1 离子水合作用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 离子水合作用:在水中添加可解离的溶质,会使纯水通过氢键键合形成的四面体排列的正常结构遭到破坏,对于不具有氢键受体和给体的简单无机离子,它们与水的相互作用仅仅是离子-偶极的极性结合。

这种作用通常被称为离子水合作用。

2 疏水水合作用:向水中加入疏水性物质,如烃、脂肪酸等,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,处于这种状态的水与纯水结构相似,甚至比纯水的结构更为有序,使得熵下降,此过程被称为疏水水合作用。

3 疏水相互作用:如果在水体系中存在多个分离的疏水性基团,那么疏水基团之间相互聚集,从而使它们与水的接触面积减小,此过程被称为疏水相互作用。

5 结合水:通常是指存在于溶质或其它非水成分附近的、与溶质分子之间通过化学键结合的那部分水。

6 化合水:是指那些结合最牢固的、构成非水物质组成的那些水。

7 状态图:就是描述不同含水量的食品在不同温度下所处的物理状态,它包括了平衡状态和非平衡状态的信息。

8 玻璃化转变温度:对于低水分食品,其玻璃化转变温度一般大于0℃,称为T g;对于高水分或中等水分食品,除了极小的食品,降温速率不可能达到很高,因此一般不能实现完全玻璃化,此时玻璃化转变温度指的是最大冻结浓缩溶液发生玻璃化转变时的温度,定义为T g´。

9 自由水:又称游离水或体相水,是指那些没有被非水物质化学结合的水,主要是通过一些物理作用而滞留的水。

10自由流动水:指的是动物的血浆、植物的导管和细胞内液泡中的水,由于它可以自由流动,所以被称为自由流动水。

11 水分活度:水分活度能反应水与各种非水成分缔合的强度,其定义可用下式表示:
0100
w p ERH
a
p
==
其中,P为某种食品在密闭容器中达到平衡状态时的水蒸汽分压;P0表示在同一温度下纯水的饱和蒸汽压;ERH是食品样品周围的空气平衡相对湿度。

12 水分吸着等温线:在恒温条件下,食品的含水量(用每单位干物质质量中水的质量表示)与αW的关系曲线。

13 解吸等温线:对于高水分食品,通过测定脱水过程中水分含量与αW的关系而得到的吸着等温线,称为解吸等温线。

14 回吸等温线:对于低水分食品,通过向干燥的样品中逐渐加水来测定加水过程中水分含量与αW的关系而得到的吸着等温线,称为回吸等温线。

15 滞化水:是指被组织中的显微结构和亚显微结构及膜所阻留的水,由于这部分水不能自由流动,所以称为滞化水或不移动水。

16 滞后现象:MSI的制作有两种方法,即采用回吸或解吸的方法绘制的MSI,同一食品按这两种方法制作的MSI图形并不一致,不互相重叠,这种现象称为滞后现象。

17 单分子层水:在MSI区间Ⅰ的高水分末端(区间Ⅰ和区间Ⅱ的分界线,αW=0.2~0.3)位置的这部分水,通常是在干物质可接近的强极性基团周围形成1个单分子层所需水的近似量,称为食品的“单分子层水(BET)”。

18纤维素:纤维素是植物细胞壁的主要结构成分,通常与半纤维素、果胶和木质素结合在一起,是由D-吡喃葡萄糖通过β-D-1,4糖苷键连接构成的线形同聚糖。

19膳食纤维:凡是不能被人体内源酶消化吸收的可食用植物细胞、多糖、木质素以及相关物质的总和
20糖原:糖原又称动物淀粉,是肌肉和肝脏组织中的主要储存的碳水化合物,是同聚糖,与支链淀粉的结构相似,含α-D-1,4和α-D-1,6糖苷键。

非酶褐变
非酶褐变反应主要是碳水化合物在热的作用下发生的一系列化学反应,产生了大量的有色成分和无色的成分,或挥发性和非挥发性成分。

由于非酶褐变反应的结果使食品产生了褐色,故将这类反应统称为非酶褐变反应。

就碳水化合物而言,非酶褐变反应包括美拉德反应、胶糖化褐变、抗坏血酸褐变和酚类成分的褐变。

8 美拉德反应
主要是指还原糖与氨基酸、蛋白质之间的复杂反应,反应过程中形成的醛类、醇类可发生缩和作用产生醛醇类及脱氮聚合物类,最终形成含氮的棕色聚合物或共聚物类黑素,以及一些需宜和非需宜的风味物质。

9 焦糖化褐变
糖类在没有含氨基化合物存在时,加热到熔点以上也会变为黑褐的色素物质,这种作用称为焦糖化作用。

温和加热或初期热分解能引起糖异头移位、环的大小改变和糖苷键断裂以及生成新的糖苷键。

但是,热分解由于脱水引起左旋葡聚糖的形成或者在糖环中形成双键,后者可产生不饱和的环状中间体,如呋喃环。

10 淀粉的糊化
淀粉分子结构上羟基之间通过氢键缔合形成完整的淀粉粒不溶于冷水,能可逆地吸水并略微溶胀。

如果给水中淀粉粒加热,则随着温度上升淀粉分子之间的氢键断裂,因而淀粉分子有更多的位点可以和水分子发生氢键缔合。

水渗入淀粉粒。

使更多和更长的淀粉分子链分离,导致结构的混乱度增大,同时结晶区的数目和大小均减小,继续加热,淀粉发生不可逆溶胀。

此时支链淀粉由于水合作用而出现无规卷曲,淀粉分子的有序结构受到破坏,最后完全成为无序状态,双折射和结晶结构也完全消失,淀粉的这个过程称为糊化。

11 淀粉的老化
热的淀粉糊冷却时,通常形成黏弹性的凝胶,凝胶中联结区的形成表明淀粉分子开始结晶,并失去溶解性。

通常将淀粉糊冷却或储藏时,淀粉分子通过氢键相互作用产生沉淀或不溶解的现象,称作淀粉的老化。

淀粉的老化实质上是一个再结晶的过程。

20 抗氧化剂
抗氧化剂可以抑制或延缓油脂的氧化,按抗氧化机理分为自由基清除剂、单重态氧猝灭剂、氢过氧化物分解剂、酶抑制剂、抗氧化增效剂等。

乳化剂
乳化剂是表面活性物质,分子中同时具有亲水基和亲油基,它聚集在油/水界面上,可以降低界面张力和减少形成乳状液所需要的能量,从而提高乳状液的稳定性。

12 乳状液
乳状液是由两种不互溶的液相组成的分散体系,其中一相是以直径0.1~50μm的液滴分散在另一相中,以液滴或液晶的形式存在的液相称为“内”相或分散相,使液滴或液晶分散的相称为“外”相或连续相。

在乳状液中,液滴和(或)液晶分散在液体中,形成水包油(O/W)或油包水(W/O)的乳状液。

13 酸败
脂类氧化是含脂食品品质劣化的主要原因之一,它使食用油脂及含脂肪食品产生各种异味和臭味,统称为酸败。

氨基酸等电点
当一个特定的氨基酸在电场的影响下不发生迁移时,这个氨基酸所在溶液的氢离子浓度叫氨基酸的等电点,通常用pI表示。

氨基酸的等电点是由羧基和氨基的电离常数来决定的。

2 蛋白质一级结构
就是指蛋白质多肽链中氨基酸残基的排列顺序,也即蛋白质的基本结构。

3 蛋白质二级结构
是指多肽链中主链原子的局部空间排布构象,不涉及侧链部分的构象,主要有α-螺旋结构和β-片层结构。

4 蛋白质三级结构
蛋白质的多肽链在各种二级结构的基础上再进一步盘旋或折叠形成一定规律的三维空间结构,称为蛋白质的三级结构。

5 蛋白质四级结构
具有两条或两条以上独立三级结构的多肽链组成的蛋白质,其多肽链间通过次级键相互组合而形成的空间结构成为蛋白质的四级结构。

6 蛋白质变性作用
蛋白质分子受到某些物理、化学因素的影响时,发生生物活性丧失,溶解度降低等性质改变,但是不涉及一级结构改变,而是蛋白质分子空间结构改变,这类变化称为变性作用。

7 蛋白质的功能性质
是指食品体系在加工、储藏、制备和消费过程中蛋白质对食品产生需要特征的那些物理、化学性质。

8 乳化活力
主要指乳状液的总界面面积。

乳化活力指数
即单位质量蛋白质所产生的界面面积,可根据乳状液的浊度与界面面积的关系,测得透光率后计算得到。

10 乳化容量
指乳状液发生相转变之前,每克蛋白质能够乳化油的体积。

11 乳化稳定性
通常以乳化后,其乳状液在一定温度下放置一定时间前后的体积变化值表示。

12 亚基
每个独立三级结构的多肽链单位称为亚基。

13 蛋白质可逆变性
蛋白质在除去变性因素之后,在适当的条件下蛋白质的构象可以由变性状态恢复到天然状态。

14 半完全蛋白质
蛋白质所含氨基酸虽然种类齐全,但其中某些氨基酸的数量不能满足人体的需要,它们可以维持生命,但不能促进生长发育。

15 不完全蛋白质
蛋白质不能提供人体所需的全部必需氨基酸,单纯靠它们既不能促进生长发育,也不能维持生命。

16 蛋白质界面性质
是指蛋白质能自发的迁移到空气-水界面或油-水界面,在界面上形成高黏弹性薄膜,其界面体系比由低分子量德表面活性剂形成的界面更稳定的性质。

17 食品泡沫
气泡在连续的液相或含可溶性表面活性剂的半固相中形成的分散体系。

18 胶凝作用
是指变性的蛋白质分子聚集并形成有序的蛋白质网络结构的过程。

19 完全蛋白质
蛋白质所含的必需氨基酸种类齐全,不但可以维持人体健康,还可以促进生长发育。

20 结构域
蛋白质分子主链折叠盘曲形成构象的基础上,分子中的各个侧链形成一定的构象,侧链构象主要是形成微区,或称结构域。


酶是具有生物催化功能的生物大分子,除少数几种酶为核酸分子外,绝大多数酶的化学本质为蛋白质。

2 金属酶与金属激活酶
金属酶是指酶与金属离子结合较为紧密,在酶的纯化过程中,金属离子仍被保留;金属激活酶是指金属原子结合不很紧密,纯化的酶需加入金属离子,才能被激活。

3 同工酶
是指不同形式的催化同一反应的酶,它们之间氨基酸的顺序、某些共价修饰或三维空间结构等可能不同。

4 生物活性肽
指那些有特殊的生理活性的肽类,可分为天然存在的活性肽和蛋白质酶解活性肽。

5 酶的最适pH值
在某一特定pH时,酶促反应具有最大反应速率,高于或低于此值,反应速率下降,通常称此pH值为酶的最适pH值,但酶的最适pH并不是一个常数,只是在一定的条件下才具有意义。

6 酶的活性中心
指酶与底物结合并发生反应的区域,一般位于酶分子的表面,大多数为疏水区。

是由结合基团和催化基团组成,结合基团负责与底物特异性结合,催化基团直接参与催化。

7 寡聚酶
由几个甚至几十个亚基组成,这些亚基可以是相同的多肽链,也可以是不同的多肽链,亚基间不时共价键结合,彼此很容易分开。

8 溶菌酶
又称胞壁质酶或N—乙酰胞壁质聚糖水解酶,可以水解细菌细胞壁肽聚糖的β-1,4-糖苷键,导致细菌自溶死亡。

9 固定化酶
是指一定空间内呈闭锁状态存在的酶,能连续进行反应,反应后的酶可以回收重复使用。

10 活力回收
是指固定化后的固定化酶所显示的活力占被固定的等量游离酶总活力的百分数。

11 D值
指将酶活减少为原来的10-1所需要的时间。

12 反竞争性抑制
反竞争性抑制作用不像竞争性抑制和非竞争性抑制反应,抑制剂不能直接与游离酶结合,仅能与酶-底物复合物反应,形成一个或多个中间复合物。

13 非竞争性抑制
非竞争性抑制剂不与酶的活性位点结合,而是与酶的其他部位相结合,因此抑制剂就可以等同地与游离酶或与酶-底物反应。

14 竞争性抑制
抑制剂与游离酶的活性位点结合,从而阻止底物与酶的结合,所以底物与抑制剂之间存在竞争。

15 中间底物
辅底物通常与至少两种酶作用,将氢或功能基团从一种酶转运到另一种酶,所以被称为转运代谢物或中间底物。

16 酶的抑制剂
指一些物质与酶结合后,使酶活力下降,但并不引起酶蛋白变性,因此凡是降低酶催化反应速度的物质称为酶抑制剂。

17 多酶体系
是由几种酶彼此嵌合形成的复合体,相对分子量一般在几百万以上,例如脂肪酸合成酶复合体。

18 酶激活剂
凡能提高酶活性的物质,都称为酶的激活剂,其中大部分为离子和简单的有机化合物。

19 不可逆抑制作用
抑制剂与酶的活性中心发生了化学反应,抑制剂共价的连接在酶分子的必须基团上,形成不解离的EI复合物,阻碍了底物的结合或破坏了酶的催化基团,不能用透析、超滤等物理方法除去抑制剂而恢复酶的活性。

20 辅基与辅底物
与酶结合紧密的称为辅基,不能通过透析除去,在酶催化过程中保持与酶分子结合;与酶可逆结合且结合疏松的称为辅底物,反应开始,它们常与底物一起与酶结合,在反应结束以改变的形式被释放。

相关文档
最新文档