管壳式换热器传热计算示例(终)
管壳式换热器的建模、换热计算和CFD模拟

毕业设计(论文)管壳式换热器的建模、换热计算和CFD模拟专业年级2007级热能与动力工程专业学号姓名******** 杨郭指导教师刘巍评阅人刘庆君二零一一年六月中国南京任务书课题名称:管壳式换热器的建模、换热计算与CFD模拟课题类型:毕业论文任务书内容:1、英文资料的翻译5千个汉字字符以上(要求和热动、空调、能源、环境、新能源等本专业有关的内容,可以是英文著作、设备使用手册、英文文献检索、英文专利文献、网上专题介绍等实用性的、将来工作中可遇到的相关题材的文章,最好不要是科普类、教学类的英文)2、使用的原始资料(数据)及设计技术要求:2.1.管壳式换热器,热交换功率100kW,200kW。
2.2.温度进口350~500℃,出口温度150~200℃,流速可变;温度进口100~150℃,出口温度300~450℃,流速可变。
其总流阻损失应在满足规定要求。
2.3.换热器材料可选,几何尺寸可变;工作介质可选择(空气、水、氟利昂) 2.4.换热器外壁面绝热保温; 2.5.采用CFD模拟计算与能量分析,对系统进行相关工况的模拟;3、设计内容:3.1. 学习和消化设计任务书,按照设计任务书的设计内容,拟定工作内容和计划,拟定出设计和计算的每个过程中应该遵循设计要求与规定。
3.2.查找和收集有关管壳式换热器的历史和现状资料,查找相关管壳式换热器的运用案例,及其相关的技术条件和运行要求。
3.3.以科技文献检索,包括期刊、专利、设计标准、产品标准、设计手册、产品样本,寻找和熟悉相关的分析计算软件;熟悉设计工具软件、电脑等;3.4.根据已知参数,用ProE设计出符合要求的管壳式换热器,并学习如何导入相关软件进行网格设计;3.5.进行管壳式换热器CFD网格设计,用fluent软件对管壳式换热器进行变工况运行能量分析;3.5.分析计算换热器的流阻损失,其结果的合理性,分析提高换热效率主要手段和改进的方向。
3.6.输出的计算文件包括:3.6.1.完整的毕业设计任务书3.6.2.符合要求的算模型的结构、尺寸; 3.6.3.换热计算的过程、表格,计算结果的结论等等; 3.6.4.规定状态的CFD模拟结果和能量分析图; 3.6.5.毕业设计论文; 3.7.把所作的工作、学习的体会、方案的选择过程、计算方案过程等写在过程手册中,写好毕业设计论文。
换热器设计计算范例

换热器设计计算范例换热器是一种用于传递热量的设备,常用于工业生产中的加热、冷却或蒸发等工艺过程中。
在设计换热器时,我们需要考虑的主要参数包括换热面积、传热系数、温度差以及流体性质等。
下面就以一种换热器设计计算范例进行说明。
假设我们需要设计一个管壳式热交换器,用于加热水和空气的热交换。
设计要求如下:1.加热水的进口温度:70℃2.加热水的出口温度:90℃3.空气的进口温度:25℃4.空气的出口温度:50℃5.加热水的流量:10m3/h6.空气的流量:1000m3/h首先,我们需要确定换热面积的大小。
根据传热计算的公式:Q=U×A×ΔT其中,Q为换热量,U为传热系数,A为换热面积,ΔT为温度差。
假设我们的换热器传热系数U为400W/(m2·℃),温度差ΔT为(90-70)=20℃。
根据公式,换热量可以计算为:Q=400×A×20我们将换热量Q设置为加热水的传热量,可得:Q1=400×A×20为了方便计算,我们将流体的热容量乘以流量定义为A1(加热水)和A2(空气)。
可得:Q1=A1×ΔT1代入已知数值,可得:Q1=10×4.186×(90-70)×1000接下来,我们需根据另一组流体参数计算出Q2(空气)。
Q2=A2×ΔT2代入已知数值,可得:Q2=1.005×1000×(50-25)×1000根据Q1、Q2和总换热量的平衡关系:Q1+Q2=400×A×ΔT可得:10×4.186×(90-70)×1000+1.005×1000×(50-25)×1000=400×A×20解得:A=0.523m2根据已知的流量和管道尺寸,可计算出流速。
流速=流量/A代入数值:流速=10/0.523流速=19.1m/s接下来,我们要确定换热器的结构。
PPT-7-管壳式换热器设计计算实例

t fi t f 0
所以,只要 o 1 就可以起到强化换热的效果。 由于β值常常远大于1,而使η0β的值总是远大于1,这就
使肋化侧的热阻显著减小,从而增大传热系数的值。
32
ln( d o d i ) 2 l
28
上面三式相加
l t fi t fo
do 1 1 1 ln hi d i 2 d i ho d o
对外侧面积而言得传热系数的定义式由下式表示:
k ko 1 do d d 1 o ln o hi di 2 di ho
10
1 构造和工作原理
翅片管热交换器可以仅由一根或若干根翅片管组成,如室内取 暖用翅片管散热器;也可再配以外壳、风机等组成空冷器型式 的热交换器。
11
主要换热元件是翅片管,由基管和翅片组成。
翅片管的类型和选择
对翅片管的要求:良好的传 热性能、耐温性能、耐热冲 击能力(如介质热负荷不稳 定)及耐腐蚀能力,易于清 除尘垢,压降较低。
13
常见的翅片管形式
•
14
翅片管因制造方法不同而使其在传热性能、机械性能等方面有一定的 差异。按制造方法分有整体翅片、焊接翅片、高频焊翅片和机械连接 翅片。
整体翅片:由铸造、机械加工或轧制而成,翅片与管子一体,无接触 热阻,强度高,但要求翅片与管子同种材料。如低压锅炉的省煤器就 是采用整体翅片。 焊接翅片:用钎焊或氩弧焊等工艺制造,可使用与管子不一样的材料。 由于它制造简单、经济且具有较好的传热和机械性能,故已广泛应用, 主要问题是焊接工艺的质量。 高频焊翅片:利用高频发生器产生的高频电感应,使管子表面与翅片 接触处产生高温而部分熔化,同通过加压翅片与管子连成一体而成。 这种连接方法无焊剂、焊料,制造简单,性能优良。
管壳式换热器传热面积初步计算模板

有效平均传热温差 平均传热面积Am 管内壁传热面积A1 管外壁传热面积A2 总传热系数 传热面积 总传热系数 传热面积 管程基本参数
2 1340 1312 14879 486525
名
称
0.020
304 16.3 正三角形排列 0.025 0.032 0.002 管程流体物性参数 称 数 水 50 980 4186 0.0000846 0.54 ℃ kg/m³
管壳式换热器初步计算
本计算适用于两流体无相变且逆流过程的计算,熔盐走壳程,管程流体根据需要选择。 浅蓝色区域需要输入数值,其他区域不得擅自修改。 工艺参数 名 称 壳 程 管 水 2 230 0.2 Re<20000 Re>20000 1263 壳程基本参数 名 当量直径 称 数 据 单 位 m 管子材质 管材导热系数 管子排列方式 管外径 相邻两管的中心距 管子壁厚 壳程流体物性参数 名 物料名称 定性温度 密度ρ 比热Cp 粘度μ 导热系数λ 壁温粘度μ 称 数 据 单 位 ℃ 名 物料名称 定性温度 kg/m³ 密度ρ
J/kg.℃
据
单 位
二元熔盐 230 1992 1447 0.00637 0.499
pa.s pa.s
粘度μ
pa.s w/m.℃
0326
J/kg.℃ 比热Cp
程
单 位 kg/s 60 ℃ ℃ m/s W/㎡.℃
名 总热负荷
称
数
据
单 位 w ℃ ㎡ ㎡ ㎡ W/㎡.℃ ㎡ W/㎡.℃ ㎡ 单 位 w/m.℃ m m m
物料名称 流体流量 进/出口温度 进/出口压力 流体流速 对流传热系数 雷诺数Re
二元熔盐 230 40
167440 180 0.072 0.066 0.079 1133 0.8219282 1114 0.8357835 数 据
管壳式热交换器的热力计算

3. 壳程流通截面积的确定
a. 纵向隔板,要确定其长度。
采用连续性方程。
标准: 使流体在纵向隔板转弯时的流速与各流程中顺管束流动时速度基本相等。 问题: 怎么确定壳程流速?
b. 弓形折流板,要确定其缺口高度。
标准: 流体在缺口处的流通截面积与流体在两折流板间错流的流通截面积 相接近,以免因流动速度变化引起压降。
b) 回弯阻力
Pi 4
wt2
2
Zt
Pa,
Z t 管程数
c) 进、出口连接管阻力
Pi 1.5
2 wn
2
Pa
2. 壳程阻力计算
a) 无折流板 可直接利用直管中沿程阻力计算公式 4A 当量直径 d 自由流通面积和湿周 U b) 弓形折流板 包括了顺流和叉流的复杂流动,有间隙泄漏、旁路等,所以很难准确地计 算阻力 贝尔-台华法 具体方法见课本
四、管壳式热交换器的合理设计
1.流体在热交换器内流动空间的选择原则:
1)提高传热系数小的一侧的换热系数 2)省材料,降低成本 3)便于清洗检修 4)减少和环境的热量交换 5)减少受热不匀造成的热应力 管内:容积流量小的,不清洁易结垢的,压力高的、有腐蚀性的,加热设备 中的高温流体或低温设备中的低温流体 壳体:容量大尤其是气体,刚性结构换热器中对流传热系数较大的流体,饱 和蒸汽等
山东大学· Βιβλιοθήκη 源与动力工程学院 杜文静第二章 管壳式换热器
一.管壳式热交换器的结构计算
结构计算的目的在于确定设备的主要结构参数和尺寸,包括: (1) 计算管程流通截面积,包括确定管子尺寸、数目、管程数,并选择管 子的排列方式等; (2) 确定壳体直径; (3) 计算壳程流通截面积,包括折流板类型; (4) 计算进出口连接管尺寸。
管壳式换热器模拟计算

管壳式换热器模拟计算管壳式换热器的模拟计算主要包括换热器的传热计算和流体力学计算两个方面。
传热计算是指通过计算换热器内部的传热过程,确定换热量、传热系数等参数。
流体力学计算是指通过计算流体在换热器内的流动状态,确定流速、压降、流体分布等参数。
下面将对管壳式换热器的模拟计算进行详细介绍。
首先是传热计算。
在管壳式换热器中,热量是通过管内的流体传递给壳侧的流体,因此需要计算管内壁面的传热系数。
常见的方法有Dittus-Boelter公式、Sieder-Tate公式等。
计算壳侧的传热系数可以采用Dittus-Boelter公式、Kern法等。
通过计算传热系数可以得到管内和壳侧的传热量,从而确定换热器的传热效果。
其次是流体力学计算。
管壳式换热器内流体的流动状态对换热器的性能有很大影响。
在流体力学计算中,需要确定流体的流速、壁面的剪切应力、压降、流体分布等参数。
常见的方法有雷诺平均法、湍流模型等。
通过计算流体力学参数可以获得换热器的流体流动状态,从而确定流体的分布和压降。
除了传热计算和流体力学计算,还需要进行换热器的材料选择、结构设计等。
对于换热器的材料选择,需要考虑其导热性、耐腐蚀性等因素。
对于结构设计,需要考虑管束的布置方式、传热面积等。
在进行管壳式换热器的模拟计算时,需要建立计算模型、确定所需输入参数,并选择合适的计算方法和模拟软件。
计算模型应该尽可能接近实际工况,输入参数应该考虑到工况变化的影响。
选择合适的计算方法和模拟软件可以提高计算的准确性和计算效率。
最后需要进行计算结果的分析和评估。
对于传热计算结果,可以比较不同工况下的换热器传热量和传热系数,评估换热器的传热性能。
对于流体力学计算结果,可以比较不同工况下的流速、压降等参数,评估换热器的流体力学性能。
通过分析和评估,可以进一步优化换热器的设计和工况。
总之,管壳式换热器的模拟计算是一项重要的任务,对于换热器的设计、优化和性能评估具有重要意义。
通过传热计算和流体力学计算,可以确定换热器的传热效果和流体流动状态。
换热器、热网加热器计算示例

管壳式换热器选型计算书编写:张景富西安协力动力科技有限公司二零一零年九月十三日一、换热器的工艺计算及工艺条件现在从一台管壳式换热器工艺计算过程来体现工艺条件内容: 1.设计参数 壳程:工作介质:蒸汽、水 Ps=0.2Mpa 蒸汽流量135m 3/h 进口温度:135℃ 出口温度:90℃ 管程:工作介质:含碱水 Pt=0.3Mpa 水流量300m 3/h 进口温度:80℃ 出口温度:110℃ 液体比重:1.25 比热:0.85~0.86 2.工艺计算冷源:q=300m 3 比重:γ=1.25g/cm 3 比热c=0.86J/kg ·℃ T1=135℃ T2=135℃ t1=80℃ t2=110℃ 取a c =2000kcal/㎡·h ·℃ a h =10000kcal/㎡·h ·℃ 换热管规格:φ19×1 其内径d1=0.017m 外径d2=0.019m 中径dm=0.018m 壁厚δ=0.001m金属导热系数λ=17.0 w/m ·h ·℃=17.0/1.16222=14.6 kcal/㎡·h ·℃ (1)传热系数K取传热系数K=1400kcal/㎡·h ·℃ (2)平均温差Δt m (按逆流状态计算)(3)传热面积FC 4.1680-90110-135ln 80)-90(110)-135(1221ln )12()21(lnt 2121︒=-=-----=∆∆∆-∆=∆t T t T t T t T t t t t m 2m 42116.4140080)-(11086.01250300tm K t1)-(t2c q F =⨯⨯⨯⨯=∆⨯⨯⨯⨯=γC h m kcal d dm d dm K h c ︒=+⨯+⨯=++=2/7.14436.14001.010000019.0018.02000017.0018.012111λδαα(4)管子根数n (管长L=6m )(5)程数N 单程流速管壳换热器中换热管内水的流速为0.7~1.5m/s N=1.5/0.313=4.79,可以选择Ⅳ程标准DN1000 Ⅳ程换热器,φ19×1的管子,n=1186根,L=6000mm 传热面积F=425㎡推荐设备材质:管程316L 壳程16MnR (6)换热器壁温的计算a.壳程的壁温:由于有保温,可以取蒸汽的平均温度 Tm=1/2(135+90)=112.5℃b.换热管的壁温估算:热流侧Tm=112.5℃ 冷流侧tm=1/2(80+110)=95℃ 换热管的壁温:(7)换热器接管的计算 (a )壳程蒸汽进口 蒸汽流速一般取15~20m/s进蒸汽截面A=135/(15×3600)=2.5×10-3㎡ 接管内径进汽管取φ76×4(DN65) (b )管程进出管管程流动的是含微量碱的水溶液,当P ≤0.6Mpa 时,其流速为1.5~2.5m/s11736019.04212F n =⨯⨯=⨯⨯=ππL d sm nd /313.01173017.04300/36004q221=⨯⨯=⨯⨯=ππωCa a t t c c m t ︒=+⨯+⨯=++=6.10920001000020009510000112.5a a T n n m mAd 564.0105.2443=⨯⨯==-ππ进出管流通截面A=300/(2.5×3600)=0.0333㎡ 接管内径取φ219×6(DN200) 3.提条件设计参数表及管口表设计数据注:管程材质为不锈钢316L ,管板材质为16MnR/316L ,φ1130,b=52。
管壳式热交换器计算

列管式换热器的设计计算列管式(管壳式)换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。
2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
但是流速增加,又使流体阻力增大,动力消耗就增多。
所以适宜的流速要通过经济衡算才能定出。
此外,在选择流速时,还需考虑结构上的要求。
例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。
管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。
这些也是选择流速时应予考虑的问题。
3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。
若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。
例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。
管壳换热器 传热系数

管壳换热器传热系数摘要:一、引言二、管壳式换热器的传热系数概述三、影响管壳式换热器传热系数的因素四、管壳式换热器传热系数的计算方法五、经验公式和试验数据在传热系数计算中的应用六、结论正文:一、引言管壳式换热器是一种广泛应用于工业领域的热交换设备,其传热系数的高低直接影响到换热器的工作效率。
因此,了解管壳式换热器的传热系数并掌握其计算方法具有重要意义。
二、管壳式换热器的传热系数概述管壳式换热器的传热系数是指在单位时间内,通过单位面积的换热器壁面所传递的热量。
传热系数包括热传导系数、对流换热系数和热辐射系数三部分。
三、影响管壳式换热器传热系数的因素影响管壳式换热器传热系数的因素主要有以下几点:1.管壳材料:材料的导热性能直接影响传热系数;2.管径和管间距:管径和管间距的大小会影响流体的流动状态,从而影响对流换热系数;3.流速:流速的快慢会影响对流换热系数;4.换热器的结构形式:不同的结构形式会影响传热系数;5.工况条件:如温度、压力等。
四、管壳式换热器传热系数的计算方法管壳式换热器传热系数的计算方法通常采用努塞尔数(Nu)法或雷诺数(Re)法。
努塞尔数法主要适用于气液换热,雷诺数法适用于气气或液液换热。
五、经验公式和试验数据在传热系数计算中的应用在实际工程中,为了简化计算过程,通常会使用经验公式或试验数据来估算传热系数。
例如,《柴油机设计手册》中提供了柴油机和内燃机车散热器的传热系数试验数据,可作为参考。
六、结论管壳式换热器的传热系数受多种因素影响,计算方法有多种,实际应用中可根据具体情况选择合适的方法。
管壳式换热器传热计算示例终 用于合并

Pa;
取导流板阻力系数:
;
导流板压降:
壳程结垢修正系数: 壳程压降:
Pa ;(表 3-12)
管程允许压降:[△P2]=35000 Pa;(见表 3-10) 壳程允许压降:[△P1]=35000 Pa;
△P2<[△P2] △P1<[△P1] 即压降符合要求。
Pa;
(2)结构设计(以下数据根据 BG150-2011)
m2; 选用φ25×2、5 无缝钢管作换热管; 管子外径 d0=0、025 m; 管子内径 di=0、025-2×0、0025=0、02 m; 管子长度取为 l=3 m; 管子总数:
管程流通截面积:
取 720 根 m2
管程流速: 管程雷诺数: 管程传热系数:(式 3-33c)
m/s 湍流
6)结构初步设计: 布管方式见图所示: 管间距 s=0、032m(按 GB151,取 1、25d0); 管束中心排管的管数按 4、3、1、1 所给的公式确定:
结构设计的任务就是根据热力计算所决定的初步结构数据,进一步设计全部结构尺寸, 选定材料并进行强度校核。最后绘成图纸,现简要综述如下:
1) 换热器流程设计 采用壳方单程,管方两程的 1-4 型换热器。由于换热器尺寸不太大,可以用一台,未考虑 采用多台组合使用,管程分程隔板采取上图中的丁字型结构,其主要优点就是布管紧密。 2)管子与传热面积 采用 25×2、5 的无缝钢管,材质 20 号钢,长 3m,管长与管径都就是换热器的标准管子 尺寸。 管子总数为 352 根,其传热面积为:
3)传热量与水热流量
取定换热器热效率为η=0、98; 设计传热量:
过冷却水流量:
; 4)有效平均温差 逆流平均温差:
根据式(3-20)计算参数 p、R: 参数 P:
换热器的计算举例

换热器的计算举例换热器是一种常见的热交换设备,用于在流体之间传递热量。
它在许多工业过程中发挥着重要的作用,例如化工、石油、食品加工、制药等。
以下是一个计算换热器的例子,以说明如何确定换热器的工作参数和尺寸。
假设我们需要设计一个换热器来将热水从80°C降低到60°C,并且需要将冷水从20°C加热到40°C。
我们已经知道热水的流量为1,000升/小时,冷水流量为800升/小时。
步骤1:确定热水和冷水的进出口温度差首先,我们需要确定热水和冷水的温度差。
在本例中,热水的进口温度为80°C,出口温度为60°C,所以温度差为20°C。
同样,冷水的温度差为20°C。
步骤2:计算热水和冷水的热量热水的热量可以通过以下公式计算:Q=m×c×ΔT其中,Q代表热量,m代表质量,c代表比热容,ΔT代表温度差。
在本例中,热水的质量可以通过以下公式计算:m=流量×密度已知热水的流量为1,000升/小时,那么质量可以通过将流量转换为千克/小时来计算:m=1,000千克/立方米×1立方米/1,000升×1,000升/小时=1千克/小时热水的密度可以通过查找热水的性质表来获取,假设为1千克/立方米。
热水的比热容可以通过查找热水的性质表或使用常见物质的比热容来估计,假设为4.18千焦尔/千克•摄氏度。
因此,热水的热量可以计算为:Q热水=1千克/小时×4.18千焦尔/千克•摄氏度×20°C=83.6千焦尔/小时同样地,可以使用相同的方法计算冷水的热量。
冷水的流量为800升/小时,质量为0.8千克/小时(假设冷水的密度为1千克/立方米),比热容为4.18千焦尔/千克•摄氏度。
因此,冷水的热量为:Q冷水=0.8千克/小时×4.18千焦尔/千克•摄氏度×20°C=66.88千焦尔/小时步骤3:计算换热器的传热面积传热面积是换热器设计中的关键参数,它决定了换热器的尺寸。
管壳式换热器热力计算

管壳式换热器热力计算管壳式换热器是一种常见的换热设备,广泛应用于化工、石油、电力等行业中。
它由管束(包括管子和管板)和壳体组成,并通过管板将管子固定在壳体上。
在换热过程中,热媒流体在管内流动,冷媒流体在壳侧流动,两种流体通过壳体和管道之间的壳壳换热器进行热量传递。
因此,热力计算对于管壳式换热器的设计和运行至关重要。
管壳式换热器的热力计算主要包括确定整个系统的热量传递量和热阻。
其中,热量传递量是指在单位时间内通过换热器的热量,而热阻则是指媒体在传递热量过程中所遇到的阻力。
在进行热力计算时,需要根据具体的工况参数,采用一定的算法和理论来计算热量传递量和热阻。
首先,需要确定管壳式换热器的传热面积。
传热面积是传热的关键因素,它决定了热量传递的效率。
传热面积的计算公式为:A=π*D*L*N其中,A表示传热面积,D表示管子的外径,L表示管子的有效长度,N表示管子的数量。
然后,需要计算传热系数。
传热系数是指在单位时间内传递的热量和温度差之间的比值。
计算传热系数需要考虑媒体的物性参数,包括流体的粘度、导热系数、比热容等。
传热系数的计算公式为:U = 1 / (1 / hi + δ / λ + 1 / ho)其中,U表示传热系数,hi表示内层传热系数,δ表示管道壁厚度,λ表示管道壁材料的导热系数,ho表示外层传热系数。
接下来,需要确定壳侧和管侧流体的温度差。
壳侧流体的温度差可以通过流体的进出口温度差来计算,管侧流体的温度差可以通过管内流体进行热力平衡计算得到。
最后,根据所得的参数,可以计算热量传递量和热阻。
热量传递量的计算公式为:Q = U * A * ΔTlm其中,Q表示热量传递量,ΔTlm 表示对数平均温差。
而热阻的计算公式为:R=1/U*A其中,R表示热阻,U表示传热系数,A表示传热面积。
通过以上的热力计算,可以确定管壳式换热器的传热性能和热力参数,为正确选择和设计换热器提供依据。
在实际应用中,还需要考虑到其他因素,如压力损失、换热器的结构、材料选择等。
管壳式换热器计算表格

M
2 s
2 Ab Ac1
(2 0.6Ncw)
99 旁路校正系数 Rb
-
查图2.38
100
折流板泄露校 正系数
R1
-
101
折流板间距不 等的校正系数
Rs
-
102 壳程总阻力 ΔP′s
Pa
103
两台的壳程总 阻力
ΔPs
Pa
查图2.37
间距相等,不需校正
P's
[(Nb 1)Pbk Rb NbPwk ]R1
折流板缺口处 管数
根
由图示可知 由 GB 151-1999
由图示可知 由图示可知
57 折流板直径
Db
58
折流板缺口面 积
Awg
错流区内管数 59 占总管数的百 Fc
分数
60
缺口处管子所 占面积
Awt
61
流体在缺口处 流通面积
Ab
流体在两折流 62 板间错流流通 Ac
截面积
壳
63
壳程流通截面 积
As
4 fi
L di
t2 2
(
/ w2 )0.14
Pr
4
t2 2
Zt
PN
1.5 t2 2
Pt Pi Pr PN
阻 力
96
理想管束摩擦 系数
fk
计 算
97
理想管束错流 段阻力
ΔPbk
98
理想管束缺口 处阻力
ΔPwk
-
查图2.36
Pa
Pbk
4 fK
M
2 s
N
c
2 Ac21
(
/
)0.14 w1
管壳式换热器换热面积-

式中:T 1=406.8℃T 2=263.2℃Cp,h=2823.617J/(kg ℃)m h =0.1466kg/sWd=0.025m αo =40W/(m 2.℃)r o =0.0005(m 2.℃)/W A o /A i =1.010101λw =48W/(m .℃)换热管的外表传热面积与内表传热面积之比换热管的外表与换热器管内和管外的平均传热面积之比管壁材料的导热系数总传热系数K的计算换热管外径管壁管外流体传热膜系数管内流体传管外流体污垢热阻管内流体热流体比热冷流体热流体质量流量冷流体质热负荷Q=55727.77564其中总传热系数K的计算公式如下:热负荷Q的计算热流体进口温度冷流体进热流体出口温度冷流体出本计算表格是基于《换热器设计手册》(钱颂文主编)中相关公式进行的计算Q=KA Δt mQ-热负荷,WK-总传热系数,W/(m 2.℃)A-换热器传热面积,m 2Δt m -进行换热的两流体之间的平均温度差,℃26.62W/(m 2.℃)Δt 2=156.8℃Δt 1=153.5℃0.979Δt 2=297.1℃Δt 1=13.2℃0.044Δt m =155.15Δt m =155.15Δt m =155.1441506Δt m =91.17324918(4)当Δt 1/Δt 2 >2 时且并向流动时4、确定温度修正系数(1)对于单壳程、双管程或者2n管程的管壳式换热器较小端温差Δt 1/Δt 2=3、确定平均温度差(1)当Δt 1/Δt 2 <2 时且逆向流动时(2)当Δt 1/Δt 2 <2 时且并向流动时(3)当Δt 1/Δt 2 >2 时且逆向流动时1、当换热器冷热流体逆向流动时较大端温差较小端温差Δt 1/Δt 2=2、当换热器冷热流体并向流动时较大端温差总传热系数K=P=0.472231572R=1.0235210260.9813.77m 2换热面积A=5、根据P、R值查图,确定对应温度修正系数温度修正系数 F T =t 1=109.7℃t 2=250℃Cp,c =1943.27J/(kg ℃)m c =0.2044kg/s δ=0.00025m αi =45W/(m 2.℃)r i =0.0005(m 2.℃)/W A o /A m =1.005025的外表传热面积与换热器管内和管外的平均传热面积之比管壁厚度流体传热膜系数内流体污垢热阻冷流体比热流体质量流量流体进口温度流体出口温度算的计算。
管壳式换热器的设计及计算

所谓提高换热器性能,就是提高其传热性能。狭义的强化传热系指提高流体和传热面之间的传热系数。其主要方法归结为下述两个原理,即使温度边界层减薄和调换传热面附近的流体,前者采用各种间断翅片结构,后者采用泡核沸腾传热[2]。最近还兴起一种EHD技术,即电气流体力学技术,又称为电场强化冷凝传热技术,进一步强化了对流、冷凝和沸腾传热,特别适用于强化冷凝传热,并适用于低传热性介质的冷凝,因而引起人们的普遍关注[3]。其原理是,对某些不导电液体的表面施以相垂直的电场,使液体表面变得很不稳定,借冷凝液表面的张力作用和在静电场下液膜的不稳定现象使液膜厚度减薄,从而强化冷凝传热。其所需电场耗用的电力很小。人们想尽各种办法实施强化传热,归结起来不外乎两条途径,即改变传热面的形状和在传热面上或传热流路径内设置各种形状的湍流增进器或插入物。
当前换热器发展的基本趋势是:继续提高设备的传热效率,促进设备结构的紧凑性,加强生产制造的标准化系列化和专业化,并在广泛的范围内继续向大型化的方向发展。各种新型高效紧凑式换热器的应用范围将得到进一步扩大。在压力、温度和流量的许可范围内,尤其是处理强腐蚀性介质而需要使用贵重金属材料的场合下,新型紧凑式换热器将进一步取代管壳式换热器。
第一章
在化工生产中,为了工艺流程的需要,常常把低温流体加热或把高温流体冷却,把液态汽化或把蒸汽冷凝程液体,这些工艺过程都是通过热量传递来实现的。进行热量传递的设备称为换热设备或换热器。换热器是通用的一种工艺设备,他不仅可以单独使用,同时又是很多化工装置的组成部分。
在化工厂中,换热器的投资约占总投资的10%——20%,质量约为设备总质量的40%左右,检修工作量可达总检修工作量的60%以上。由此可见,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。在其他方面如动力、原子能、冶金、轻工、制造、食品、交通、家电等行业也有着广泛的应用。
汽水管壳式换热器热力计算书

19 1.5 1545
5.5 2
0.155320341
1.61
70
(仅供参考)
500.21 1200
用户给定
860.00 952.9472753 设计工况
第3页
总计算面积 F
498.9
加上10%的裕量F
548.83
实取的面积
m2
500.21
实取的面积裕量
0.25
流体运动粘度 γ 一程换热管根数 N 换热管内径 d0 流速 u
ΔTm过= ln (ΔT1/ΔT2)
=
79.12
ΔT3-ΔT2 ΔTm凝=
ln (ΔT3/ΔT2)
=
66.59
ΔT3-ΔT4
ΔTm过冷= ln (ΔT3/ΔT4)
=
35.94
过热段总传热量Q1 过热段传热系数K1 过热段传热面积F1 F过热=Q/(K*ΔTm)=
冷凝段总传热量Q2 冷凝段传热系数K2 冷凝段传热面积F2 F凝=Q/(K*ΔTm)=
3735067059.xls
8.水进口温度 t1 9.水出口温度 t2 10.疏水温度 t1' 11.被加热水量Gt 二.计算过程 1.总传热量 Q 2.对数温差计算
705.002 250
130.00
℃
80
℃
130
℃
90.000
t/h
860
kcal/h
Q=CGt(t2-t1)=
℃
663.397
43000000 177.687 90.184
四.汽侧计算 蒸汽耗量 蒸汽比容 蒸汽进口数量 蒸汽流速 蒸汽进口 蒸汽进口(圆整)
五.换热面积计算 换热管规格 换热管壁厚 换热管数量 换热管长度 换热管程数 单程换热管流通面积 管内流速 管板厚度(仅供参考) 换热面积 换热器公称直径DN
管壳式换热器换热面积-换热器设计手册(精品文档)

式中:T 1=98℃T 2=74℃Cp,h =0.3J/(kg ℃)m h =100834kg/sWd=0.01905m αo =40W/(m 2.℃)r o =0.0005(m 2.℃)/W A o /A i =1.0112λw =48W/(m .℃)本计算表格是基于《换热器设计手册》(钱颂文主编)中相关公式进行的计算Q=KAΔt mQ-热负荷,WK-总传热系数,W/(m 2.℃)热负荷Q的计算热流体进口温度冷流体进A-换热器传热面积,m 2Δt m -进行换热的两流体之间的平均温度差,其中总传热系数K的计算公式如下:热流体质量流量冷流体质热负荷Q=20832000热流体出口温度冷流体出热流体比热冷流体管外流体污垢热阻管内流体换热管的外表传热面积与内表传热面积之比换热管的外表与换热器管内和管外的平均传热面积之比总传热系数K的计算换热管外径管壁管外流体传热膜系数管内流体传管壁材料的导热系数17.05W/(m 2.℃)Δt 2=51℃Δt 1=47℃0.922Δt 2=71℃Δt 1=27℃0.38Δt m =49Δt m =49Δt m =48.97277702Δt m =45.5089394P=0.2816901411、当换热器冷热流体逆向流动时较大端温差较小端温差Δt 1/Δt 2=总传热系数K=3、确定平均温度差(1)当Δt 1/Δt 2 <2 时且逆向流动时(2)当Δt 1/Δt 2 <2 时且并向流动时(3)当Δt 1/Δt 2 >2 时且逆向流动时2、当换热器冷热流体并向流动时较大端温差较小端温差Δt 1/Δt 2=(4)当Δt 1/Δt 2 >2 时且并向流动时4、确定温度修正系数(1)对于单壳程、双管程或者2n管程的管壳式换热器R=1.20.9825462m 2温度修正系数换热面积A=5、根据P、R值查图,确定对应温度修正系物料摩尔比比热容t 1=27℃H2O 27.42.02H243.6114.2t 2=47℃CH40.253.72N215.51.12Cp,c =2100J/(kg ℃)Ar 0.2 1.2CO210.861.1m c =496kg/s CO 2.181.12混合气体7.075276δ=0.000211m αi =45W/(m 2.℃)r i =0.0005(m 2.℃)/W A o /A m =1.005569计算定性温度在292℃流体进口温度混合气体粘度、比热计算公式流体质量流量流体出口温度冷流体比热内流体污垢热阻的外表传热面积与换热器管内和管外的平均传热面积之比管壁厚度流体传热膜系数的计算292℃时的物性数据粘度密度导热系数0.01920.01420.08990.1630.01810.7170.030.0282 1.2510.02280.0363 1.7820.01730.0272 1.9760.01370.0278 1.250.02260.0225。
管壳式换热器换热面积-

式中:T 1=406.8℃T 2=263.2℃Cp,h=2823.617J/(kg ℃)m h =0.1466kg/sWd=0.025m αo =40W/(m 2.℃)r o =0.0005(m 2.℃)/W A o /A i =1.010101λw =48W/(m .℃)换热管的外表传热面积与内表传热面积之比换热管的外表与换热器管内和管外的平均传热面积之比管壁材料的导热系数总传热系数K的计算换热管外径管壁管外流体传热膜系数管内流体传管外流体污垢热阻管内流体热流体比热冷流体热流体质量流量冷流体质热负荷Q=55727.77564其中总传热系数K的计算公式如下:热负荷Q的计算热流体进口温度冷流体进热流体出口温度冷流体出本计算表格是基于《换热器设计手册》(钱颂文主编)中相关公式进行的计算Q=KA Δt mQ-热负荷,WK-总传热系数,W/(m 2.℃)A-换热器传热面积,m 2Δt m -进行换热的两流体之间的平均温度差,℃26.62W/(m 2.℃)Δt 2=156.8℃Δt 1=153.5℃0.979Δt 2=297.1℃Δt 1=13.2℃0.044Δt m =155.15Δt m =155.15Δt m =155.1441506Δt m =91.17324918(4)当Δt 1/Δt 2 >2 时且并向流动时4、确定温度修正系数(1)对于单壳程、双管程或者2n管程的管壳式换热器较小端温差Δt 1/Δt 2=3、确定平均温度差(1)当Δt 1/Δt 2 <2 时且逆向流动时(2)当Δt 1/Δt 2 <2 时且并向流动时(3)当Δt 1/Δt 2 >2 时且逆向流动时1、当换热器冷热流体逆向流动时较大端温差较小端温差Δt 1/Δt 2=2、当换热器冷热流体并向流动时较大端温差总传热系数K=P=0.472231572R=1.0235210260.9813.77m 2换热面积A=5、根据P、R值查图,确定对应温度修正系数温度修正系数 F T =t 1=109.7℃t 2=250℃Cp,c =1943.27J/(kg ℃)m c =0.2044kg/s δ=0.00025m αi =45W/(m 2.℃)r i =0.0005(m 2.℃)/W A o /A m =1.005025的外表传热面积与换热器管内和管外的平均传热面积之比管壁厚度流体传热膜系数内流体污垢热阻冷流体比热流体质量流量流体进口温度流体出口温度算的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管壳式换热器传热设计说明书
设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。
2、设计计算过程:
(1)热力计算
1)原始数据:
过冷却水进口温度t1′=145℃;
过冷却水出口温度t1〞=45℃;
过冷却水工作压力P1=0.75Mp a(表压)
冷水流量G1=80000kg/h;
冷却水进口温度t2′=20℃;
冷却水出口温度t2〞=50℃;
冷却水工作压力P2=0.3 Mp a(表压)。
改为冷却水工作压力P2=2.5 Mp
2)定性温度及物性参数:
冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;
冷却水的密度查物性表得ρ2=992.9 kg/m3;
冷却水的比热查物性表得C p2=4.174 kJ/kg.℃
冷却水的导热系数查物性表得λ2=62.4 W/m.℃
冷却水的粘度μ2=727.5×10-6 Pa·s;
冷却水的普朗特数查物性表得P r2=4.865;
过冷水的定性温度℃;
过冷水的密度查物性表得ρ1=976 kg/m3;
过冷水的比热查物性表得C p1=4.192kJ/kg.℃;
过冷水的导热系数查物性表得λ1=0.672w/m.℃;
过冷水的普朗特数查物性表得P r2;
过冷水的粘度μ1=0.3704×10-6 Pa·s。
过冷水的工作压力P1=1.5 Mp a(表压)
3)传热量与水热流量
取定换热器热效率为η=0.98;
设计传热量:
过冷却水流量:
;
4)有效平均温差
逆流平均温差:
根据式(3-20)计算参数p、R:
参数P:
参数R:
换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:
5)管程换热系数计算:
附录10,初定传热系数K0=400 W/m.℃;
初选传热面积:
m2;
选用φ25×2.5无缝钢管作换热管;
管子外径d0=0.025 m;
管子径d i=0.025-2×0.0025=0.02 m;
管子长度取为l=3 m;
管子总数:
取720根管程流通截面积:
m2
管程流速:
m/s
管程雷诺数:
湍流
管程传热系数:(式3-33c)
6)结构初步设计:
布管方式见图所示:
管间距s=0.032m(按GB151,取1.25d0);
管束中心排管的管数按4.3.1.1所给的公式确定:
取20根;
壳体径:
m 取Di=0.7m;
长径比:
布管示意图
l/D i=3/0.9=3.3 ,合理
选定弓形折流板
弓形折流板弓高:
折流板间距:m
折流板数量:
折流板上管孔直径由GB151-2014可确定为 0.0254mm
折流板直径由GB151-2014可确定为 0.6955m 7)壳程换热系数计算
壳程流通面积:
根据式(3-61)中流体横过管束时流道截面积
046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫
⎝
⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2
壳程流速:
m/s ;
壳程质量流速:
kg m 2
/s ;
壳程当量直径:
m ;
壳程雷诺数:
; 切去弓形面积所占比例按 h/D i =0.2查图4-32得为0.145
壳程传热因子查 图3-24得为j s =20 管外壁温度假定值 t w1′=45℃ 壁温过冷水粘度 Pa.s
粘度修正系数:
根据式(3-62)计算壳程换热系数:
8)传热系数计算:
水侧污垢热阻:r 2=0.000344m 2
.℃/w 管壁热阻r 忽略 总传热系数:
传热系数比值,合理
9)管壁温度计算:
管外壁热流密度:
W/m2.℃
根据式(3-94a)计算管外壁温度:
℃
误差较核:
℃,误差不大;
10)管程压降计算:
根据式(3-94b)计算管壁温度:
℃;
壁温下水的粘度:Pa·s;
粘度修正系数:
;
查图3-30得管程摩擦系数:
管程数:;
管沿程压降计算依据式(3-112):
Pa (W=w.ρ)
回弯压降:
Pa;
取进出口管处质量流速:W N2=1750 ㎏/㎡·s; (依据ρw2<3300取 w=1.822m/s) 进出口管处压降(依据 3-113):
;
管程结垢校正系数:;
管程压降:
11)壳程压降计算:
壳程当量直径:
m;
雷诺数:
;
查得壳程摩擦系数:λ1=0.08;(图 3-34)
管束压降(公式3-129):
Pa;
取进出口质量流速: kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:
Pa;
取导流板阻力系数:;
导流板压降:
Pa
壳程结垢修正系数:;(表3-12)
壳程压降:
Pa;
管程允许压降:[△P2]=35000 Pa;(见表3-10)
壳程允许压降:[△P1]=35000 Pa;
△P2<[△P2]
△P1<[△P1]
即压降符合要求。
(2)结构设计(以下数据根据BG150-2011)
结构设计的任务是根据热力计算所决定的初步结构数据,进一步设计全部结构尺寸,选定材料并进行强度校核。
最后绘成图纸,现简要综述如下:
1)换热器流程设计
采用壳方单程,管方两程的1-4型换热器。
由于换热器尺寸不太大,可以用一台,未考虑采用多台组合使用,管程分程隔板采取上图中的丁字型结构,其主要优点是布管紧密。
2)管子和传热面积
采用 25×2.5的无缝钢管,材质20号钢,长3m,管长和管径都是换热器的标准管子尺寸。
管子总数为352根,其传热面积为:
3)管子排列方式
上图十字形走廊是为了装设分程隔板,故有壳程流体的泄漏和旁流的问题。
共有356个管孔,其中4个为装设拉杆用。
4)壳体
壳体径:;材质Q235 A钢;
壳体厚度(式6-1):
t w<100℃
=0.7
C=2mm(厚度附加量见GB150)
P=1.2p1(p为设计压力要大于工作压力)
实取
5)管板
根据表5-8 查取
管板上开孔数与孔间距与管排列应一致。
6)折流板
因为无相变,采用通用的弓形折流板。
Q235 A钢板。
拱高:h=140mm;
板间距:B=230mm;
板数:n B=12块;
板厚:(依据表4-12);
卧式布置,水平切口流动方向。
7)拉杆
选取Q235 A钢,12,共8根(依据表5-10)
8)封头
根据压力容器设计规采用材质为Q235的标准形状椭圆封头。
在满足强度要求条件下,取壁厚;曲面高度:
D为封头的平均直径;直边高度,。
9)进、出管
(a)管程进、出口管
ρw2<3300取取W N2=1750 ㎏/㎡·s,得进、出口流通面积为:
进出口管道直径:
取用:114×4mm的热轧钢管或水输送管。
(b)壳程进、出口管:
ρw2<2200取取壳程浸出口管处质量流速W N2=1000 ㎏/㎡·s,得进、出口流通面积为:
管程进出口管径为:
取用70×3mm的热轧钢管或水输送管
10)其它:
容器法兰和进、出口法兰及底座均可根据设计规取用或计算,热补偿计算参照本章5-5节进行;
尽管人智慧有其局限,爱智慧却并不因此就属于徒劳。
智慧果实似乎是否定性:理论上——“我知道我一无所知”;实践上——“我需要我一无所需”。
然而,达到了这个境界,在谦虚和淡泊哲人胸中,智慧痛苦和快乐业已消融为了一种和谐宁静了。