-UWB信号,不需要产生连续的高频载波,仅仅需要产生一个时间短至nS级以下的脉冲,便可通过天线进行发送。

需要传送信息可以通过改变脉冲的幅度、时间、相位进行加载,进而实现信息传输。

下图是使用相位调制方式传输二进制归零码的IR-UWB信号产生示意图。

而现在更为大家熟知的蓝牙、WiFi通信技术与UWB技术相较而言,也存在一定的劣势。

通过这张图大家可以更直观地了解到UWB技术与Wi-Fi、蓝牙技术的不同点。

简言之,UWB 技术的优势在于:1、定位精度高:带宽很宽,多径分辨能力强,抗干扰,对于距离的分辨能力高于Wi-Fi和蓝牙。

2、实时定位速度快:UWB的超宽带脉冲信号的带宽在纳秒级,可以实现实时的室内定位,延迟低,可以即刻感知追踪物体的运动状况。

3、高可靠性和安全性:UWB的发射功率低、信号带宽宽,能够很好地隐蔽在其它类型信号和环境噪声之中,传统的接收机无法识别和接收,必须采用与发射端一致的扩频码脉冲序列才能进行解调。

当然,UWB、Wi-Fi和蓝牙这三项技术并不是孤立存在的,完全可以同时使用,优势互补,能够给智能手机这样的终端产品带来多种需求的定位和数据传输服务,对于相关的天线和射频设计有较高要求。

(完整版)超宽带(UWB)技术

(完整版)超宽带(UWB)技术
由于超宽带无线电发射的是持续时间极短的单周期脉冲且占空 比极低,多径信号在时间上是可分离的。因此适合室内等复杂环 境下的高速传输。大量的实验表明,对常规无线电信号多径衰落 深达10~ 30 dB 的多径环境, 对超宽带无线电信号的衰落最多不
微波通信
到5 dB。 6、定位精确
超宽带无线电具有极强的穿透能力,可在室内和地下进行精确 定位,而GPS 定位系统只能工作在GPS 定位卫星的可视范围之 内; 与GPS 提供绝对地理位置不同,超短脉冲定位器可以给出相 对位置, 其定位精度可达厘米级。 7、抗干扰性能强(电磁兼容性),误码率低
获的可能性低、系统复杂度低、厘米级的定位精度等优点。 1、简单系统结构
UWB发射器直接用脉冲小型微带天线。由于UWB 不需要对载 波信号进行调制和解调,故不需要混频器、滤波器、RF/ IF 转换器 及本地振荡器等复杂器件,同时更容易集成到CMOS 电路中。 2、高速数据传输
理论上,一个宽度为0的脉冲具有无限的带宽,因此,脉冲信号要想够窄的
微波通信
围内变化,从而利用载波的状态变化来传输信息。相反的,超宽 带以基带传输。 UWB通信系统模型见下图。
按照FCC 的规定,从3. 1GHz 到10. 6GHz 之间的7. 5GHz 的带宽 频率为UWB 所使用的频率范围。
微波通信
二、UWB的技术特点 UWB具有对信道衰落不敏感、发射信号功率谱密度低、被截
由于不使用载波,仅在发射窄脉冲时消耗少量能量,从而节约了发 射连续载波时的大量能耗。这一特色还使UWB 可通过缩小脉冲 宽度,在提高带宽的同时而不增加功耗,这打破了过去传输技术中功 耗和带宽成正比的定律。民用的UWB 设备功率一般是传统移动 电话所需功率的1/ 100 左右,是蓝牙设备所需功率的1/ 20 左右。 军用的UWB 电台耗电也很低。因此,UWB 设备在电池寿命和电

UWB概述

UWB概述

六、UWB发展前景
与当前流行的短距离无线通信技术相比,UWB 具有巨大的数据传输速率优势,最大可以提供高 达1000Mbps 以上的传输速率。UWB技术在无 线通讯方面的创新性、利益性已引起了全球业界 的关注。与蓝牙等无线通信相比, UWB 可以提 供更快、更远、更宽的传输速率,越来越多的研 究者投入到UWB 领域。UWB技术在一些高端技 术领域即在军事需求和商业市场的推动下, UWB 技术将会进一步发展和成熟起来。
技术的研究主要围绕以下几方面展开: 对UWB技术的研究主要围绕以下几方面展开 技术的研究主要围绕以下几方面展开 (1)可控窄脉冲产生技术 ) (2)信道传播特性与信道模型 ) (3)调制技术 ) (4)多址技术 ) (5)信号检测技术等 )
四、UWB主要特点
与蓝牙和WLAN等带宽相对较窄的传统 无线系统不同,UWB不利用余弦波进行 载波调制而是发送许多小于1ns的脉冲 。 因此这种通信方式具有较宽的频谱、较 低的功率、脉冲化数据,这意味着UWB 引起的干扰小于传统的窄带无线解决方 案,并能够在室内无线环境中提供与有 线相媲美的性能。UWB具有以下特点:
UWB概述
一、什么是UWB
UWB(Ultra-Wide band) 技术也被称之为 “ 超宽带 ” ,又称冲激无线电(Impulse Radio)技术。 UWB与现有的无线技术的显著不同是不需要 UWB 使用载波,而是通过发送纳秒级脉冲来传输 数据,而且信号传输时的功耗仅有几十µW 。 凡是所用带宽与中心工作频率之比大于的 25% 或者是绝对带宽大于 1.5G 赫兹的信号, 就被称之为 “ 超宽带 ”。
二、UWB历史概述
UWB出现于1960年代,但其应用一直仅限于军事、灾害救援搜索 雷达定位及测距等方面。2002年2月,这项无线技术首次获得了 美国联邦通信委员会(FCC)的批准用于民用和商用通信,这项 技术的市场前景开始受到世人的瞩目。自1998年起,FCC对超宽 带无线设备对原有窄带无线通信系统的干扰及其相互共容的问题 开始广泛征求业界意见,在有美国军方和航空界等众多不同意见 的情况下,FCC仍开放了UWB技术在短距离无线通信领域的应用 许可,这充分说明此项技术所具有的广阔应用前景和巨大的市场 诱惑力。 UWB在保证了高数据速率传输的同时解决了移动终端的功耗问题。 因此它被认为是对目前被炒得沸沸扬扬的无线互联(Wi-Fi)技术 最具威胁的技术。

uwb概念

uwb概念

uwb概念UWB(Ultra-wideband)被定义为一种高带宽、低发射功率的无线通信技术。

其特点是具有超宽带(UWB)信号特征,能够在射频信道上进行短距离通信和测距。

下面,我将分步骤阐述UWB概念。

一、UWB概念的起源UWB起源于上世纪七十年代,初期应用于雷达系统和防窃听设备。

而在二十一世纪初,由于其极高的数据传输速率和低功率耗散,它又开始流行起来。

目前,UWB技术已经被广泛应用于无线定位、无线测距、短距离通讯、数据传输等领域。

二、UWB技术的特点1. 高精度:UWB能够在高噪声环境下,精确地检测出不同物体之间的距离;2. 大容量:UWB能够以超高速传输数据,支持多用户同时传输;3. 低功耗:UWB以低功率的方式进行通信,并且不会产生信道干扰,能够大大延长电池寿命;4. 高安全性:由于UWB通信使用了加密技术,这使得它成为一个非常安全的通信技术;5. 高可靠性:由于UWB信号的宽带特性,在噪声和干扰环境下,其数据传输的稳定性和可靠性都非常高。

三、UWB技术的应用1. 定位和跟踪:UWB能够将物体的位置精确到毫米级别,因此被广泛应用于室内定位、人员跟踪、物品追踪等领域。

2. 短距离通讯:UWB能够进行高速无线传输,因此可以实现高清晰度的视频和音频传输,被用于VR/AR设备、智能家居和车载娱乐系统。

3. 调制:UWB技术可以用在数字调制和基带调制中,可以用于接口标准化。

4. 当地环境监测:UWB技术也可以用于当地环境监测中,例如,检测空气污染和土壤水分。

以上是UWB概念的相关介绍,我们可以清晰地了解到UWB技术的优势、应用以及潜在价值。

随着UWB技术的发展和应用场景的扩大,相信UWB技术将会给我们带来更多的惊喜!。

(完整版)UWB—超宽带无线通讯技术及应用

(完整版)UWB—超宽带无线通讯技术及应用

1 UWB技术背景和概述
➢1.3 UWB 技术背景
为了避免对现有的通信系统带来干扰,必需将超宽带系统的 发射功率限定在一定范围内,即在超宽带通信频率范围内的 每个频率上都规定一个最大的允许功率,这个功率值一般通 过辐射掩蔽(emission mask)来决定.
(1)
(2)
探地雷达 穿墙成像
墙内成像 监视系统
1 UWB技术背景和概述
➢1.3 UWB 技术背景
Emitted Signal Power
GPS PCS
WIFI, Bluetooth 802.11b
WIFI 802.11a
-41 dBm/MHz
UWB Spectrum
1.6 1.9 2.4
3.1
5
10.6
Frequency (GHz)
1 UWB技术背景和概述
➢ 2.1 UWB 使用基带窄脉冲波形
脉冲无线电(Impulse Radio)是早期超宽带系 统的代名词,专指采用冲激脉冲(超短脉冲) 作为信息载体的非正弦载波无线电技术。
该技术有别于传统使用正弦载波的窄带无线系 统,属于基带、无载波通信的范畴。
2.UWB无线通信技术原理
➢ 2.1 UWB 使用基带窄脉冲波形
医疗成像
室内UWB设备辐射掩蔽
室外手持设备
1 UWB技术背景和概述
➢1.3 UWB 技术背景
FCC(美国联邦通信局):
对UWB系统所使用的频谱范围规定
带宽规定: 绝对带宽 (Absolute Bandwidth) 相对带宽 (Fractional Bandwidth)
绝对带宽大于500MHz 相对带宽大于25%
基带窄脉冲形式是UWB通信最早采用的信号形 式,一般来说它的工作脉宽是纳秒级的

超宽带无线通信技术论文

超宽带无线通信技术论文

超宽带无线通信技术论文超宽带无线通信技术(UWB),是一种新型的无线通信技术,它与传统的无线通信技术有很大的区别。

它使用了一种极短的脉冲信号,能够在极短的时间内传输大量的数据。

UWB技术具有带宽大、距离远、能量低、抗干扰等特点,广泛应用于无线通信、雷达测距、生命体征检测等领域。

UWB技术的本质是一种奇特的数字激励技术,它在时间域内采用极短的脉冲码,通过频谱扩展实现超宽的频带,实现数据传输。

我们可以将UWB技术分为两个部分:脉冲生成和频率转换。

脉冲生成是通过连接电流源和分布式电容在瞬间产生宽带脉冲。

频率转换是利用滤波、调制和混频等技术,将宽带脉冲转换为中心频率与宽带脉冲带宽相同的带通信号。

和传统的Wi-Fi技术相比,UWB技术具有以下显著特点:带宽大:UWB技术的带宽可以达到几个GHz,远远超过普通无线通信的带宽,能够支持高速宽带传输。

距离远:UWB技术的传输范围可以达到几十甚至几百米,而且传输距离不受信道深度的影响,能够实现室内外无缝覆盖。

能量低:UWB技术的传输功率非常低,能量均衡分布,不会对周围环境产生干扰,更加节能环保。

抗干扰:UWB技术具有较强的抗干扰能力,在复杂的无线环境中也能保持高效的传输性能。

由于UWB技术的特殊优势,其在许多应用领域都具有较大的发展潜力。

随着无线高清视频、物联网和智能家居等新型应用的不断涌现,UWB技术将会得到更广泛的应用和发展。

在物联网方面,UWB技术可以用于低功耗触发、超高精度定位、低速数据传输等方面,可以广泛应用于智能家居、智能交通、智能能源等领域。

例如,在智能家居领域,UWB技术可以实现智能家居的自动化控制,提高智能家居的安全性和便利性。

在医疗健康领域,UWB技术可以用于生命体征监测、医院追踪和手术操作等方面。

例如,在手术方面,UWB技术可以用于高精度手术定位,减少手术风险,提高手术成功率。

总之,UWB技术是一种极具发展前景的无线通信技术,具有带宽大、距离远、能量低、抗干扰等特点。

uwb超宽带无线通信技术(高精度定位)

uwb超宽带无线通信技术(高精度定位)

uwb超宽带⽆线通信技术(⾼精度定位)UWB(定位技术)超宽带⽆线通信技术⼀、UWB调制技术超宽带⽆线通信技术(UWB)是⼀种⽆载波通信技术,UWB不使⽤载波,⽽是使⽤短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到⼀个频率范围内。

它源于20世纪60年代兴起的脉冲通信技术。

传统通信⽅式使⽤的是连续波信号,即本地振荡器产⽣连续的⾼频载波,需要传送信息通过例如调幅,调频等⽅式加载于载波之上,通过天线进⾏发送。

现在的⽆线⼴播,4G通信,WIFI等都是采⽤该⽅式进⾏⽆线通信。

下图是⼀个使⽤调幅⽅式传递语⾳信号的的连续波信号产⽣⽰意图。

图1 连续波调幅信号⽽脉冲超宽带IR-UWB(Impluse Radio Ultra Wideband)信号,不需要产⽣连续的⾼频载波,仅仅需要产⽣⼀个时间短⾄nS级以下的脉冲,便可通过天线进⾏发送。

需要传送信息可以通过改变脉冲的幅度,时间,相位进⾏加载,进⽽实现信息传输。

下图是使⽤相位调制⽅式传输⼆进制归零码的IR-UWB信号产⽣⽰意图。

图2 IR-UWB调相信号从频域上看,连续波信号将能量集中于⼀个窄频率内,⽽UWB信号带宽很⼤,同时在每个频点上功率很低,如图3所⽰。

图3 IR-UWB信号频谱在⽆线定位中,使⽤IR-UWB信号相对于窄带信号的主要优势为,IR-UWB信号能准确分⽴⽆线传输中的⾸达信号和多径反射信号,⽽窄带信号不具备该能⼒。

主要有三种应⽤:成像、通信与测量和车载雷达系统,再宏观⼀点,可以分为定位、通信和成像三种场景。

·通信:因为⼤带宽,所以UWB⼀度被认为是USB数据传输的⽆线替代⽅案,蓝⽛的问题是传输速度太慢。

UWB还常⽤于军⽤保密通信,这主要也是因为UWB脉冲的能量很低,很容易低于噪声门限,不容易被其它⽆线电系统监听到。

UWB通过在较宽的频谱上传送极低功率的信号,能实现数百Mbit/s⾄2Gbit/s 的数据传输速率。

⽽且具有穿透⼒强、功耗低、抗⼲扰效果好、安全性⾼、空间容量⼤、能精确定位等诸多优点,可以说是个超级“潜⼒股”,很有可能在将来成为家庭主⽤的⽆线传输技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从频域来看,超宽带有别于传统的窄带和宽带,它的频带更宽。窄带是指相对带宽(信号带宽与中心频率之比)小于1%,相对带宽在1%到25%之间的被称为宽带,相对带宽大于25%,而且中心频率大于500MHz的被称为超宽带。
从时域上讲,超宽带系统有别于传统的通信系统。一般的通信系统是通过发送射频载波进行信号调制,而UWB是利用起、落点的时域脉冲(几十纳秒)直接实现调制,超宽带的传输把调制信息过程放在一个非常宽的频带上进行,而且以这一过程中所持续的时间,来决定带宽所占据的频率范围。
3.1 UWB与IEEE802.11a
IEEE802.11a是IEEE最初制定的一个无线局域网标准之一,它主要用来解决办公室局域网和校园网中用户与用户终端的无线接入,工作在5GHzU-NII频带,物理层速率54Mbps,传输层速率25Mbps。采用正交频分复用(OFDM)扩频技术;可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,以及TDD/TDMA的空中接口,支持语音、数据、图像业务。IEEE802.11a用作无线局域网时的通信距离可以达到100m,而UWB只能在10m以内的范围通信。根据英特尔照FCC的规定而进行的演示结果显示,对于10m以内的距离,UWB可以发挥出高达数百Mbps的传输性能,但是在20m处反倒是IEEE802.11a/b的无线局域网网设备更好一些。因此在目前UWB发射功率受限的情况下,UWB只能用于10m以内的高速数据通信,而10m到100m的无线局域网通信,还需要由802.11来完成,当然与UWB相比,802.11的功耗大,传输速率低。
3.2 UWB与Bluetooth
自从2002年2月14日,FCC批准UWB用于民用无线通信以来,就不断有人将UWB评论为蓝牙(Bluetooth)的杀手,因为从性能价格比上看,Bluetooth是现有无线通信方式中最接近UWB的,但是从目前的情况看UWB不会取代Bluetooth。首先从应用领域来看,Bluetooth工作在无须申请的2.4GHz ISM频段上,主要用来连接打印机、笔记本电脑等办公设备。它的通信速率通常在1Mbps以下,通信距离可以达到10m以上。而UWB的通信速率在几百Mbps,通信距离仅有几米,因此二者的应用领域不尽相同。其次,从技术上看,经过多年的发展,Bluetooth已经具有较完善的通信协议。Bluetooth的核心协议包括物理层协议和链路接入协议,链路管理协议及服务发展协议等等,而UWB的工业实用协议还在制定中。还有,Bluetooth是一种短距离无线连接技术标准的代称,蓝牙的实质内容就是要建立通用的无线电空中接口及其控制软件的公开标准,从这方面讲,UWB可以看作是采用一种特殊无线电波来高速传送数据的通信方式,严格地讲,它不能构成一个完整的通信协议或标准。考虑到UWB高速、低功耗的特点,也许在下一代Bluetooth标准中,UWB可能被用做物理层的通信方式。最后,从市场角度分析,蓝牙产品已经成熟并得到推广和使用,而UWB的研究还处在起步阶段。基于以上原因,在未来的几年内,UWB和Bluetooth更有可能既是竞争对手,又是合作朋友。
超宽带(UWB)无线通信技术介绍
UWB(Ultra Wide Band,超宽带)是一种以极低功率在短距离内高速传输数据的无线技术。这种原来专属军方使用的技术随着2002年2月美国联邦通信委员会(FCC)正式批准民用而备受世人的关注。UWB具有一系列优良独特的技术特性,是一种极具竞争力的短距无线传输技术。
2.6 发送功率非常小
UWB系统发射功率非常小,通信设备可以用小于1mW的发射功率就能实现通信。低发射功率大大延长系统电源工作时间。况且,发射功率小,其电磁波辐射对人体的影响也会很小。这样,UWB的应用面就广。
3、UWB及其相关技术的比较
UWB技术与现有其它无线通信技术有着很大的不同,它将会为无线局域网(LAN)和个人局域网(PAN)的接入带来低功耗、高带宽并且相对简单的解决方案。超宽带技术解决了困扰传统无线电技术多年的诸如信道衰落、高速率时系统复杂、成本高和功耗大等重大难题,但是UWB通信不会很快取代现有的其它无线通信技术。
1、UWB的概念
超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,即不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB是利用纳秒级窄脉冲发射无线信号的技术,适用于高速、近距离的无线个人通信。按照FCC的规定,从3.1GHz到10.6GHz之间的7.5GHz的带宽频率为UWB所使用的频率范围。
2.4 消耗电能小
通常情况下,无线通信系统在通信时需要连续发射载波,因此,要消耗一定电能。而UWB不使用载波,只是发出瞬间脉冲电波,也就是直接按O和1发送出去,并且在需要时才发送脉冲电波,所以,消耗电能小。
2.5 保发送端扩频码时才能解出发射数据;另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。
超宽带系统同时具有无线通信和定位的功能,可方便地应用于智能交通系统中,为车辆防撞、电子牌照、电子驾照、智能收费、车内智能网络、测速、监视、分布式信息站等提供高性能、低成本的解决方案。UWB也可应用在小范围、高分辨率、能够穿透墙壁、地面和身体的雷达和图像系统中,诸如军事、公安、消防、医疗、救援、测量、勘探和科研等领域,用做隐秘安全通信、救援应急通信、精确测距和定位、透地探测雷达、墙内和穿墙成像、监视和入侵检测、医用成像、贮藏罐内容探测等。UWB还可应用于传感器网络和智能环境,这种环境包括生活环境、生产环境、办公环境等,主要用于对各种对象(人和物)进行检测、识别、控制和通信。
2、UWB的主要技术特点
UWB是一种“特立独行”的无线通信技术,它将会为无线局域网LAN和个人局域网PAN的接口卡和接入技术带来低功耗、高带宽并且相对简单的无线通信技术。UWB解决了困扰传统无线技术多年的有关传播方面的重大难题,具有对信道衰落不敏感、发射信号功率谱密度低、被截获的可能性低、系统复杂度低、厘米级的定位精度等优点。
结合上述讨论,可以用表1对三种短距离无线通信做个简单的比较。
当然,UWB未来的前途还要取决于各种无线方案的技术发展、成本、用户使用习惯和市场成熟度等多方面的因素。
表1 几种短距离无线通信比较
5、结论
超宽带技术的采用对于解决当今在通信领域中的容量与有限的频谱资源分配等问题提供了一条有效的途径。在业界的推动下,UWB技术将日臻成熟,目前,已经有一些公司推出了UWB芯片和相关产品。可以预料UWB技术将在未来高速信息网络中发挥重要的作用。
4、UWB的应用前景
UWB技术具有系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,低截获能力,定位精度高等优点,尤其适用于室内等密集多径场所的高速无线接入,非常适于建立一个高效的无线局域网(WLAN)或无线个域网(WPAN)。UWB最具特色的应用将是视频消费娱乐方面的无线个人局域网(PANs)。具有一定相容性和高速、低成本、低功耗的优点使得UWB较适合家庭无线通信的需求。现有的无线通信方式,802.11b和蓝牙的速率太慢,不适合传输视频数据;54 Mb/s速率的802.11a标准可以处理视频数据,但费用昂贵。而UWB有可能在10m范围内,支持高达110 Mb/s的数据传输率,不需要压缩数据,可以快速、简单、经济地完成视频数据处理。
2.2 传输速率高
UWB的数据速率可以达到几十Mbit/s到几百Mbit/s,有望高于蓝牙100倍,也可以高于IEEE 802.11a和IEEE 802.11b。
2.3 带宽极宽
UWB使用的带宽在1GHz以上,高达几个GHz。超宽带系统容量大,并且可以和目前的窄带通信系统同时工作而互不干扰。这在频率资源日益紧张的今天,开辟了一种新的时域无线电资源。
UWB具有以下特点:
2.1 抗干扰性能强
UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。接收时将信号能量还原出来,在解扩过程中产生扩频增益。因此,与IEEE 802.11a、IEEE 802.11b和蓝牙相比,在同等码速条件下,UWB具有更强的抗干扰性。
相关文档
最新文档