原子的核式结构、原子核
原子与原子核——知识介绍
原子和原子核 ——知识介绍一.原子结构(一)原子的核式结构人们认识原子有复杂结构是从1897年汤姆生发现电子开始的。
汤姆生通过研究对阴极射线的分析发现了电子,从而知道,电子是原子的组成部分,为了保持原子的电中性,除了带负电的电子外,还必须有等量的正电荷。
因此汤姆生提出了“葡萄干面包”模型:正电荷部分连续分布于整个原子,电子镶在其中。
1909年卢瑟福在α粒子散射实验中,以α粒子轰击重金属箔发现:大多数α粒子穿过薄膜后的散射角很小,但还有八千分之一的α粒子,散射角超过了900,有些甚至被弹回来,散射角几乎达到1800。
1911年卢瑟福提出了原子核式结构模型:在原子的中心有一个很小的核称为原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核高速旋转。
从α粒子散射实验的数据可以估计出原子核的大小约为10-15——10-14米,原子半径大约为10-10米。
原子核式结构模型较好的解释了α粒子散射实验现象,也说明了汤姆生的“葡萄干面包”模型是错误的。
(二)玻尔的氢原子理论1.1.巴耳末公式1885年,瑞士物理学家巴耳末首先发现氢原子光谱中可见光区的四条谱线的波长,可用一经验公式来表示:)121(122n R -=λ n =3,4,5……式中λ为波长,R =×10 7米-1称为里德伯恒量,上式称为巴耳末公式。
2.2.里德伯公式1889年,里德伯发现氢原子光谱德所有谱线波长可用一个普通的经验公式表示出来:)11(122n m R -=λ式中n=m+1,m+2,m+3……,上式称为里德伯公式。
对于每一个m ,上式可构成一个光谱系: m=1,n=2,3,4……赖曼系(紫外区)m=2,n=3,4,5……巴尔末系(可见光区)m=3,n=4,5,6……帕邢系(红外区)m=4,n=5,6,7……布喇开系(远红外区)3.3.玻尔的氢原子理论卢瑟福的原子核式结构模型能成功地解释α粒子散射实验,但无法解释原子的稳定性和原子光谱是明线光谱等问题。
原子的核式结构模型
原子的核式结构模型20世纪20年代,科学家们开始采取一种叫做原子核式结构模型的概念,以研究原子的形态与特性。
自此以后,原子的核式结构模型的发展与改进一直是原子理论的中心所在。
原子核式结构模型源于二十世纪初丹麦物理学家斯提威尔预言的原子模型,以及由罗伯茨橹和法国物理学家卢克提出的确定原子结构的结构模型。
该模型假设原子是一个由原子核中心外围由电子组成的球形均匀结构。
原子核模型表明,电子存在于原子核周围以布朗电子球结构排列,形成了一个空间结构,这种空间结构是原子构型的基本动力。
因此,原子的结构在不同的元素中可以有不同的形态。
原子核模型同时提出了电子层次结构的概念,表明电子在原子核周围也按照层次结构排列。
在每一层次中,电子能限的数量也不同。
例如,一些元素有七个电子层次,而另一些元素可能只有三层电子层次。
同样,在不同的电子层次中,电子具有不同的能量。
随着进一步发展,原子核式结构模型也发展出一系列新的理论,包括量子电子理论、费米能级理论、空间结构理论、电子能级理论、电子轨道理论等。
量子电子理论可以解释原子的可见光谱线,费米能级理论可以解释原子核内电子的序列,而空间结构理论可以描述原子核内电子的周期性结构,电子能级理论可以解释复杂的元素结构,而电子轨道理论则可以解释电子结构中不同能级之间的转变。
原子核式结构模型改变了人们对原子结构的认知,也改变了物质特性的认识,特别是特定元素的化学性质等的理解。
它的发展也为物理学、化学等其他学科的发展作出了重大贡献,也极大地拓展了物理世界的认知范围。
总的来说,原子核式结构模型为研究原子的结构和性质奠定了基础,在今天仍然是原子理论研究的基础。
随着科学技术的发展,原子核式结构模型也发生了很大的变化,以更好地满足研究的需要。
因此,原子核式结构模型仍然是科学研究原子结构和性质的重要参考模型。
原子的核式结构范文
原子的核式结构范文原子是构成物质的最基本单位,由原子核和电子云组成。
原子核是原子的中心部分,其核式结构是指核内的粒子组织和排列方式。
下面将详细介绍原子核的结构和特点。
原子核由质子和中子组成。
质子带有正电荷,具有质量,中子不带电荷,也具有质量。
质子和中子称为核子。
质子和中子合称为核子是因为它们都存在于原子核内,与电子相比,核子具有更大的质量。
质子和中子以一种特定的方式排列在原子核内部。
质子和中子的数量决定了元素的原子核质量。
原子核的质量数等于质子数加上中子数。
不同元素的原子核可以有不同的质量数和质子数,从而形成不同的元素。
原子核的直径通常约为10^-15米,相比于整个原子的大小,原子核的体积非常小。
这也意味着原子核非常致密,其中包含了绝大部分原子的质量。
原子核的稳定性与核子的排列方式和核力有关。
核力是一种相对于电磁力和重力的短程力,它保持质子和中子在原子核内部的结合。
核力是一种非常强大的力量,能够克服质子之间的排斥力,使得原子核保持稳定。
当核子的排列方式和核力达到一定的平衡时,原子核就是稳定的。
然而,当核子的排列方式不稳定时,原子核就会发生衰变,放出粒子或辐射以保持稳定。
原子核的稳定性还与核子的质量数有关。
在相同的质子数下,中子数的增加会增加原子核的稳定性。
这是因为中子的加入会增加核力的作用范围,从而增加质子之间的吸引力。
然而,在质子数超过一定范围后,增加中子数将不再增加原子核的稳定性,甚至会减弱稳定性。
这将导致核子之间的斥力增加,使原子核变得不稳定。
核式结构还可以用核壳模型来解释。
核壳模型是描述原子核内部核子排列方式的模型。
它类似于原子外部的电子壳层结构。
核壳模型认为原子核由能级较低的核壳层和能级较高的核壳层组成,类似于电子的能级结构。
核壳模型解释了为什么一些特定核子的数目更稳定。
例如,在一些原子核中,质子或中子的数目正好达到一些特定值时,原子核更稳定。
这被称为“魔数”现象。
魔数对应着核壳层的填充情况,类似于电子壳层填充到满壳时的稳定性。
2020高考备考物理重难点《原子结构和原子核》(附答案解析版)
重难点10 原子结构和原子核【知识梳理】一、氢原子光谱、氢原子的能级、能级公式 1.原子的核式结构(1)电子的发现:英国物理学家汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱 (1)光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝⎛⎭⎫122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。
3.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n 。
(h 是普朗克常量,h =6.63×10-34 J·s ) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
4.氢原子的能级、能级公式 (1)氢原子的能级 能级图如图所示(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV。
人教版物理选修3-5 18.2 原子的核式结构模型 (课件+素材)
二、α 粒子散射实验
α粒子是放射性物质发射的快速运动的 粒子.卢瑟福(E.Rutherford,1871-1937)通过 测量α粒子在电场和磁场的偏向,确定α粒子 的比荷约为氢离子比荷的1/2.
利用闪烁镜和卢瑟福与盖革(H.Geiger 1882-1945)共同发明的计数管,卢瑟福于 1908年测量出α粒子的电荷约为氢离子电荷 的2倍.α粒子是氦原子两次电离的离子He2+.
卢瑟福的提示指引盖革和马斯顿发现α粒 子的大角度散射.
优质课件优秀课件课件公开课免费课 件下载 免费ppt 下载人 教版物 理选修 3-5 18.2 原子的核式结构模型 (课件+素材)
10
优质课件优秀课件课件公开课免费课 件下载 免费ppt 下载人 教版物 理选修 3-5 18.2 原子的核式结构模型 (课件+素材)
1908年,盖革对α粒子散射开展更多地研究。
发现用金箔代替铝箔可以使α粒子的散射现象更为
明显,决定系统地研究不同物质地散射作用,希
望“对这些物质在散射能力和遏止能力之间建立
某种联系.”
闪烁法计数要求实
验者实验过程中呆在暗室
中,通过显微镜,眼睛全
身贯注地盯着硫化锌屏, 一个一个地计闪烁数.
闪烁法观察α射线
14
优质课件优秀课件课件公开课免费课 件下载 免费ppt 下载人 教版物 理选修 3-5 18.2 原子的核式结构模型 (课件+素材)
粗略估算单次散射α粒子偏转角度
粒子动量 p=mv
作用时间 t =R/v
动量变化量 ∆p =Ft
p kZe2
v
p Ek R
Z=79,Ek~5MeV R~1Å 得 ϕ ≈2.27×10-4rad≈0.013° ϕ
2011版物理一轮精品复习学案:第二章 原子 原子核(选修3-5)
第2章原子原子核【考纲知识梳理】一、原子的核式结构模型1、汤姆生的“枣糕”模型(1)1897年汤姆生发现了电子,使人们认识到原子..有复杂结构,揭开了研究原子的序幕.(2)“枣糕”模型:原子是一个球体,正电荷均匀分布在整个球内,电子像枣糕里的枣子一样镶嵌在原子里.2、卢瑟福的核式结构模型1909~1911年,英国物理学家卢琴福和他的助手们进行了α粒子散射实验(1)实验装置如图所示:如图所示,用α粒子轰击金箔,由于金原子中的带电微粒对α粒子有库仓力作用,一些α粒子穿过金箔后改变了运动方向,这种现象叫做α粒子散射.荧光屏可以沿着图中虚线转动,用来统计向不同方向散射的粒子数目.全部设备装在真空中.(2)α粒子散射实验结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了较大的偏转.,极少数偏转角超过900,有的甚至被弹回,偏转角几乎达到1800.(3)现象解释:认为原子中的全部正电荷和几乎所有质量都集中到一个很小的核上,由于核很小,大部分α粒子穿过金箔时都离核很远,受到的库仑力很小,它们的运动几乎不受影响.只有少数α粒子从原子核附近飞过,明显受到原子核的库仑力而发生大角度偏转.核式结构模型:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转.原子核所带的单位正电荷数等于核外的电子数,所以整个原子是呈电中性的.电子绕着核旋转所需的向心力就是核对它的库仑引力.[说明] 核式结构模型的实验基础是α粒子散射实验,原子核是多么小,原子内部是多么“空”.从α粒子散射的实验数据,估计原子核半径的数量级为10-14m~10-15m,而原子半径的数量级是10-10m.二、天然放射性现象1.放射性现象:贝克勒耳发现天然放射现象,使人们认识到原子核...也有复杂结构,揭开了人类研究原子核结构的序幕.通过对天然放射现象的研究,人们发现原子序数大于83的所有天然存在的元素都有放射性,原子序数小于83的天然存在的元素有些也具有放射性,它们放射出来的射线共有三种:α射线、β射线、γ射线.2、三种射线的本质和特性比较①α射线:是氦核(42He)流,速度约为光速的十分之一,在空气中射程几厘米,贯穿本领小,电离作用强. ②β射线:是高速的电子流,速度约为光速十分之几,穿透本领较大,能穿透几毫米的铝板,电离作用较弱.③γ射线:是高能光子流,波长极短的电磁波,贯穿本领强,能穿透几厘米铅板,电离作用小. [说明] 放射性元素有的原子核放出α射线,有的放出β射线,多余的能量以γ光子的形式射出.三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较:3、原子核的衰变定义:放射性元素的原子核由于放出某种粒子而转变为新核的变化称为衰变. 衰变规律:电荷数和质量数都守恒.(1)α衰变的一般方程:XA Z →Y A Z 42--+42He ·每发生一次α衰变,新元素与原元素相比较,核电荷数减小2,质量数减少4.α衰变的实质:是某元素的原子核同时放出由两个质子和两个中子组成的粒子(即氦核).(核内He n H 42101122→+)(2)β衰变的一般方程:X A Z →Y A Z 1++01-e .每发生一次β衰变,新元素与原元素相比较,核电荷数增加1,质量数不变.α γ β⑪ ⑫ ⑬β衰变的实质:是元素的原子核内的一个中子变成质子时放射出一个电子.(核内110011n H e -→+), +β衰变:e Si P 0130143015+→(3)γ射线是伴随α衰变或β衰变同时产生的、γ射线不改变原子核的电行数和质量数.γ射线实质:是放射性原子核在发生α衰变或β衰变时,产生的某些新核由于具有过多的能量(核处于激发态)而辐射出光子. 三、 氢原子能级及氢光谱 1、 氢原子能级氢原子的能级:原子各个定态的能量值叫做原子的能级。
原子的核式结构原子的能级
[例1] 氢原子辐射一个光子后,则 (A)电子绕核旋转半径增大 (B)电子的动能增大 (C)氢原子电势能增大 解析 (D)原子的能级值增大 [例2]欲使处于基态的氢原子激发,下列措施 可行的是 (A)用10.2eV的光子照射 (B)用11eV的光子照射 (C)用14eV的光子照射 解析 (D)用11eV的电子碰撞
解析:该题主要考查对玻尔理论中原子跃迁条件的认识和理解. 正确的思路为:由玻尔理论可知,氢原子在各能级间跃迁时, 只吸收能量值刚好等于某两能级之差的光子。由氢原子能级关系不 难算出,10.2eV刚好为氢原子n=1和n=2的两能级之差,而11eV则不 是氢原子基态和任一激发态的能量之差,因而基态氢原子只能吸收 前者被激发,而不能吸收后者。 对于14eV的光子,其能量大于氢原子的电离能(13.6eV),足以 使氢原子电离——使电子脱离核的束缚而成为自由电子,因而不受 氢原子能级间跃迁条件的限制。由能的转化和守恒定律不难知道, 氢原子吸收14 eV的光子电离后产生的自由电子还应具有0.4 eV的动 能。
在此跃迁过程中,电场力对电子做了正功,因而电势能应减小。
解析:该题主要考查:
⑴玻尔理论,⑵库仑定律和向心力,⑶电势能
正确的思路为: 由玻尔理论可知,氢原子辐射光子后,应从离核较远的轨道跃 迁到离核较近的轨道。 另由经典电磁理论,电子绕核做匀速圆周运动的向心力即为氢 核对电子的库仑力:
在此跃迁过程中,电场力对电子做了正功,因而电势能应减小。
n( n 1) 2 N Cn 2
4 3 2 -0.85eV -1.51eV -3.4eV
1
-13.6eV
一群氢原子处于量子数为n的激发态 时,可能辐射出的光谱线条数为
n( n 1) 2 N Cn 2
原子核式结构
原子核式结构1. 引言原子核式结构是指原子中心的原子核和围绕原子核运动的电子之间的空间排布和相互作用关系。
原子核式结构的研究对于理解原子的基本性质和化学行为具有重要意义。
本文将介绍原子核的组成、结构和特性,以及电子的排布和相互作用等相关内容。
2. 原子核的组成原子核是原子的核心部分,具有正电荷,通常由质子和中子组成。
质子具有正电荷,中子不带电荷。
根据原子的元素,原子核中质子的数量决定了原子的原子序数,即元素的周期表中的位置。
例如,氢原子核只有一个质子,因此其原子序数为1,而氦原子核有两个质子,原子序数为2。
3. 原子核的结构原子核内的质子和中子通过强相互作用力相互维持在一起。
质子之间的电磁相互作用力会导致相互排斥,但强相互作用力可以克服这种排斥力,使得原子核能够稳定存在。
原子核的稳定性取决于质子和中子的数量以及它们之间的相互作用关系。
原子核的大小通常用原子的半径来表示。
原子核的直径非常小,通常约为原子直径的10,000倍。
原子核内的质子和中子被称为核子,核子本身也是由更小的粒子构成的。
质子和中子属于重子,而重子又是由夸克组成的。
4. 原子核的特性原子核具有以下几个重要的特性:•质量数(A):原子核中质子和中子的总数。
•原子序数(Z):原子核中质子的数量,决定元素的化学性质和在周期表中的位置。
•中子数(N):原子核中中子的数量,决定原子核的稳定性。
•核电荷数(Q):原子核中的总电荷,等于质子数减去电子数。
5. 原子核式结构的调整原子核式结构可以通过核反应进行调整。
核反应是指原子核中的质子和中子发生物理变化的过程。
核反应可以导致放射性衰变、核聚变和核裂变等。
核反应可以改变原子核的质量数和原子序数,从而改变元素的性质。
核反应在核能的利用和核武器的制造中起着重要的作用。
6. 电子的排布和相互作用在原子核周围运动的电子决定了原子的化学性质。
电子的排布和相互作用关系受到量子力学的描述,并由一系列的量子数和轨道来表示。
高中物理【原子结构和原子核】知识点、规律总结
两类核衰变在磁场中的径迹 [素养必备]
静止核在磁场中自发衰变,其轨迹为两相切圆,α 衰变时两圆外切,β 衰变时两圆 内切,根据动量守恒 m1v1=m2v2 和 r=mqBv知,半径小的为新核,半径大的为 α 粒子或 β 粒子,其特点对比如下表:
α 衰变
AZX→AZ--24Y+42He
β 衰变
AZX→Z+A1Y+0-1e
特征
3.氢原子光谱的实验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ= R212-n12(n=3,4,5,…,R 是里德伯常量,R=1.10×107 m-1).
4.光谱分析:利用每种原子都有自己的_特__征__谱__线___可以用来鉴别物质和确定物质 的组成成分,且灵敏度很高.在发现和鉴别化学元素上有着重大的意义.
(2)原子的核式结构模型:在原子中心有一个很小的核,原子全部的_正__电__荷___和几乎 全部__质__量__都集中在核里,带负电的电子在核外空间绕核旋转.
二、氢原子光谱 1.光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强 度分布的记录,即光谱. 2.光谱分类
连续
吸收
师生互动
1.α 衰变、β 衰变的比较
衰变类型
α 衰变
β 衰变
衰变方程
AZX→AZ--24Y+42He
AZX→Z+A1Y+-01e
2 个质子和 2 个中子结合成一个整体射 1 个中子转化为 1 个质子和 1 个电子
衰变实质 出
衰变规律
211H+210n→42Βιβλιοθήκη e10n→11H+-01e
电荷数守恒、质量数守恒、动量守恒
五、核力和核能 1.核力 原子核内部,_核__子__间___所特有的相互作用力. 2.核能 (1)核子在结合成原子核时出现质量亏损 Δm,其对应的能量 ΔE=__Δ__m_c_2___. (2)原子核分解成核子时要吸收一定的能量,相应的质量增加 Δm,吸收的能量为 ΔE =__Δ_m__c_2___.
原子的核式结构模型
描述微观粒子运动的基本方程, 用于求解原子中电子的波函数和
能量。
原子轨道
由量子力学计算得出的电子在原子 中的概率分布区域,决定了元素的 化学性质。
自旋和磁矩
电子自旋和轨道运动产生的磁矩是 原子磁性的来源。
多电子原子中电子排布规律研究进展
泡利原理
确定每个电子状态的独特性,保证电子排布的稳 定性。
原子中心有一个带正电的原子核,电子绕核旋转。该模型预测了α粒子散射实 验的结果,即大多数α粒子穿过原子时不受影响,少数α粒子受到大角度偏转, 极少数α粒子被反弹回来。
实验结果与预测一致
α粒子散射实验结果与卢瑟福的核式结构模型预测相符,从而验证了该模型的正 确性。同时,其他相关实验结果也支持了核式结构模型的理论预测。
局限性
玻尔理论虽然成功地解释了氢原子光谱和类氢离子光谱,但对于复杂原子(多电 子原子)的光谱现象却无法解释。此外,玻尔理论也无法解释原子的化学性质和 化学键的形成。
03
原子核式结构模型具体内容
原子核组成与性质
原子核位于原子的中心,由质子和中 子组成。
原子核的半径约为原子半径的万分之 一,但质量却占原子总质量的99.9% 以上。
04
电子云密度越大,表明 电子在该区域出现的概 率越高。
能量层级
原子中的电子按照能量高低分 布在不同的能级上,每个能级 对应一定的电子云形状和取向
。
当电子从一个能级跃迁到另一 个能级时,会吸收或释放能量 ,表现为光的吸收或发射。
电子跃迁遵循一定的选择定则 ,如偶极跃迁选择定则、自旋
原子核的发现
卢瑟福根据α粒子散射实验现象提出了原子核式结构模型。在 原子的中心有一个很小的核,叫原子核,原子的全部正电荷 和几乎全部质量都集中在原子核里,带负电的电子在核外空 间里绕着核旋转。
原子的核式结构课件
§1.2 原子的核式结构(卢瑟福模型)
二、盖革-马斯顿实验
(a) 侧视图 (b) 俯视图 R:放射源;F:散射箔;S:闪烁屏;B:金属匣
α粒子:放射性元素发射出的高速带电粒子,其速度约为光速的十分之一,带+2e的电荷,质量约为4MH。 散射:一个运动粒子受到另一个粒子的作用而改变原来的运动方向的现象。 粒子受到散射时,它的出射方向与原入射方向之间的夹角叫做散射角。
(3) 阿伏伽德罗定律
1811年,意大利物理学家阿伏伽德罗提出:一摩尔任何原子的数目都是NA,称为阿伏伽德罗常数. 说明:NA是联系微观物理学和宏观物理学的纽带,是物理学中重要的常数之一. 当进行任何微观物理量的测量时, 由于实验是在宏观世界里进行的,因此都必须借助于NA ; NA之巨大,正说明了微观世界之细小. NA测量方法: 1838年,法拉第(Faraday,1791-1867年)电解定律: 任何一摩尔单价离子,永远带有相同的电量F,F称为法拉第常数,经实验测定,F=96486.7 C/mol,则 其中,e为电子电量,测出e,就可以求出.我们再次看到,将宏观量F与微观量e联系起来了.
当r>R时,原子受的库仑斥力为: 当r<R时,原子受的库仑斥力为: 当r=R时,原子受的库仑斥力最大:
近似2:只受库仑力的作用。
粒子受原子作用后动量发生变化: 最大散射角:
大角散射不可能在汤姆逊模型中发生,散射角大于3°的比1%少得多;散射角大于90°的约为10-3500.必须重新寻找原子的结构模型。
三、 课堂反馈
思考与讨论: 原子质量和大小的数量级是多少?请尽可能多地列出估算方法.并举例说明. 是联系微观物理学和宏观物理学的桥梁.有哪些微观量与宏观量可以通过联系?如何联系?请举例说明. 电子的质量和电荷是多少? 如何测量电子的荷质比?
原子核式结构
原子核式结构:
原子核式结构是1911年由卢瑟福提出的一种原子结构模型。
核式原子结构认为:原子的质量几乎全部集中在直径很小的核心区域,叫原子核,电子在原子核外绕核作轨道运动。
原子核带正电,电子带负电。
在卢瑟福提出其核式原子结构之前,汤姆逊提出了一个被称为“枣糕式”的电子模型。
该模型认为,原子是正电部分是一个原子那么大的、具有弹性的冻胶状的球,正电荷均匀地分布着,在这球内或球上,有负电子嵌着。
这些电子能在它们的平衡位置上作简谐运动。
观察到的原子所发出的光谱的各种频率认为就相当于这些振动的频率。
卢瑟福的核式原子结构模型准确地反应了原子内部结构的基本形态,然而核式结构还是遇到了困难。
核式结构认为原子内部电子是做轨道运动,无法解释观测到的原子所发出的各种光谱的频率。
此外,原子内部的电子不断向外辐射能量必然会导致电子轨道的缩小最终与原
子核所带的正电子中和,事实并非如此。
原子的核式结构原子的能级
原子的核式结构原子的能级原子的核式结构由原子核和电子云组成。
原子核位于原子的中心,由质子和中子组成。
质子带有正电荷,中子不带电荷。
原子核的质量约等于整个原子质量的99.9%,但体积非常小,约占整个原子体积的1/10,000。
电子云围绕着原子核的核式结构。
电子带有负电荷,质量很小。
电子云的半径可以看作是电子能级的大小,每个能级可以容纳一定数量的电子。
电子能级按照一定规律排列,较近原子核的能级能量较低,较远原子核的能级能量较高。
电子能级之间的能量差叫做能级间隔,对应于光的频率和波长。
当电子从低能级跃迁到高能级时,吸收能量;反之,从高能级跃迁到低能级时,放出能量。
原子的核式结构对物质的性质和结构起着重要的影响。
原子核决定了原子的质量和化学性质,例如质子数决定了元素的种类,质子数与中子数之和决定了原子的质量数。
电子云则决定了元素的化学反应性质,例如原子的化学键形成和断裂等。
原子核和电子云之间的相互作用力决定了原子的稳定性和化学行为。
原子的能级对化学反应和物质的性质也有着重要的影响。
根据泡利不相容原理和泡利排斥原理,每个能级上的电子自旋和量子数必须不同。
这种能级的填充规则决定了元素的电子构型和化学结构。
原子的化学反应和化学键的形成和断裂都涉及到电子的跃迁和能级的变化。
总结起来,原子的核式结构是由原子核和电子云组成的。
原子核决定了原子的质量和化学性质,电子云决定了原子的化学反应性质。
原子的能级决定了电子的运动状态和能量变化,对原子的化学反应和物质的性质有着重要的影响。
原子的核式结构
原子的核式结构
中子+质子=原子核
原子核+电子=原子
中子= 质子+电子+中微子
质子是合成粒子,属于费米子,有夸克组成
电子属于基本粒子,目前无法细分更小,属于轻子类
扩展资料
原子(atom)指化学反应不可再分的基本微粒,原子在化学反应中不可分割。
但在物理状态中可以分割。
原子由原子核和绕核运动的电子组成。
原子构成一般物质的最小单位,称为元素。
已知的元素有119种。
因此具有核式结构。
质子(proton)是一种带1.6 ×10-19 库仑(C)正电荷的亚原子粒子,直径约1.6~1.7×10−15 m ,质量是938百万电子伏特/c²(MeV/c²),即
1.672621637(83)×10-27千克,大约是电子质量的1836.5倍(电子的质量为9.10938215(45)×10-31千克),质子比中子稍轻(中子的质量为1.674927211(84)×10-27千克)。
质子属于重子类,由两个上夸克和一个下夸克通过胶子在强相互作用下构成。
原子核中质子数目决定其化学性质和它属于何种化学元素。
高中物理选修3-5 原子结构与原子核
,Z表示核电荷数.
(1)天然放射现象
元素 自发 地放出射线的现象,首先由 贝可勒尔 发现.天然放射现象的发现,说明原
子核具有 复杂 的结构.
答案
考点三 原子核及核反应
(2)三种射线
名称 构成 符号 电荷量 质量 电离能力 贯穿本领
α射线 氦核
+2e 4 u
最强
最弱
β射线 电子
-e
较强
较强
γ射线 光子 γ
解析答案
考点一 原子的核式结构
1234
2.在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止不动,下列各图画出
的是其中两个α粒子经历金箔散射过程的径迹,其中正确的是
.(填选图下方的
字母) 吸引
吸引
√
解析 α粒子受到原子核的斥力作用而发生散射, 离原子核越近的粒子,受到的斥力越大,散射角度越大,选项C正确.
答案
返回
考点四 核力与核能
【考点逐项排查】
1.核力:原子核 内部 ,核子间所特有的相互作用力. 2.核能 (1)核子在结合成原子核时出现质量亏损Δm,其对应的能量ΔE= Δmc2 . (2)原子核分解成核子时要吸收一定的能量,相应的质量增加Δm, 吸收的能量为ΔE= Δmc2 . 3.核能释放的两种途径的理解 (1)使较重的核分裂成中等大小的核;(2)较小的核结合成中等大小的核.核子的比结 合能都会增大,都可以释放能量.
答案
考点一 原子的核式结构
1 2 3 4 【题组阶梯突破】
1. (多选)如图所示为卢瑟福和他的同事们做α粒子散射实验装置的示意图,荧光屏和 显微镜一起分别放在图中的A、B、C、D四个位置时观察到的现象,下述说法中正 确的是( ABD ) A.放在A位置时,相同时间内观察到屏上的闪光次数最多 B.放在B位置时,相同时间内观察到屏上的闪光次数只比 A位置时稍少些 C.放在C、D位置时,屏上观察不到闪光 D.放在D位置时,屏上仍能观察到一些闪光,但次数极少 解析 根据α粒子散射现象,绝大多数α粒子沿原方向前进, 少数α粒子发生较大偏转.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原 子 的 核 式 结 构 模 型
体育场 原子
原子核
原 子 的 核 式 结 构 模 型
α 粒子散射实验
第十八章:原子结构
汤 姆 生 枣 糕 式 模 型
原子是一个球体;正电荷均匀 分布在整个球内,而电子都象 枣核那样镶嵌在原子里面
原 子 的 核 式 结 构 模 型
所有α粒子都不 会有很大的偏转
原 子 的 核 式 结 构 模 型
α粒子穿过原子给我们的感觉就像是高 速运行的子弹穿透果冻一样容易。
粒 子 散 射 实 验
α
原 子 的 核 式 结 构 模 型
绝大多数α粒子穿过金箔后仍 沿原来方向前进 实 验 现 象
少数α粒子发生了较大的偏转 极少数α粒子的偏转超过90°
有的甚至几乎达到180°
“这是我一生中从未有的最难以置信的事,它 好比你对一张纸发射出一发炮弹,结果被反 弹回来而打到自己身上……” —卢瑟福
原 子 的 核 式 结 构 模 型
极个别α粒子 的偏转几乎 达到180° 少数α粒子发生 了较大的偏转
极少数α粒子的 偏转超过90° 绝大多数α粒子穿 过金箔后仍沿原来 方向前进
α粒子在原子中 碰到了比它质量 大的多的东西
α粒子受到较 大的库仑力作 用
原子中绝大 部分是空的
原 在原子的中心有一个很小的核,叫做原子核 子 的 核 式 原子的全部正 结 电荷和几乎全 构 部质量都集中 模 在原子核里 型