传感器与检测系统的分类
传感器与检测技术1
第1章 传感器与检测技术基础检测技术是人们认识和改造世界的一种必不可少的重要技术手段。
而传感器是科学实验和工业生产等活动中对信息资源的开发获取、传输与处理的一种重要手段。
我们已经知道,对于电量参数的测量具有测量精度高、反应速度快、能自动连续地进行测量、可以进行遥测、便于自动记录、可以与计算机方便地连接进行数据处理、也可采用微处理器做成智能仪表、能实现自动检测与转换等一系列优点。
但是在工程上和实际的测量中,所需要测量的参数往往有相当大的部分为非电量,例如温度、位移、压力、流量等,所以通常就把将这些非电量转换为电信号输出的装置或设备称为传感器。
传感器与检测技术是一门随着现代科学技术发展而迅猛发展的综合性技术学科,广泛应用于人类的社会生产和科学研究中,起着越来越重要的作用,成为国民经济发展和社会进步的一项必不可少的重要技术。
检测的基本任务就是获取有用的信息,通过借助专门的仪器、设备,设计合理的实验方法以及进行必要的信号分析与数据处理,从而获得与被测对象有关的信息,最后将结果提供显示或输入其他信息处理装置、控制系统。
因此,传感器与检测技术属于信息科学范畴,它与通信技术、计算机技术一起分别构成信息技术系统的“感官”、“神经”和“大脑”,是信息技术的三大支柱(传感技术、通信技术和计算机技术)之一。
检测技术的发展与生产和科学技术的发展是紧密相关的,它们互相依赖、相互促进。
现代科技的发展不断地向检测技术提出新的要求,推动了检测技术的发展。
与此同时,检测技术迅速吸取各个科技领域(如材料科学、微电子学、计算机科学等)的新成果,开发出新的检测方法和先进的检测仪器,同时又给科学研究提供了有力的工具和先进的手段,从而促进了科学技术的发展。
在各种现代机械设备的设计和制造中,检测技术的成本已达到设备系统总成本的50%~70%。
据资料统计:一辆汽车需要30~100余种传感器及配套检测仪表用以检测车速、方位、转矩、振动、油压、油量、温度等;而一架飞机需要3600余种传感器及配套检测仪表用来监测飞机各部位的参数(压力、应力、温度等)和发动机的参数(转速、振动等)等。
传感器与检测技术重点知识点总结
传感器与检测技术重点知识点总结传感器是一种能够感知、收集并转换物理量或化学量等信息的装置。
它广泛应用于各个行业和领域,如工业生产、环境监测、医疗设备、汽车等。
以下是传感器与检测技术的一些重点知识点总结。
1.传感器的基本原理-传感器是通过感知或测量物理量或化学量等信息,并将其转化为可用的电信号输出。
-常见的物理量包括温度、压力、湿度、光照强度、流量等;化学量包括气体浓度、pH值等。
-传感器的工作原理包括电学、热学、光学、化学以及机械等不同的原理。
-传感器的输出信号可以是电压、电流、频率、电阻等形式。
2.传感器的分类-按照感知的物理量或化学量的不同,传感器可以分为温度传感器、压力传感器、光敏传感器、流量传感器等。
-按照测量原理的不同,传感器可以分为电阻传感器、电容传感器、电感传感器、化学传感器等。
-按照输出信号类型的不同,传感器可以分为模拟输出传感器和数字输出传感器。
3.传感器的特性与参数-灵敏度:传感器响应物理量变化的能力,它决定了传感器的测量范围和分辨率。
-精度:传感器测量值与真实值之间的偏差,包括系统误差、随机误差等。
-响应时间:传感器从感知到输出响应所需的时间。
-可靠性:传感器在一定环境条件下长时间稳定工作的能力。
-线性度:传感器输出信号与输入物理量之间的线性关系。
-温度影响:传感器在不同温度下性能的稳定性。
-零点漂移:在长时间使用过程中,传感器输出信号发生的零点偏移。
-跨度漂移:在长时间使用过程中,传感器输出信号的量程偏移。
-电磁兼容性:传感器在干扰条件下的工作能力。
4.传感器的应用领域-工业生产:用于监测和控制工艺过程中的温度、压力、流量等参数,提高生产效率和质量。
-环境监测:用于监测大气污染、水质污染、噪声等环境参数,保护生态平衡和人类健康。
-汽车行业:用于汽车发动机的温度、压力、氧气浓度等参数的监测和控制,提高汽车性能和安全性。
-医疗设备:用于监测病人的体温、心率、血压等生理参数,辅助医疗诊断和治疗。
传感器与检测技术ppt课件第一章
2024/2/29
16
1.2检测技术理论基础
1.2.2 测量方法
1) 直接测量、间接测量和组合测量 (又称联立 测量)。经过求解联立方程组,才能得到被测物理量的最后
结果,则称这样的测量为组合测量。
2) 偏差式测量、零位式测量与微差式测量
3) 等精度测量与非等精度测量
4) 静态测量与动态测量
2024/2/29
2024/2/29
23
2024/2/29
3
1.1.3 传感器基本特性
当传感器的输入信号是常量,不随时间变化时,其 输入输出关系特性称为静态特性。
传感器的基本特性是指系统的输入与输出关系特性 ,即传感器系统的输出信号y(t)和输入信号(被测 量)x(t)之间的关系,传感器系统示意图如下图所 示。
2024/2/29
4
1.1.3 传感器基本特性
2.传感器的分类
(1)按照其工作原理,传感器可分为电参数式(如电阻式、 电感式和电容式)传感器、压电式传感器、光电式传感器及 热电式传感器等。
(2)按照其被测量对象,传感器可分为力、位移、速度、 加速度传感器等。常见的被测物理量有机械量、声、磁、温 度和光等。
(3)按照其结构,传感器可分为结构型、物性型和复合型 传感器。物性型传感器是依靠敏感元件材料本身物理性质的 变化来实现信号变换,如:水银温度计。结构型传感器是依 靠传感器结构参数的变化实现信号变换,如:电容式传感器。
敏感元件输出的物理量转换成适于传输或测量电信号 的元件。
测量电路(measuring circuit): 将转换
元件输出的电信号进行进一步转换和处理的部分,如 放大、滤波、线性化、补偿等,以获得更好的品质特 性,便于后续电路实现显示、记录、处理及控制等功 能。
传感器与检测技术完整ppt课件
.
6.稳定性。稳定性有短期稳定性和长期稳定性之分。对于传感器常用长期 稳定性描述其稳定性。所谓传感器的稳定性是指在室温条件下,经过相当长 的时间间隔,传感器的输出与起始标定时的输出之间的差异。因此,通常又 用其不稳定度来表征传感器输出的稳定程度。
7.漂移。传感器的漂移是指在输入量不变的情况下,传感器输出量随着时 间变化,此现象称为漂移。产生漂移的原因有两个方面:一是传感器自身结 构参数;二是周围环境(如温度、湿度等)。
.
1.3.1测量误差及其分类
误差的定义
测量误差(error of measurement)是指测得值与被
测量真值之差,可用下式表示: 测量误差=测得值-真值
若定义中的测得值是用测量方式获得的被测量的测
量结果,则得到测量误差的定义为:测量误差=测量结果-真
值
若定义中的测得值是指计量仪器的示值,则得到计
1.1.3传感器的分类 1.按输入量(被测量)分类 2.按工作原理(机理)分类 3、按能量的关系分类 4.按输出信号的形式分类
.
1.2 传感器的特性
静态特性和动态特性
输入量X和输输出Y的关系通常可用多项式表示
静态特性可以用一组性能指标来描述,如线性度、灵敏度、精确度(精 度)、重复性、迟滞、漂移、阈值和分辨率、稳定性、量程等。
2替代法其实质是在测量装置上测量被测量后不改变测量条件立即用相应标准量代替被测量放到测量装置上再次进行测量从而得到此标准量测量结果与已知标准量的差值即系统误差取其负值即可作为被测量测量结果的修正先将被测量x放于天平一侧标准砝码p放于另一侧调至天平平衡则有xpl此时移去被测量x用标准砝码q代替使天平重新平衡则有qpl2l1所以有xq
传感器的主要分类
传感器的主要分类传感器是一个非常广泛应用于工业、医疗、航空航天、农业等领域的设备,它能够将各种物理量转换为电信号或其他易于处理的形式,从而让我们能够对环境的变化进行感知和控制。
根据其工作原理和应用领域的不同,传感器可以被分为多个主要分类。
1. 按照测量的物理量分类:- 压力传感器:测量气体或液体的压力,常见的有压电传感器、压阻式传感器等。
- 温度传感器:测量物体的温度,常见的有热电偶、热电阻、红外传感器等。
- 湿度传感器:测量空气中的湿度,常见的有电容式传感器、电阻式传感器等。
- 流量传感器:测量液体或气体的流量,常见的有涡轮流量传感器、超声波传感器等。
- 光传感器:测量光线的强度或频率,常见的有光电二极管、光敏电阻等。
- 加速度传感器:测量物体的加速度,常见的有压电传感器、光纤传感器等。
2. 按照传感器的工作原理分类:- 电阻性传感器:通过物理量的变化引起电阻值的改变,常见的有压阻式传感器、电位器等。
- 容性传感器:通过物理量的变化引起电容值的改变,常见的有电容式湿度传感器、触摸屏等。
- 电感性传感器:通过物理量的变化引起电感值的改变,常见的有磁力传感器、电感式传感器等。
- 压电性传感器:通过物理量的变化引起压电材料产生电荷,常见的有压电传感器、声波传感器等。
- 光学传感器:通过物理量的变化引起光的变化,常见的有光敏电阻、光电二极管等。
3. 按照传感器的应用领域分类:- 工业自动化传感器:常见的有压力传感器、温度传感器、液位传感器等,用于监测和控制工业过程中各种物理量的变化。
- 医疗传感器:常见的有心率传感器、血压传感器、血糖传感器等,用于监测患者的生命体征和健康状况。
- 环境监测传感器:常见的有温湿度传感器、PM2.5传感器、CO2传感器等,用于监测大气、水质和土壤等环境参数。
- 智能家居传感器:常见的有人体红外传感器、声音传感器、烟雾传感器等,用于实现家居设备的自动控制和安全监测。
- 农业传感器:常见的有土壤湿度传感器、光照传感器、气象传感器等,用于监测农作物的生长环境和农田的气候条件。
简述检测系统的组成及各部件的作用
一、概述随着科技的不断发展,检测系统在工业生产和科学研究中扮演着越来越重要的角色。
检测系统由多个部件组成,每个部件都有其特定的作用,只有各个部件协同工作,才能确保检测系统的正常运转。
本文将就检测系统的组成及各部件的作用进行简要分析和阐述,以期帮助读者更好地了解检测系统。
二、检测系统的组成及各部件的作用1. 传感器传感器是检测系统中最核心的部件之一,其作用是将被测量的物理量转换成可读的电信号。
传感器根据测量的物理量不同可以分为温度传感器、压力传感器、光电传感器等。
传感器的种类繁多,选用合适的传感器对检测系统的精度和稳定性有着至关重要的影响。
2. 信号处理器信号处理器是将传感器采集到的电信号进行处理的部件,其作用是对传感器采集到的信号进行放大、滤波、线性化等处理,以便将其转换为可供分析的信号。
信号处理器的质量将直接影响检测系统的测量精度和稳定性。
3. 控制器控制器是检测系统中的另一个重要部件,其作用是根据测量信号和预设参数对被测量对象进行控制。
控制器可以根据具体的应用场景选择不同的控制算法,如PID控制算法、模糊控制算法等,以实现对被测量对象的精确控制。
4. 数据采集器数据采集器是将传感器采集到的信号转换成数字信号,并存储在计算机中,以便后续的数据分析和处理。
数据采集器的性能直接影响了检测系统对信号的采集速度和精度。
5. 软件系统软件系统是检测系统中不可或缺的一部分,其作用是对采集到的数据进行实时监测、分析和处理。
软件系统可以根据具体的需求定制开发,以满足不同应用场景的需求。
6. 显示器显示器是将经软件系统处理后的数据进行可视化显示的部件,其作用是让操作人员直观地了解被测量对象的状态和参数。
显示器的性能将直接影响操作人员对检测系统的使用体验。
7. 联网模块联网模块是检测系统中的辅助部件,其作用是将检测系统与其他设备或互联网连接起来,以实现远程监控和数据共享的功能。
联网模块的稳定性和安全性是保证检测系统正常运行的重要保障。
传感器与检测技术基础知识
X Ax A0
测量值:由测量器具读数装置 所指示出来的被测量的数值。
【例1】
约定真值:被测 量用基准器测量
出来的值。 (真值的替身)
某采购员分别在A 、B 、C 三家商店购买 100kg牛肉干、10kg牛肉干、1kg牛肉干,发现均 缺少约0.5kg,但该采购员对C家卖牛肉干的商店
意见最大,是何原因?
(2)相对误差 —— 反映测量值的精度
①实际相对误差
A
X A0
100%
②示值相对误差
x
X Ax
100%
③满度相对误差
m
X Am
100%
仪器 满度值
当ΔX取为ΔXm时,最大满度相对误差就被用来 确定仪表的精度等级S:—— 反映仪表综合误差的 大小
S X m 100 Am
或
S X m 100 Amax Amin
1.传感器的静态特性 —— 被测量的值处于稳定
(1)线性度
状态时的输出-输入关系。
指传感器的输出与输入之间数量关系的线性 程度。
传感器的输出与输入关系:
y a0 a1x1 a2x2 anxn
如果传感器非线性的方次不高,输入量变化 范围较小,则可用一条直线(切线或割线)近似 地代表实际曲线的一段,使传感器的输出-输入特 性线性化,所采用的直线称为拟合直线。
(仪表下限刻 度值不为零时)
S X m 100 Am
若已知仪表的精度等级和量程,则最大绝对误 差为?
Xm S% Am
我国电工仪表等级分为七级,即: 0.1、0.2、0.5、1.0、1.5、2.5、5.0级
【思考题】有一数字温度计,它的测量范围为 - 50℃ ~ + 150℃,精度为0.5级。求当示值分别为 - 20℃和 + 100℃时的绝对误差和示值相对误差。
传感器与自动检测技术
成分量传感器 如:气敏传感器等
状态量传感器 如:各种接近开关 等 探伤传感器等 如:超声波探伤仪等
模拟传感器 (3)按输出量种类来分 数字传感器 直接传感器 (4)按传感器结构来分 差动传感器
补偿传感器
(2)命名
传感器常常按工作原理及被测量性质两种分 类方式合二为一进行命名。 例如:①电感式位移传感器 ②光电式转速计 ③压电式加速度计 光电式转速计
弹簧管受力动画演示
(2)波纹管
压力p
自由端的位移x
波纹管示意图
波纹管受力动画演示
(3)等截面薄板 压力 p 或者 压力 p 应变ε 等截面薄板示意图 位移 x
(4)波纹膜片和膜盒 压力差p 位移x 膜盒示意图
(5)薄壁圆筒和薄壁半球 压力 p 应变ε
薄壁圆筒和薄壁半球示意图
光敏电阻
铂电阻测温传感器
解:按最坏的情况考虑,每次误差都达到技术指标 规定的极限值,即: 基本误差 x1 1.25% 附加误差 x 2 0.5%
x x1 x 2 (1.25% 0.5%) 1.75%
求其均方根值为:
x
2 xi
1.25 % 0.5% 1.35 %
例:木块刚度小,铁块刚度大 2.灵敏度
dx K 1/ k dF
弹性特性曲线图
灵敏度为常数,此弹性特性是线性
二、弹性敏感元件的形式及应用范围 等截面轴 变换力 1.弹性敏感 元件的形式 环状弹性敏感元件 悬臂梁
扭转轴
弹簧管 波纹管 变换压力 等截面薄板 波纹膜片和膜盒 薄壁圆筒和薄壁半球
2.变换力的弹性敏感元件 (1)等截面轴 力F 应变ε
等截面轴示意图
等截面轴受 力动画演示
传感器和检测技术复习参考2023年修改整理
《传感器与现代检测技术》复习参考前言知识点第一章 概论1、检测的定义2、传感器的定义、组成、分类传感器(狭义):能感应被测量的变化并将其转换为其他物理量变化的器件.传感器(广义):是信号检出器件和信号处理部分的总称.传感器的分类:按测量的性质划分:位移传感器,压力传感器,温度传感器等.按工作的原理划分:电阻应变式,电感式,电容式,压电式,磁电式传感器等.按测量的转换特征划分:结构型传感器和物性型传感器.按能量传递的方式划分:能量操纵型传感器和能量转换型传感器.3、检测系统的静、动态性能指标静态特性可用下列多项式代数方程表示:y=a0+a1x+a2x2+a3x3+…+anx n式中:y—输出量;x—输入量;a0—零点输出;a1—理论灵敏度;a2、a3、… 、an—非线性项系数。
1)线性度:指输出量与输入量之间的实际关系曲线偏离直线的程度,又叫非线性误差.2)灵敏度:指传感器的输出量增量与引起输出量增量的输入量的比值.3)迟滞:指传感器在正向行程和反向行程期间,输出-输入曲线不重合的现象.4)重复性:指传感器在输入量按同一方向做全量程多次测试时,所得特性曲线不一致性的程度.5)分辨率:指传感器在规定测量范围内所能检测输入量的最小变化量.6)稳定性:指传感器在室温条件下,通过相当长的时刻间隔,传感器的输出与起始标定时的输出之间的差异.7)漂移:指传感器在外界的干扰下,输出量发生与输入量无关的变化,包括零点漂移和灵敏度漂移等.4、 传感器的动态特性1)瞬态响应法2)频率响应法第二章 常用传感器1、电阻式传感器(1)基本原理:将被测物理量的变化转换成电阻值的变化,再经相应的测量电路显示或记录被测量值的变化。
(2)电阻应变片结构(3)应变效应电阻应变片满足线性关系:,S即为应变片灵敏系数,或用K表示,K=1+2μ。
半导体应变片满足: (4)测量电路A .直流电桥 (电桥形式(单臂、双臂、全桥)、输出电压表达式、电压灵敏度、应变片的位置安放)见课后习题P242 3.5 B .交流电桥(5)温度误差缘由及补偿方法2、 电容式传感器(1) 结构、原理(2) 类型:变极距型:非线性误差大,适用于微小位移量测量变极板面积型:面积变化型电容传感器的优点是输出与输入成线性关系,但与极板变化型相比,灵敏度较低,适用于较大角位移及直线位移的测量。
传感器与检测技术基础知识
3.发展智能型传感器
智能型传感器是一种带有微处理器并兼有 检测和信息处理功能的传感器。智能型传感器 被称为第四代传感器,使传感器具备感觉、辨 别、判断、自诊断等功能,是传感器发展的主 要方向。
1.2 检测技术基础 1.2.1 检测技术的概念与作用
检测技术是人们为了对被测对象所包含的信息 进行定性的了解和定量的掌握所采取的一系列技术 措施。
切削力测量应变片
动圈式磁电传感器
3)按信号变换特征: 能量转换型和能量控制型.
能量转换型:直接由被测对象输入能量使其工作. 例如:热电偶温度计,压电式加速度计.
能量控制型:从外部供给能量并由被测量控制外部 供给能量的变化.例如:电阻应变片.
4)按敏感元件与被测对象之间的能量关系:
物性型:依靠敏感元件材料本身物理性质的变化来 实现信号变换.如:水银温度计.
间的关系式为:y=f(x1x2x3…) 。间接测量手续多,
花费时间长,当被测量不便于直接测量或没有相应直 接测量的仪表时才采用。
(2)偏差式测量、零位式测量和微差式测量 Ⅰ.偏差式测量 在测量过程中,利用测量仪表指针相对 于刻度初始点的位移(即偏差)来决定被测量的测量方法,称为 偏差式测量。它以间接方式实现被测量和标准量的比较。 偏差式测量仪表在进行测量时,一般利用被测量产生的 力或力矩,使仪表的弹性元件变形,从而产生一个相反的作 用,并一直增大到与被测量所产生的力或力矩相平衡时,弹 性元件的变形就停止了,此变形即可通过一定的机构转变成 仪表指针相对标尺起点的位移,指针所指示的标尺刻度值就 表示了被测量的数值。偏差式测量简单、迅速,但精度不高, 这种测量方法广泛应用于工程测量中。
1.用物理现象、化学反应和生物效应设计制作各种用途 的传感器,这是传感器技术的重要基础工作。
传感器与自动测控系统
传感器与自动测控系统
传感器的发展趋势是微型化、数字化、智能化、多功能 化、系统化、网络化,它不仅促进了传统产业的改造和更新 换代,而且可能建立新型工业,从而成为21世纪新的经济增 长点。总体上看,传感器技术是涉及能量转换原理,材料选 择和制造,器件设计、开发和应用等的多项综合技术。传感 器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保 护、资源调查、医学诊断、生物工程甚至文物保护等极其广 泛的领域。可以毫不夸张地说,从茫茫的太空到浩瀚的海洋 以至各种复杂的工程系统,几乎每个现代化项目都离不开各 种各样的传感器。
传感器与自动测控系统
传感器的组成框图如图1-1所示。
图1-1 传感器的组成框图
传感器与自动测控系统
传感器是一种检测装置,能感受到被测量的信息,并能将其按一定 规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、 处理、存储、显示、记录和控制等要求。中国物联网校企联盟认为:传 感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢 变得活了起来。根据传感器的敏感元件进行分类,可将传感器分为物理 类(基于力、热、光、电、磁和声等物理效应)、化学类(基于化学反 应的原理)和生物类(基于酶、抗体和激素等分子识别功能);根据传 感器的基本感知功能可将其分为热敏元件、光敏元件、气敏元件、力敏 元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和 味敏元件等十几大类。
生物电传感器等—意念。
传感器与自动测控系统
新技术革命的到来,使世界开始进入信息时代。在利用信 息的过程中,首先要解决的问题就是获取准确可靠的信息,而 传感器是获取自然和生产领域中信息的主要途径与手段。
在现代工业生产尤其是自动化生产过程中,要用各种传感 器来监视和控制生产过程中的各个参数,使设备工作在正常状 态或最佳状态,并使产品达到最好的质量。因此,没有众多的 优良的传感器,现代化生产也就失去了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 检测系统的组成
键盘
触摸屏
1.2 检测系统的组成
8.稳压电源 由于工业现场通常只能提供交流220 V工
频电源或+24 V直流电源,传感器和检测检测 系统通常不经降压、稳压就无法直接使用; 因此需根据传感器和检测检测系统内部电路 实际需要,自行设计稳压电源。
传感器通常由敏感器件和转换器件组合而成。敏 感器件是指传感器中直接感受被测量的部分,转换器 件通常是指将敏感器件在传感器内部输出转换为便于 人们应用、处理外部输出(通常为电参量)信号的部 分。
1.1 传感器与检测技术的地位与作用
1.1.2 检测的概念 检测是指在生产、科研、试验及服务等各个领
域,为及时获得被测、被控对象的有关信息而实时 或非实时地对一些参量进行定性检查和定量测量。
1.2 检测系统的组成
温度传感器 红外线传感器
电磁流量计
1.2 检测系统的组成
2. 信号调理 信号调理在检测系统中的作用是对传感器
输出的微弱信号进行检波、转换、滤波、放大 等,以方便检测系统后续处理或显示。对信号 调理电路的一般要求是:
✓能准确转换、稳定放大、可靠地传输信号;
✓信噪比高,抗干扰性能要好。
1.2 检测系统的组成
信号调理模块实物图
单通道信号调理电路
1.2 检测系统的组成
3. 数据采集 数据采集是对信号调理后的连续模拟信号离
散化并转换成与模拟信号电压幅度相对应的数值 信息,同时把数据及时传递给微处理器或自动存 储。性能指标如下: 输入模拟电压信号范围 单位V; 转换速度 单位次/秒; 分辨率 以模拟信号输入为满度时的转换值的倒 数来表征; 转换误差 实际转换数值与理想A/D转换器理论转 换值之差。
➢先进医疗检测仪
成分量检测, 可测试项目为生化、 离子检测、微免疫、 肿瘤标志物、毒品 检测、同工酶测定、 脂类、糖尿病诊断 等。
1.1 传感器与检测技术的地位与作用
➢生活中化学成分的检测
利用化学反应机理检测成分,上图为 酒精检测仪,右图为空气质量检测仪。
1.1 传感器与检测技术的地位与作用
➢防火防盗和见用电器安全检测
编程控制器(PLC)或其他智能化终端。检测 仪表和检测系统的输出信号通常有4~20 mA 的电流模拟信号和脉宽调制PWM信号及串行 数字通信信号等多种形式,需根据系统的具体 要求确定。
1.2 检测系统的组成
串口、网口信号输出
8路电压信号输出
1.2 检测系统的组成
7.输入设备 输入设备用于输入设置参数,下达有关
第一章 绪论
绪论
1.1 传感器与检测技术的地位与作用 1.2 检测系统的组成 1.3 传感器与检测系统的分类 1.4 传感器与检测技术的发展趋势
1.1 传感器与检测技术的地位与作用
1.1.1 传感器的定义
传感器是能以一定精确度把某种被测量(主要为 各种非电的物理量、化学量、生物量等)按一定规律 转换为(便于人们应用、处理)另一参量(通常为电 参量)的器件或测量装置。
1.2 检测系统的组成
1. 传感器 传感器性能要求: ➢准确性 传感器的输出与输入关系必须是严格的 单值函数关系,最好是线性关系 ; ➢稳定性 传感器的输入、输出的单值函数关系最 好不随时间和温度而变化 ; ➢灵敏度 要求被测参量较小的变化就可使传感器 获得较大的输出信号; ➢其他 如耐腐蚀性、功耗、输出信号形式、体积、 售价等。
1.2 检测系统的组成
各类数据采集卡
1.2 检测系统的组成
4. 信号处理 现代检测仪表、检测系统中的信号处理模
块通常以各种型号的嵌入式微控制器、专用高 速数据处理器(DSP)或为核心来直接采用工 业控制计算机构建。
1.2 检测系统的组成
基于ARM9核的嵌入 式控制器
DSP处理芯片
1.2 检测系统的组成
检测与计量的不同
“计量”:指用精度等级更高的标准量具、 器具或标准仪器,对被测样品、样机进行考 核性质的测量。特点:非实时、离线、标定。
“检测” :指在生产、实验等现场,利用 某种合适的检测仪器或综合测试系统对被测 对象进行在线、连续的测量。
1.1 传感器与检测技术的地位与作用
1.1.3 传感器与检测技术的地位与作用 检测技术是自动化和信息化的基础与前
提。
应用领域主要有: ➢石化行业的自动 化控制。 如右图,有液位、 温度、压力等检测。
1.1 传感器与检测技术的地位与作用
➢城市生活污水处理
主要有流 量检测、液位 检测和成分量 检测。
1.1 传感器与检测技术的地位与作用
➢新型武器和装备的研制与测试
定位与导航,图为中国研制的DF-21和雷达。
1.1 传感器与检测技术的地位与作用
左图为漏电报警器,上图 为烟雾报警器。
绪论
1.1 传感器与检测技术的地位与作用 1.2 检测系统的组成 1.3 传感器与检测系统的分类 1.4 传感器与检测技术的发展趋势
1.2 检测系统的组成
1.2 检测系统的组成
由图可知: 首先通常由各种传感器将非电被测物理或
化学成分参量转换成电参量信号,然后经信号 调理(包括:信号转换、信号检波、信号滤波、 信号放大等)、数据采集、信号处理后,进行 显示、输出;加上系统所需的交、直流稳压电 源和必要的输入设备,便构成了一个完整的现 代检测(仪器)系统 。
1.2 检测系统的组成
稳 压 电 源
绪论
1.1 传感器与检测技术的地位与作用 1.2 检测系统的组成 1.3 传感器与检测系统的分类 1.4 传感器与检测技术的发展趋势
1.3 传感器与检测系统的分类
1.3.1 传感器的分类 传感器常见的分类方法如表1-1所示。
1.3 传感器与检测系统的分类
5. 信号显示 检测仪表和检测系统在信号处理器计算出
被测参量的当前值后送至各自的显示器作实时 显示,以及时知道被测参量的瞬时值、累积值 或其随时间的变化情况。显示器一般可分为指 示式、数字式和屏幕式三种。
1.2 检测系统的组成
指 示 式
数字式 屏 幕 式
1.2 检测系统的组成
6.信号输出 通常把测量值及时传送给监控计算机、可