七年级数学整式及加减探索规律习题及答案

合集下载

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.因式分解:(1)x3-4x; (2)(3a-b)(x-y)+(a+3b)(y-x).【答案】(1) x(x+2)(x-2);(2) 2(x-y)(a-2b).【解析】(1)先提出公因式x,剩下的因式用平方差公式分解即可;(2)两次提取公因式即可得解.试题解析:(1)原式=x(x2-4)=x(x+2)(x-2);(2)原式=(3a-b)(x-y)-(a+3b)(x-y)=(x-y)(2a-4b)=2(x-y)(a-2b).【考点】1.因式分解——提公因式法;2.因式分解——公式法.2.已知代数式的值为,求代数式的值.【答案】-6【解析】解:.因为3,故上式.3.先化简,后求值:已知,求代数式的值.【答案】【解析】解:由得,,解得,.将代数式化简得.将,代入得原式.4.多项式3a2b2-5ab2+a2-6是___次项式,常数项是 .【答案】四次四项式、-6【解析】本题中未知数的最高次是4次,所以是四次,未知数有a,b两个,故是四次二项式;常数项是-6【考点】多项式点评:本题属于对多项式的基本常识的考查,需要考生在对多项式基本次数的基础上熟练把握5.下列计算正确的是()A.2x+3y=5xy B.-3x-x=-xC.-xy+6x y=5x y D.5ab-b a=ab【答案】D【解析】根据合并同类项的法则依次分析各选项即可作出判断.A、2x与3y不是同类项,无法合并,B、-3x-x=-x,C、-xy与6x y不是同类项,无法合并,故错误;D、5ab-b a=ab,本选项正确.【考点】合并同类项点评:解题的关键是熟练掌握合并同类项的法则:把同类项的系数相加,字母和字母的指数不变.6.若2x y与-3x y是同类项,则-m=【答案】3【解析】先根据同类项的定义求得m、n的值,再根据有理数的乘方法则计算即可.由题意得,解得,则-m【考点】同类项,有理数的乘方点评:解题的关键是熟记同类项的定义:所含字母相同,并且相同字母的指数也分别相同的项是同类项.7.已知:A=x+xy+y,B=-3xy-x求(1)B-A;(2)2A-3B;(3)若A-B-C=0,则C如何用含x,y的代数式表示?【答案】(1)-2x-4xy-y;(2)5x+11xy+2y;(3)2x+4xy+y【解析】先根据题意分别列出代数式,再去括号、合并同类项即可.(1)B-A=(-3xy-x)-(x+xy+y)=-3xy-x-x-xy-y=-2x-4xy-y;(2)2A-3B=2(x+xy+y)-3(-3xy-x)=2x+2xy+2y+9xy+3x=5x+11xy+2y ;(3)∵A-B-C=0∴C= A-B=(x+xy+y)-(-3xy-x)=x+xy+y+3xy+x= 2x+4xy+y.【考点】整式的加减点评:解题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.8.化简或求值:(1)化简:(2)已知,求的值。

七年级数学上册第二章《整式的加减》经典习题

七年级数学上册第二章《整式的加减》经典习题

1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C 解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.2.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C、一件上衣的进价为50元,售价为a元,用代数式表示一件上衣的利润为(50a-)元,错误,不符合题意;D、小明买了5支铅笔和4本练习本,其中铅笔x元1支,练习本y元1本,那么他应付(5x+4y)元,正确,符合题意;故选:D.【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.3.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.85D解析:D【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n+++n2,根据规律求解.【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4,第二个图形为:()1332+⨯+22=10,第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31,…,所以第n个图形为:()()122n n+++n2,当n=7时,()()72712+++72=85,故选D.【点睛】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.4.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.5.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.6.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n A 解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n 个“金鱼”需用火柴棒的根数为6n +2.故选:A .【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 7.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D【分析】 利用大正方形的周长减去4个小正方形的周长即可求解.解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b -, ∴大正方形的周长与小正方形的周长的差是:2a b +×4-4a b -×4=a+3b. 故选;D.【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y xx y x +--=+-+ D .()()223423422x y xx y x --+=--+ C解析:C【分析】依据去括号法则计算即可判断正误.【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误; B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y xx y x +--=+-+,此选项正确; D. ()()223423422x y xx y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C 解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.14.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.15.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关1.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 2.如图,阴影部分的面积用整式表示为_________.x2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x +6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x 2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.4.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x.【解析】解:系数为-2,次数为4的单项式为:-2x4.故答案为-2x4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.6.关于x的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x的次数逐渐减小排列,这个二次三项式为____.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.7.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.8.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n+-解析:a n1【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.9.当x=1时,ax+b+1=﹣3,则(a+b﹣1)(1﹣a﹣b)的值为_____.-25【分析】由x =1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a解析:-25.【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.10.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 11.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.1.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-解析:(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 2.已知单项式﹣2x 2y 的系数和次数分别是a ,b .(1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.3.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.。

北师大版七年级数学上册第三章整式及其加减3探索与表达规律课件

北师大版七年级数学上册第三章整式及其加减3探索与表达规律课件

解析 因为1号开关被按了1次,2号开关被按了2次,3号开关 被按了2次,4号开关被按了3次,5号开关被按了2次,6号开关 被按了4次,7号开关被按了2次,8号开关被按了4次,9号开关 被按了3次,……, 可以发现规律:n号开关被按的次数等于n的约数的个数,约数 个数是奇数,则n一定是平方数. 因为100=102,所以100以内共有10个平方数. 所以最终状态为“亮”的灯共有10盏.
n
12.(创新意识)(2023湖北随州中考)某天老师给同学们出了一 道趣味数学题: 设有编号为1~100的100盏灯,分别对应着编号为1~100的100 个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改 变一次相对应编号的灯的状态,所有灯的初始状态为“不 亮”.现有100个人,第1个人把所有编号是1的整数倍的开关 按一次,第2个人把所有编号是2的整数倍的开关按一次,第3 个人把所有编号是3的整数倍的开关按一次,……,第100个人 把所有编号是100的整数倍的开关按一次.问最终状态为
A.2
B.3
C.6
D.x+3
解析 y=(2x+6)÷2-x=x+3-x=3.故选B.
5.(教材变式·P98随堂练习T1)某数学老师在课外活动中做了 一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克 牌(假定发到每个同学手中的扑克牌数量足够多),然后依次 完成以下三个步骤: 第一步,A同学拿出2张扑克牌给B同学; 第二步,C同学拿出3张扑克牌给B同学; 第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少 张扑克牌给A同学. 请你确定,最终B同学手中剩余的扑克牌的张数为 7 .
解析 由题意可得,这串数中的第n个数是50-2n, 所以这串数中的第50个数是50-2×50=-50.

北师大版七年级数学上册第三章《整式及其加减》练习题含答案解析 (31)

北师大版七年级数学上册第三章《整式及其加减》练习题含答案解析 (31)

一、选择题1. 小明与小亮在操场上练习跑步,小明的速度是 x m/s ,小亮的速度是 y m/s ,小亮比小明跑得快,两人从同一地点同时起跑 a s 后,小明落后小亮 ( ) A . (ax −ay ) m B . (ay −ax ) m C . (ax +ay ) mD . axy m2. 小明用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是 8 时,输出的数据是 ( )输入⋯12345⋯输出⋯3223512310730⋯ A . 839B . 738C . 637D . 5363. 如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是 ( )A .B .C.D.4.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,⋯,依此规律跳动下去,点P第99次跳动至点P99的坐标是( )A.(26,50)B.(−26,50)C.(25,50)D.(−25,50)5.1883年,康托尔构造的这个分形,称做康托尔集,从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每人个余下的三分之一线段中取走中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A.13B.242243C.211243D.322436.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,⋯以此类推,第n次平移将长方形A n−1B n−1C n−1D n−1沿A n−1B n−1的方向向右平移5个单位,得到长方形A n B n C n D n(n>2),则AB n长为( )A.5n+6B.5n+1C.5n+4D.5n+37.下列计算正确的是( )A.3a2+a=4a2B.−2(a−b)=−2a+bC.a2b−2a2b=−a2b D.5a−4a=18.下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小“三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,⋯⋯,按此规律,图形⑧中共有n个小三角形,这里的n=( )A.32B.41C.51D.539.为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品的价格为( )A.52a元B.25a元C.53a元D.35a元10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,⋯⋯,如此下去,则第2018个图中共有正方形的个数为( )A.2018B.2019C.6052D.6056二、填空题11.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,⋯,则第n−1(n为正整数,n⋯2)个图案由个▲组成.12.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.13.有理数a,b,c,d在数轴上的位置如图,则∣a−b∣+∣b−c∣−∣d−a∣=.14.在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,−1),C(−1,−1),D(−1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,⋯⋯,按此操作下去,则P2020的坐标为.15.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等.小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48.若将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0对准乙尺的刻度m,则此时甲尺的刻度n会对准乙尺的刻度为.(用含m,n的式子表示)16.观察下列图形:它们是按一定规律排列的,依照此规律,第10个图形中共有个点.+(b+c)m−m2的值为.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1.则abm三、解答题18.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为ℎ(单位为:cm).(1) 用m,n,ℎ表示所需地毯的面积;(2) 若m=160,n=60,ℎ=75,求地毯的面积.19.如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a,三角形的高为ℎ.(1) 用式子表示阴影部分的面积;(2) 当a=2,ℎ=1时,求阴影部分的面积.220.阅读下面材料:在数轴上5与−2所对的两点之间的距离:∣5−(−2)∣=7;在数轴上−2与3所对的两点之间的距离:∣−2−3∣=5;在数轴上−8与−5所对的两点之间的距离:∣(−8)−(−5)∣=3.在数轴上点A,B分别表示数a,b,则A,B两点之间的距离AB=∣a−b∣=∣b−a∣.回答下列问题:(1) 数轴上表示−2和−5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为∣x+2∣;(2) 七年级研究性学习小组在数学老师指导下,对式子∣x+2∣+∣x−3∣进行探究:请你在草稿纸上画出数轴,当表示数x的点在−2与3之间移动时,∣x−3∣+∣x+2∣的值总是一个固定的值为:.21.学校操场上的环形跑道长400米,小胖、小杰的速度分别是a米/分,b米/分(其中a>b).两人从同一地点同时出发,求:(1) 如果两人反向而行,则经过多长时间两人第一次相遇?(2) 如果两人同向而行,则经过多长时间两人第一次相遇?22.归纳.人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有3个顶点,如果在它的内部再画n个点,并以(n+3)个点为顶点画三角形,那么最多以剪得多少个这样的三角形?为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.(1) 完成表格信息:,;(2) 通过观察、比较,可以发现:三角形内的点每增加1个,最多可以剪得的三角形增加个.于是,我们可以猜想:当三角形内的点的个数为n时,最多可以剪得个三角形.像这样通过对现象的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.在日常生活中,人们互相交谈时,常常有人在列举了一些现象后,说“这(即列举的现象)说明⋯⋯”其实这就是运用了归纳的方法.用归纳的方法得出的结论不一定正确,是否正确需要加以证实.(3) 请你尝试用归纳的方法探索(用表格呈现,并加以证实):1+3+5+7+⋯+(2n−1)的和是多少?23.探索规律,观察下面由⋇组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52.⋯(1) 请猜想1+3+5+7+9+⋯+19=;(2) 请猜想1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3)=;(3) 请计算:101+103+⋯+197+199.24.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”.如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1) 图2是显示部分代数式的“等和格”,可得a=(用含b的代数式表示);(2) 图3是显示部分代数式的“等和格”,可得a=,b=;(3) 图4是显示部分代数式的“等和格”,求b的值(写出具体求解过程).25.A,B两地果园分别有橘子40吨和60吨,C,D两地分别需要橘子30吨和70吨;已知从A,B到C,D的运价如表: 到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1) 若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为吨,从A果园将橘子运往D地的运输费用为元.(2) 用含x的式子表示出总运输费(要求:列式,化简).(3) 求总运输费用的最大值和最小值.(4) 若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且w=−(x−25)2+4360.则当x=时,w有最值(填“大”或“小”).这个值是.答案一、选择题 1. 【答案】B【知识点】简单列代数式2. 【答案】D【解析】 ∵ 第 n 个数据的规律是:n+2n (n+1), 故 n =8 时为:8+28×9=1072=536. 【知识点】用代数式表示规律3. 【答案】C【解析】由题意知,原图形中各行、各列中点数之和为 10,符合此要求的只有C . 【知识点】用代数式表示规律4. 【答案】D【知识点】点的平移、用代数式表示规律5. 【答案】C【解析】根据题意知:第一阶段时,余下的线段的长度之和为 23, 第二阶段时,余下的线段的长度之和为 23×23=(23)2, 第三阶段时,余下的线段的长度之和为 23×23×23=(23)3, ⋯, 以此类推,当达到第五个阶段时,余下的线段的长度之和为 (23)5=32243, 取走的线段的长度之和为 1−32243=211243. 【知识点】用代数式表示规律6. 【答案】A【解析】每次平移 5 个单位,n 次平移 5n 个单位,即 BN 的长为 5n ,加上 AB 的长即为 AB n 的长,AB n =5n +AB =5n +6. 【知识点】用代数式表示规律7. 【答案】C【解析】3a2,a不是同类项,不能合并,故A错误;−2(a−b)=−2a+2b,故B错误;a2b−2a2b=−a2b,故C正确;5a−4a=a,故D错误,故选:C.【知识点】合并同类项、去括号8. 【答案】C【解析】设第m个图形中有a m(m为正整数)个小三角形.观察图形,可知:a1=1+1=2,a2=(1+2)+3=6,a3=(1+2+3)+5=11,a4= (1+2+3+4)+7=17,⋯,∴a m=(1+2+⋯+m)+2m−1=m(m+1)2+2m−1=12m2+52m−1(m为正整数),∴n=a8=12×82+52×8−1=51.【知识点】用代数式表示规律9. 【答案】C【知识点】用字母表示数10. 【答案】C【解析】第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形11个,⋯,第n个图形有正方形(3n−2)个,当n=2018时,3×2018−2=6052个正方形.【知识点】用代数式表示规律二、填空题11. 【答案】(3n−2)【解析】观察发现:第一个图形有3×2−3+1=4个三角形;第二个图形有3×3−3+1=7个三角形;第一个图形有3×4−3+1=10个三角形;⋯第n−1个图形有3n−3+1=3n−2个三角形.【知识点】用代数式表示规律12. 【答案】82【知识点】用代数式表示规律13. 【答案】c+d−2b【解析】根据数轴右侧的数大于左侧的数,则右侧数减去左侧数为正,去掉绝对值,∵a−b>0,b−c<0,d−a<0,∴∣a−b∣=a−b,∣b−c∣=−(b−c),∣d−a∣=−(d−a),故∣a−b∣+∣b−c∣−∣d−a∣=a−b−(b−c)+(d−a)=a−b−b+c+d−a=c+d−2b.【知识点】整式的加减运算、绝对值的几何意义14. 【答案】(0,2)【解析】∵点P坐标为(0,2),点A坐标为(1,1),∴点P关于点A的对称点P1的坐标为(2,0),点P1关于点B(1,−1)的对称点P2的坐标(0,−2),点P2关于点C(−1,−1)的对称点P3的坐标为(−2,0),点P3关于点D(−1,1)的对称点P4的坐标为(0,2),即点P4与点P重合了;∵2020÷4=505,∴点P2020的坐标与点P4的坐标相同,∴点P2020的坐标为(0,2).【知识点】坐标平面内图形轴对称变换n+m15. 【答案】43【知识点】简单列代数式16. 【答案】165【解析】第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点(在第一个图形的基础上,外面又包了一个三角形,三个顶点,在三边上多了三个点);第三个图形有3+6+9=3×(1+2+3)=18个点;(在第二个图形基础上,外面又包了一个三角形,在三边上多了三个点,即:在第一图形的基础上多了两个三角形,从里向外,依次多6个点,9个点,包括增加的三角形的顶点)⋯第n个图形有3+6+9+⋯+3n=3×(1+2+3+⋯+n)=3n(n+1)个点;2=165个点,当n=10时,3×10×112故答案为:165.【知识点】用代数式表示规律17. 【答案】0或−2【解析】ab=1,c+d=0.∣m∣=1.−1=0或−2.原式=1m【知识点】简单的代数式求值三、解答题18. 【答案】(1) 地毯的面积为:(mn+2nℎ)cm2.(2) 地毯总长:60×2+160=280(cm),160×60+2×60×75=18600(cm2),答:地毯的面积为18600cm2.【知识点】简单的代数式求值、简单列代数式19. 【答案】aℎ=a2−2aℎ.(1) 阴影部分的面积为:a2−4×12时,(2) 当a=2,ℎ=12原式=a2−2aℎ=22−2×2×12=2.【知识点】简单列代数式、简单的代数式求值20. 【答案】(1) 3;∣x−3∣;x;−2(2) 5【解析】(1) 数轴上表示−2和−5的两点之间的距离=∣−2−(−5)∣=3;数轴上表示数x和3的两点之间的距离=∣x−3∣;数轴上表示数x和−2的两点之间的距离表示为∣x+2∣.(2) 当−2≤x≤3时,∣x+2∣+∣x−3∣=x+2+3−x=5.【知识点】绝对值的几何意义、整式的加减运算、数轴的概念21. 【答案】(1) 400a+b分钟.(2) 400a−b分钟.【知识点】简单列代数式22. 【答案】(1) 5;7(2) 2;(2n+1)(3)加数的个数和1+3221+3+5321+3+5+742⋯⋯1+3+5+7+⋯+(2n−1)n2证明:∵S=1+3+5+7+⋯+(2n−5)+(2n−3)+(2n−1),∴S=(2n−1)+(2n−3)+(2n−5)+⋯+7+5+3+1,∴S+S=2n⋅n=2n2,2S=2n2,S=n2.【解析】(1) 由图形规律可得,答案为5,7.(2) ∵5−3=7−5=2,∴三角形内的点每增加1个,最多可以剪得的三角形增加2个;∵三角形内点的个数为1时,最多剪出的小三角形个数3=2×1+1,三角形内点的个数为2时,最多剪出的小三角形个数5=2×2+1,三角形内点的个数为3时,最多剪出的小三角形个数7=2×3+1,∴三角形内点的个数为n时,最多剪出的小三角形个数2n+1.【知识点】用代数式表示规律、整式的加减运算23. 【答案】(1) 100(2) (n+2)2(3)101+103+⋯+197+199 =(1+1992)2−(1+992)2=10000−2500=7500.【解析】(1) 1+3+5+7+9+⋯+19=(1+192)2=100.(2)1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3) =(1+2n+32)2=(n+2)2.【知识点】用代数式表示规律24. 【答案】(1) −b(2) −2;2(3) 2a2+a+(a−2a2)=a2+2a+(a+3),a2+a=−3,2a2+a+(a+3)=b+3a2+2a+(a2+2a),b=−2a2−2a+3,b=−2(a2+a)+3=6+3=9.【知识点】整式的加减运算25. 【答案】(1) (40−x),12(40−x).(2) 从A果园运到C地x吨,运费为每吨15元;从A果园运到D地的橘子为(40−x)吨,运费为每吨12元;从B果园运到C地(30−x)吨,运费为每吨10元;从B果园运到D地(30+x)吨,运费为每吨9元;所以总运费为:15x+12(40−x)+10(30−x)+9(30+x)=2x+1050.(3) 因为总运费=2x+1050,当x=30时,有最大值2×30+1050=1110元.当x=0时,有最小值2×0+1050=1050元.(4) 25大4360【解析】(1) 因为从A果园运到C地的橘子是x吨,那么从A果园运到D地的橘子为(40−x)吨,从A运到D地的运费是12元每吨,所以A果园将橘子运往D地的运输费用为12(40−x)吨.(4) w=−(x−25)2+4360,因为二次项系数−1<0,所以抛物线开口向下,当x=25时,w有最大值.最大值时4360.【知识点】二次函数的最值、简单的代数式求值、整式加减的应用、简单列代数式。

《整式的加减》练习题2(有答案)

《整式的加减》练习题2(有答案)

《整式的加减》练习题2学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1、单项式22xy2的次数是()A. 5B. 4C. 3D. 2参考答案: C【思路分析】本考点的主要内容是确定单项式的次数,一个单项式中所有字母的指数的和叫做单项式的次数,一个单项式的次数是几,通常称这个单项式为几次单项式。

【解题过程】解:单项式22xy2的次数是1+2=3.故选C.2、若单项式a m−1b2与12a2b n的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9参考答案: C【思路分析】此题考查的是确定单项式的次数根据单项式的次数求参数。

仔细读题,获取题中已知条件,结合确定单项式的次数根据单项式的次数求参数相关知识,即可解答此题。

【解题过程】解:∵单项式am-1b²与12a²bn的和仍是单项式,∴单项式am-1b²与a2b n是同类项,∴m-1=2,n=2,∴m=3,∴nm=8。

故选:C。

3、一块地有a公顷,平均每公顷产粮食m千克;另一块地有b公顷,平均每公顷产粮食n 千克,则这两块地平均每公顷的粮食产量为()A. m+n2B. a+b2C. am+bna+bD. am+bnm+n参考答案: C【思路分析】这道题是考查用代数式表示数量关系,用两块地的总产量除以总的公顷数,列式即可.【解题过程】解:两块地的总产量为ma+nb,.所以,这两块地平均每公顷的粮食产量为:am+bna+b故选C.4、计算2a2+a2的结果是()A. 1B. aC. 3a2D. 2a参考答案: C【思路分析】本考点的主要内容是求几个单项式的和,理解合并同类项的法则是关键,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

【解题过程】解:2a2+a2=(2+1)a2=3a2;故选:C。

北师大版七年级数学上册提优小卷(7)整式的加减,探索与表达规律课件

北师大版七年级数学上册提优小卷(7)整式的加减,探索与表达规律课件

二、填空题 6.(2024山东济南舜耕中学期末,13,★☆☆)已知xym与xn+2y3是同类项,则m+n= 2 .
因为xym与xn+2y3是同类项, 所以n+2=1,m=3,所以n=-1,所以m+n=3-1=2.
7. 情境题 现实生活 (★☆☆)某地居民生活用水收费标准如下:每月用水量不超过17立方米, 每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则水费为
(20a+3.6)元.
因为20>17,所以该用户的水费为17a+(20-17பைடு நூலகம்×(a+1.2)=17a+3a+3.6=(20a+3.6)元.
8.(2024黑龙江牡丹江宁安期末,14,★★☆)一列数 1, 2, 3 , 4 , 5 , 6 ,…,它们按一定的规律排列,则
n
3 6 11 18 27 38
易错警示 去括号符号错误 当括号前是负号时,去掉括号,易出现括号内的项不改变符号的错误.当括号前有系数时,去掉括 号,易出现括号内的项漏乘系数的错误.
3.(★★☆)若关于字母x、y的多项式3x2y-2xy2-xm-1y+xyn合并后只有两项,则合并后的结果是 ( A )
A.2x2y-xy2
B.x2y-2xy2
(1)由题图可知,5个数的和为-11+(-17)+18+(-19)+(-25)=-54. (2)中间数为a,则十字形框中上下两个数的和为-2a,左右两个数的和为-2a, 所以5个数的和为a+(-2a)+(-2a)=-3a. (3)不能,理由:结合(2)可得-3a=108, 所以a=-36. 数-36不在题图的阵列中, 所以所框住的5个数之和不能等于108.

七年级数学上册第二单元《整式加减》-解答题专项知识点总结(含解析)

七年级数学上册第二单元《整式加减》-解答题专项知识点总结(含解析)

一、解答题1.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值. 解析:-1 【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可. 【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3, 根据题意得n ﹣3=0,m ﹣1=0, 解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1. 【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 2.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD . (1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDEACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABD a b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABDb a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 3.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y ,第8个分式为178x y-.【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子. 【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y, ……∴任意一个分式除以前面一个分式,都得2x y-.(2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键. 4.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由. (3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0. 【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可. 【详解】解:(1)∵2A B C +=,∴2B C A =-. B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+- 2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++-- 2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关; (3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= .【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键. 5.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-. 解析:24a b --,-2. 【分析】原式合并同类项后代入字母的值计算即可. 【详解】解:原式24a b =--, 当1a =-,2b =-时, 原式2=-. 【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.6.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可. 【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+. 故答案为:3a b c --+. 【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.7.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星; (2)第2020个图形有_______颗五角星,第n 个图形有_______颗五角星. 解析:(1)16,19;(2)6061,31n +. 【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数;(2)利用(1)中所得规律可得. 【详解】解:(1)观察发现,第1个图形★的颗数是134+=, 第2个图形★的颗数是1327+⨯=, 第3个图形★的颗数是13310+⨯=, 第4个图形★的颗数是13413+⨯=, 所以第5个图形★的颗数是13516+⨯=, 第6个图形★的颗数是13619+⨯=. 故答案为:16,19.(2)由(1)知,第2020个图形★的颗数是1320206061+⨯=, 第n 个图形★的颗数是31n +. 故答案为:6061,31n +. 【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n 个图形★的个数的表达式是解题的关键. 8.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=.解析:8xy -,12 【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可. 【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.9.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可. 【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --,当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.10.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少? 解析:15a 【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%. 【详解】 解:根据题意,得设第一年的产量为a ,以15%的速度增长, ∴第二年的产量为a (1+15%)=1.15a . 【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 11.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕. (1)第3次对折后共有多少条折痕?第4次对折后呢? (2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条? 解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条. 【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得. 【详解】(1)动手操作可知,第3次对折后的折痕条数为7条, 第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条, 第2次对折后的折痕条数为2321=-条, 第3次对折后的折痕条数为3721=-条, 第4次对折后的折痕条数为41521=-条, 归纳类推得:第n 次对折后的折痕条数为21n -条, 因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.12.用代数式表示:(1)比x的平方的5倍少2的数;(2)x的相反数与y的倒数的和;(3)x与y的差的平方;(4)某商品的原价是a元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x表示十位上的数字,用代数式表示这个三位数.解析:(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4).【分析】(1)明确是x的平方的5倍与2的差;(2)先求出x的相反数与y的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.13.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1)图②有个三角形;图③有个三角形;(2)按上面的方法继续下去,第n个图形中有多少个三角形(用n的代数式表示结论).解析:(1)5,9 ;(2)43n - 【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形. 【详解】解:(1)根据图形可得:5,9; (2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形. 【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型. 14.化简与求值:(1)若1a =-,则式子21a -的值为______; (2)若1a b +=,则式子12a b++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可; (2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可. 【详解】解:(1)()221110a -=--=; (2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-. 【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-. 【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项. 【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键. 16.计算: (1)()()312⨯-+-(2)2235223x x x x -+-+- 解析:(1)5-;(2)241x x -- 【分析】(1)直接根据有理数的混合运算法则即可求解. (2)直接根据整式的加减混合运算法则即可求解. 【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 17.已知单项式﹣2x 2y 的系数和次数分别是a ,b . (1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值. 解析:(1)﹣2;(2)1. 【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案. 【详解】 解:由题意,得 a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2; (2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1; 【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键. 18.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2; 13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2; ∴13+23+33+43+53=(______ )2= ______ . 根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2. (2)猜想:113+123+133+143+153= ______ . 解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值. 详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225 (1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2;(2)、113+123+133+143+153=13+23+33+…+153-(13+23+33+…+103) =(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.19.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++. 【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.20.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 21.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14 . 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.22.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.23.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.解析:见解析,7.试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a 2+b 2=5,1-b =-2,∴-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.24.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 25.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.26.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。

(必考题)初中七年级数学上册第二章《整式的加减》经典题(含答案解析)

(必考题)初中七年级数学上册第二章《整式的加减》经典题(含答案解析)

1.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7A 解析:A【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可.【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.2.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 3.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 4.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D 解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意.故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.6.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1 B .-1 C .2020 D .2020- A 解析:A【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.10.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3D 解析:D【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误;B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误;C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误;D 、系数相加字母及指数不变,故D 正确;故选:D .【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.11.已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± A 解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键.12.下列说法正确的是()A.0不是单项式B.25Rπ的系数是5C.322a是5次单项式D.多项式2ax+的次数是2D解析:D【分析】根据整式的相关概念可得答案.【详解】A、0是单项式,故A错误;B、25Rπ的系数是5π,故B错误;C、322a是2次单项式,故C错误;D、多项式2ax+的次数是2,故D正确.故选:D.【点睛】本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数.13.代数式21ab-的正确解释是()A.a与b的倒数的差的平方B.a与b的差的平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差D解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】解:代数式21ab-的正确解释是a的平方与b的倒数的差.故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.14.下列关于多项式21ab a b--的说法中,正确的是()A.该多项式的次数是2 B.该多项式是三次三项式C.该多项式的常数项是1 D.该多项式的二次项系数是1-B解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A、多项式21ab a b--次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误;故选:B .【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.15.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.1.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 2.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.3.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.-9【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键解析:-9.【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:2131x,2(1)79y .故答案为-9.【点睛】 本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键. 4.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b aba b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.5.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.990【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b )1的第三项系数为0(a+b )2的第三项的系数为:1(a+b )3的解析:990【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0,(a+b )2的第三项的系数为:1,(a+b )3的第三项的系数为:3=1+2,(a+b )4的第三项的系数为:6=1+2+3,…∴发现(1+x )3的第三项系数为:3=1+2;(1+x )4的第三项系数为6=1+2+3;(1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.6.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________. 6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.7.===,……=m=_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9【分析】n+=代入即可得出答案.13n+,将210【详解】解:==……,n+13n+=210n∴=8∴=+=m n19故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.8.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n +-解析:a n1【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n 排的座位数与第1排座位数的关系式的规律是解决本题的关键. 9.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.或【分析】由运算流程可以得出有两种情况当输入的x 为偶数时就有y=x 当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x 的值而得出结论【详解】解:由题意得当输入的数x 是偶数时则y=x 当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x 为偶数时就有y=12x ,当输入的x 为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x 的值而得出结论. 【详解】解:由题意,得当输入的数x 是偶数时,则y=12x ,当输入的x 为奇数时,则y=12(x+1). 当y=3时,∴3=12x 或3=12(x+1). ∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.10.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴== ∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=- 故答案为:-2【点睛】 本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.11.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示 解析:2248b k k+ 【分析】将已给的式子作恒等式进行变形表示a ,由于k≠0,先将式子左右同时除以(-4k ),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x )得,224b k a k=-- ∴224b a k k=+, ∴2224828b k b k a k k+=+=, 故答案为2248b k k+. 【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.1.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.若关于x,y的多项式my3+3nx2y+2y3-x2y+y不含三次项,求2m+3n的值.解析:-3.【分析】先合并同类项,根据已知得出m+2=0,3n-1=0,求出m、n的值后代入进行计算即可.【详解】my3+3nx2y+2y3-x2y+y=(m+2)y3+(3n-1)x2y+y,∵此多项式不含三次项,∴m+2=0,3n-1=0,∴m=-2,n=13,∴2m+3n=2×(-2)+3×13=-4+1=-3.【点睛】本题考查了合并同类项和解一元一次方程的应用,关键是求出m、n的值.3.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19=;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)请用上述计算103+105+107+…+2015+2017的值.解析:(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+, ∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n +, 故答案为:()22n +;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=21009-251=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+--- 2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+ 2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键.。

七年级数学上册 第三章 整式及其加减 第5节 探索与表达规律同步练习(含解析)北师大版

七年级数学上册 第三章 整式及其加减 第5节 探索与表达规律同步练习(含解析)北师大版

第三章 整式及其加减5 探索与表达规律1. 如图是xx 年1月份的日历,现用一个正方形在日历中任意框出4个数a bc d ,请用一个等式表示a ,b ,c ,d 之间的关系.解: 观察图可知,同一列相邻两数相差7,同一行相邻两数相差1,由此可知b =a +1,c =a +1,d =a +8.故可得出a +d =b +c .2. 观察下面几个算式,找出规律: 1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,1+2+3+4+5+4+3+2+1=25=52, …利用上面的规律,请回答问题:(1)1+2+3+…+99+100+99+…+3+2+1的值是多少? (2)你能算出1+2+3+…+100是多少吗?(3)你能推导出1+2+3+…+n 的计算公式吗?解:(1)1+2+3+…+99+100+99+…+3+2+1=1002=10 000.(2)1+2+3+…+100=12(1+2+3+…+100+99+…+3+2+1)+1002=12×1002+1002=5050.(3)1+2+3+…+n =12[1+2+3+…+(n -1)+n +(n -1)+…+3+2+1]+n 2=n 22+n2=n 2+n 2=n (n +1)2.3.在日历上任意选择2×2方格中的4个数,若最小的数为x ,则最大的数可表示为( D )A .x +7B .x +1C .x +2D .x +84.观察下列3个数:20+0.5,30+1,40+1.5,则第6个数是( D )B .52C .62.5D .735.已知一组数3,5,9,17,…,用代数式表示第n 个数为( C ) A .3+2n B .n 2+1 C .2n +1 D .不能确定6.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示.按照这样的规律,摆第(n )个图,需用火柴棒的根数为 __6n +2__.7.一组数23,45,67,89,…,按一定的规律排列着,请你根据排列规律,推测这组数的第10个数应为( B )A .1819B .2021C .2223D .24258.观察下列一组数:1,-2,3,-4,5,-6,7,-8,…,则第100个数是( B ) A .100 B .-100 C .101 D .-1019.礼堂第一排有a 个座位,后面每排都比前一排多一个座位,则第n 排座位个数是( A )A .a +(n -1)B .n +1C .a +nD .a +(n +1)10.将全体正奇数排成一个三角形数阵: 17 9 1113 15 17 1921 23 25 27 29…按照以上排列的规律,第25行第20个数是( A )A.639 B.637C.635 D.63311.将正整数1至2 018按一定规律排列如下表:1234567891011121314151617181920212223242526272829303132……平移表中带阴影的方框,方框中三个数的和可能是( D )A.2 019B.2 018C.2 016D.2 01312.把26个英语字母按“ABBBCCCCCDDDDDDD…”的顺序有规律排列,字母“F”出现的次数是__11__.13.观察下图,先填空,然后回答问题:(1)由上而下第10行,白球有__10__个;黑球有__19__个;(2)若第n行白球与黑球的总数记作y,则请你用含n的代数式表示y.14.观察下列图形中点的个数,若按其规律再画下去,可以得到第(n)个图形中所有的点的个数为__(n+1)2__(用含n的代数式表示).15.甲、乙两同学玩猜数游戏,甲说“你随便选定一个三位数,按如下的步骤做:(1)百位上的数字乘5;(2)结果加上5;(3)再乘2;(4)再加上十位上的数字;(5)乘10;(6)最后加上个位数字.只要你告诉我最后的结果,我便可以说出那个三位数.”乙同学试了几次,果真如此.请你指出甲同学是如何猜出这个三位数的,并用数学知识说明理由.解:只要将说出的三位数减去100就知道了.理由:设百位上的数字为a,十位上的数字为b,个位上的数字为c,则乙按步骤所得的三位数为10[2(5a+5)+b]+c,化简后为100a+10b+c+100,减去100就是原三位数.16.如图是由非负偶数排成的数阵:(1)写出图中“H”形框中七个数的和与中间数的关系;(2)在数阵中任意做一个这样的“H”形框,(1)中的关系是否仍成立?并写出理由;(3)用这样的“H”形框能框出和为2 023的七个数吗?如果能,求出这七个数中间的数;如果不能,请写出理由.解:(1)∵22+40+58+42+26+44+62=294=7×42,∴图中“H”形框中七个数的和是中间数的7倍.(2)成立.理由如下:设中间数为x,则其余六个数从小到大分别为x-20,x-16,x-2,x+2,x+16,x+20,∴x-20+x-16+x-2+x+2+x+16+x+20=7x,所以图中“H”形框中七个数的和是中间数的7倍.(3)不能,理由如下:2 023÷7=289.∵数阵中的数都是非负偶数,而289是奇数,∴不能框出和为2 023的七个数.。

部编数学七年级上册专题05整式中的两种规律探索问题(解析版)(人教版)含答案

部编数学七年级上册专题05整式中的两种规律探索问题(解析版)(人教版)含答案

专题05 整式中的两种规律探索问题类型一、数字类规律探索例.观察:(x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,据此规律,当(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=0时,代数式x 2019﹣1的值为 _____.【答案】0或﹣2【详解】解:根据题意得∶ (x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,……∴(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=x 6﹣1∵(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=0,∴x 6﹣1=0,解得:x =1或x =﹣1,则x 2019﹣1=0或﹣2,故答案为:0或﹣2.【变式训练1】a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为1-11-2=,-1的差倒数为111(1)2=--,已知15a =,2a 是1a 差倒数,3a 是2a 差倒数,4a 是3a 差倒数,以此类推……,2021a 的值是()A .5B .14-C .43D .45【答案】B【解析】∵15a = , 2a 是1a 的差倒数,∴211154a ==--,∵3a 是2a 的差倒数,4a 是3a 的差倒数,∴314151-4a ==æö-ç÷èø,∴415415a ==-,根据规律可得n a 以5,1-4,45为周期进行循环,因为2021=673×3…2,所以202114a =-.故选B .【变式训练2】有2021个数排成一行,对于任意相邻的三个数,都有中间数等于前后两数的和,如果第一个数是0,第二个数是1, 那么前6个数的和是______, 这2021个数的和是______.【答案】0 1【解析】由题意得:第3个数是101-=,第4个数是110-=,第5个数是011-=-,第6个数是101--=-,则前6个数的和是()()0110110++++-+-=,第7个数是1(1)0---=,第8个数是0(1)1--=,归纳类推得:这2021个数是按0,1,1,0,1,1--循环往复的,202163365=´+Q ,且前6个数的和是0,\这2021个数的和与前5个数的和相等,即为()011011++++-=,故答案为:0,1.【变式训练3】有一列数11315,,,,228432---,…,那么第n 个数为______.【答案】()12n nn-【详解】解:()11122-=-´,()221221242==-´,()3333182-=-´,()4414414162==-´,()55551322-=-´,……由此发现:第n 个数为()12n n n -.故答案为:()12n nn-【变式训练4】杨辉三角又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则()7a b +的展开式中从左起第三项为______.()1a b a b +=+()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++LL【答案】5221a b 【详解】解:根据题意,()7a b +=7652433425677213535217a a b a b a b a b a b ab b +++++++,∴()7a b +的展开式中从左起第三项为5221a b ,故答案为:5221a b .类型二、图形类规律探索例.如图,两条直线相交,有1个交点,三条直线相交最多有3个交点,四条直线相交最多有______个交点,n 条直线相交最多有______个交点.【答案】 6 (1)2n n -【详解】解: 如图,两条直线相交最多有1个交点,即()22112´-=;三条直线相交最多有3个交点,即()33132´-=;四条直线相交最多有6个交点,即()44162´-=,五条直线相交最多有10个交点,即()551102´-=,……∴n 条直线两两相交,最多有(1)2n n -个交点(n 为正整数,且n ≥2).故答案为6;(1)2n n -.【变式训练1】如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第_____个图形共有45个小球.【答案】9【详解】解:第1个图中有1个小球,第2个图中有3个小球,3=1+2,第3个图中有6个小球,6=1+2+3,第4个图中有10个小球,10=1+2+3+4,……n(1+n)个小球,照此规律,第n个图形有1+2+3+4+…+n=12n(1+n)=45,∴12解得n=9或-10(舍去),故答案为:9.【变式训练2】为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,则n的值为______.【答案】10【详解】解:由题可知:第n个图形有(6n+2)根火柴棒,第(n+1)个图形有(6n+8)根火柴棒,∵摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,∴6n+2+6n+8=130,解得n=10.故答案为:10.【变式训练3】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为___个,第n层含有正三角形个数为___个.n-【答案】114 126【解析】根据题意分析可得:从里向外的第1层包括6个正三角形,第2层包括18个正三角形,此后,每层都比前一层多12个,依此递推,第10层中含有正三角形个数是6+12×9=114个,则第n层中含有正三角形个数是6+12×(n-1)=126n-个,故答案为:114,126n-.【变式训练4】观察下列图形:它们是按一定规律排列的,依照此规律,用6064个五角星摆出的图案应该是第_______个图形.【答案】2021【解析】观察发现,第1个图形五角星的个数是:1+3=4,第2个图形五角星的个数是:1+3×2=7,第3个图形五角星的个数是:1+3×3=10,第4个图形五角星的个数是:1+3×4=13,⋯第n个图形五角星的个数是:1+3•n=1+3n,∵6064120213-=,∴用6064个五角星摆出的图案应该是第2021个图形,故答案为:2021.课后训练1.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n个图中有201张黑色正方形纸片,则n的值为( )A.99B.100C.101D.102【答案】B【详解】解:观察图形知:第一个图中有3=1+2×1个正方形,第二个图中有5=1+2×2个正方形,第三个图中有7=1+2×2个正方形,…故第n 个图中有1+2×n =2n +1=201(个)正方形,解得n =100故选B .2.如图,将若干颗棋子按箭头方向依次摆放,记第一颗棋子摆放的位置为第1列第1排,第二颗棋子摆放的位置为第2列第1排,第三颗棋子摆放的位置为第2列第2排……,按此规律摆放在第16列第8排的是第( )颗棋子.A .85B .86C .87D .88【答案】B 【详解】偶数列数与排数表:偶数列数排数22436485……n 12n +∴当n =16时,排数为:192n +=,∴前16列共有棋子:()9102123+-3=2-3=872´+++´…9(颗),∴第16列第8排的棋子位次是:87-1=86.故选B .3.将一正方形按如图方式分成n 个完全相同的长方形,上、下各横排三个,中间两行各竖排若干个,则n 的值为( )A .12B .16C .18D .20【答案】C 【详解】解:设长方形的长为a ,宽为b ,根据题意得,2a +2b =3a , 整理得,a =2b ,∴竖排的一行的长方形的个数为3a ÷b =(3×2b )÷b =6,∴n =3×2+6×2=6+12=18.故选:C .4.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .12【详解】解:设如图表所示:根据题意可得:x +6+20=22+z +y ,整理得:x -y =-4+z ,x +22+n =20+z +n ,20+y +m =x +z +m ,整理得:x =-2+z ,y =2z -22,∴x -y =-2+z -(2z -22)=-4+z ,解得:z =12,∴x +y =3z -24=12故选:D .5.如图,按此规律,第6行最后一个数字是_____,第_____行最后一个数是2020.【答案】16 674【详解】Q 每一行的最后一个数字分别是1,4,7,10 ,……,\第n 行的最后一个数字为:1+3(1)32n n -=-,\第6行最后一个数字为:36216´-=;322020n -=,解得:674n =,故答案为:16,674.6.如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M 的值为________.【详解】解:∵1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,∴右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),∴M =m (n +1),∴M =11×(12+1)=143.故答案为:143.7.为了求220211222+++¼+的值,可令220211222S =+++¼+,则220222222S =++¼+,因此2022221S S -=-,所以220212022122221+++¼+=-.按照以上推理计算出1220211333---+++¼+的值是______.【答案】2021332--【详解】解:令1220211333S ---=+++¼+,则1220212022133333S ----=++¼++,因此20221313S S --=-,则20222313S --=-,得:2021332S --=,所以20211220213313332-----+++¼+=.故答案为:2021332--.8.今年“10.1”黄金周,适逢祖国70大庆,广西柳州赛长桌宴,民族风情浓郁,吸引了大量游客如果长桌宴按下图方式就坐(其中□代表桌子,〇代表座位),则拼接n (n 为正整数)张桌子时,最多可就坐_____人.【答案】(6n +2)【详解】解:根据图示知,拼1张桌子,可以坐(2+6)人.拼2张桌子,可以坐[2+(6×2)]人.拼3张桌子,可以坐[2+(6×3)]人.…拼接n (n 为正整数)张桌子,可以坐(6n +2)人.故答案是:(6n +2).9.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7136147´-´=,172316247´-´=,不难发现,结果都是7.2012年8月日一二三四五六12345678910111213141516171819202122232425262728293031(1)请你再选择两个类似的部分试一试,看看是否符合这个规律;(2)换一个月的月历试一下,是否有同样的规律?(3)请你利用整式的运算对以上的规律加以证明.【答案】(1)111710187´-´=,符合;(2)392107´-´=;(3)见解析【详解】解:(1)由题意得:111710187´-´=,符合;(2)392107´-´=;答:换一个月的月历试一下还是同样的规律;(3)设上边第一个数为x ,则其后的数为(x +1),第二行的两个数分别为(x +7),(x +8),根据题意,得22(1)(7)(8)8787x x x x x x x x ++-+=++--=.10.(1)你知道下面每一个图形中各有多少个小圆圈吗?第5个图形中应该有多少个小圆圈?为什么?(2)完成下表:边上的小圆圈数12345每个图中小圆圈的总数(3)如果用n 表示六边形边上的小圆圈数,m 表示这个六边形中小圆圈的总数,那么m 和n 的关系是什么?【答案】(1)第1个图形:1个;第2个图形:7个;第3个图形:19个;第4个图形:37个;第5个图形:61个,理由见解析;(2)1,7,19,37,61;(3)2331m n n =-+【详解】(1)观察每个图形的特点,就可以算出第1个图形的小圆圈有1个,第2个图形的小圆圈有2+3+2=7个,第3个图形的小圆圈有3+4+5+4+3=19个,第4个图形的小圆圈有4+5+6+7+6+5+4=37个,由此可推知第5个图形的小圆圈有5+6+7+8+9+8+7+6+5=61个;(2)将(1)算出的结果填入下列表格,如下表所示,边上的小圆圈数12345每个图中小圆圈的总数17193761(3)结合(1)(2)可知,m 与n 之间的函数关系为:()()()()()1...212...1m n n n n n n n n n n=+++++-++-++-++++首尾相加得()()21...(2)1m n n n n n n =+++++-++-éùëû()()21322213312n n n n n --=+-=-+2331m n n =-+.11.对任意一个四位正整数m ,如果m 的百位数字等于个位数字与十位数字之和,m 的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m 为“筋斗数”.例如:m =5321,满足1+2=3,2×2+1=5,所以5321是“筋斗数”.例如:m =8523,满足2+3=5,但2×2+3=7≠8,所以8523不是“筋斗数”.(1)判断9633和2642是不是“筋斗数”,并说明理由;(2)若m 是“筋斗数”,且m 与13的和能被11整除,求满足条件的所有“筋斗数”m .【答案】(1)9633是“筋斗数”;2642不是“筋斗数”; 理由见解析(2)m 的值为9909或2110或6422【解析】(1)解:9633是“筋斗数”,2642不是“筋斗数”,理由如下:∵6=3+3,9=2×3+3,∴9633是“筋斗数”;∵6=4+2,28+2¹,∴2642不是“筋斗数”;(2)设m 的个位数为a ,0≤a ≤9,十位数为0<b ≤9,且a 、b 为整数∵m 是“筋斗数”,∴m 的百位数为a +b ,千位数为2b +a ;∴m =1000(2b +a )+100(a +b )+10b +a =1100a +110b +2000b +a∵m 与13的和能被11整除,∴1100a +110b +2000b +a +13能被11整除,∵2b +a ≤9且a 、b 为整数,∴b ≤4.5∵1100a +110b 能被11整除,∴2000b +a +13能被11整除,∴b =0,a =9或b =1,a =0或b =2,a =2或b =3,a =4,或b =4,a =6,∴a +b =9,2b +a =9或a +b =1,2b +a =2或a +b =4,2b +a =6或a +b =7,2b +a =10(舍去)或a +b =10,2b +a =14(舍去),∴m 的值为9909或2110或642212.看图填空:如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的长方形,再把面积为14的长方形等分成面积为18的长方形,如此进行下去……(1)试利用图形揭示的规律计算:1111111112481632641282562n ++++++++L =_______.并使用代数方法证明你的结论.(2)请给利用图(2),再设计一个能求:2341111122222n +++++L 的值的几何图形.【答案】(1)112n - ,证明见解析;(2)见解析【解析】(1)解:①由题意可知当最后一个小长方形的面积为12n时 ,1111111112481632641282562n ++++++++L 的值为正方形面积减去最后一个小长方形面积,即:112n - ,1111111111124816326412825622n n \++++++++=-L ;②设1111111112481632641282562n s =++++++++L ,111111111212481632641282n s -=++++++++L ,1212n s s \-=-,即112ns =-,1111111111124816326412825622n n \++++++++=-L ;(2)如图所示,将面积为1的正方形等分成两个面积为12的三角形,接着把面积为12的三角形等分成两个面积为14的三角形,再把面积为14的三角形等分成面积为18的三角形,如此进行下去,则2341111122222n +++++L 的值即为正方形面积减去最后一个小三角形面积:112n -。

人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

华东师大版七年级数学上册第三章 整式的加减 专题训练试题(含答案)

华东师大版七年级数学上册第三章  整式的加减  专题训练试题(含答案)

华东师大版七年级数学上册第三章整式的加减专题训练试题专题(一)整式的化简与求值1.已知有理数a,b,c 在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是()A .a+cB .c-aC .-a-cD .a+2b-c2.有理数a,b 在数轴上的位置如图所示,则化简式子|a+b|+a 的结果是______.3.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x-7的值为______.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于______.5.计算:(1)6a 2+4b 2-4b 2-7a 2;(2)(8a-7b)-(4a-5b);(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);(5)3x 2-[5x-(12x-3)+3x 2].6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;(3)2(a 2b-ab 2)-3(a 2b-1)+2ab 2+1,其中a=2,|b+1|=0.8.若单项式3x 2y 5与-2x1-a y 3b-1是同类项,求下面代数式的值:5ab 2-[6a 2b-3(ab 2+2a 2b)].9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=______;(2)因为b_____0,-b_____0,所以|b|=_____;|-b|=_____;(3)因为1+a_____0,所以|1+a|=_____;(4)因为1-b<_____,所以|1-b|=_____=_____;(5)因为a+b>0,所以|a+b|=_____;(6)因为a-b_____0,所以|a-b|=_____=_____.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.13.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2020.”小明做题时把“x =2020”错抄成了“x =-2020”.但他计算的结果却是正确的,请你说明这是什么原因?14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是()A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.83.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6D.3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是()A.1009+1010+…+3026=20172B.1009+1010+…+3027=20182C.1010+1011+…+3028=20192D.1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_____.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是_____粒.7.按规律写出空格中的数:-2,4,-8,16,_____,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是_____.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是_____.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为_____.11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.参考答案专题(一)整式的化简与求值1.已知有理数a,b,c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是(A)A.a+c B.c-a C.-a-c D.a+2b-c 2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.若多项式2x2+3x+7的值为10,则多项式6x2+9x-7的值为2.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于3.5.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)(8a-7b)-(4a-5b);解:原式=8a-7b-4a+5b =4a-2b.(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);解:原式=-12x 2y+xy 2+12x 2+13x 2+13x 2y+13xy2=-16x 2y+56x 2+43xy 2.(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);解:原式=2x 3-4y 2-x+2y-x+3y 2-2x 3=-y 2-2x+2y.(5)3x 2-[5x-(12x-3)+3x 2].解:原式=3x 2-(5x-12x+3+3x 2)=3x 2-5x+12x-3-3x2=-92x-3.6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x 2-2x+1+2(2x 2-6x+3)=x 2-2x+1+4x 2-12x+6=5x 2-14x+7.(2)2A-B=2(x 2-2x+1)-(2x 2-6x+3)=2x 2-4x+2-2x 2+6x-3=2x-1.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;解:原式=-x 2+12x-2-12x+1=-x 2-1.当x=12时,原式=-(12)2-1=-54.(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;解:原式=-2ab+3a-4a+2b+2ab=-a+2b.当a=3,b=1时,原式=-3+2=-1.(3)(安阳期末)2(a2b-ab2)-3(a2b-1)+2ab2+1,其中a=2,|b+1|=0.解:原式=2a2b-2ab2-3a2b+3+2ab2+1=-a2b+4.因为a=2,|b+1|=0,即b=-1,所以原式=-22×(-1)+4=4+4=8.8.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2,3b-1=5.解得a=-1,b=2.原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.解:原式=-3a2+8ab-3b2=-3(a2+b2)+8ab,因为a2+b2=6,ab=-2,所以原式=-3×6+8×(-2)=-34.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b<0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b<0,所以|a-b|=-(a-b)=b-a.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.解:由数轴知,a<b<0<c,且|b|<|c|,所以b+c>0,a-c<0,a+b<0.所以原式=2(b+c)-[-3(a-c)]-[-4(a+b)]=2b+2c+3(a-c)+4(a+b)=2b+2c+3a-3c+4a+4b=6a+6b-c.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.解:2mx2-x2+5x+8-(7x2-3y+5x)=2mx2-x2+5x+8-7x2+3y-5x=(2m-8)x2+3y+8.因为此多项式的值与x无关,所以2m-8=0,解得m=4.m2-[2m2-(5m-4)+m]=m2-(2m2-5m+4+m)=-m2+4m-4,当m=4时,原式=-42+4×4-4=-4.13.有一道题“先化简,再求值:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3,其中x=2020.”小明做题时把“x=2020”错抄成了“x=-2020”.但他计算的结果却是正确的,请你说明这是什么原因?解:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3=17x2-8x2-5x-4x2-x+3+5x2+6x-1-3=10x2-1.因为当x=2020和x=-2020时,x2的值不变,所以他计算的结果是正确的.14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),(10b+a)-(10a+b)=10b+a-10a-b=9b-9a=9(b-a),因为a,b都是整数,所以a-b,b-a也是整数.所以这两个数的差一定是9的倍数.专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是(D )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是(A )A .0B .1C .7D .83.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为(D )A .3nB .6nC .3n+6D .3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是(C )A .1009+1010+…+3026=20172B .1009+1010+…+3027=20182C .1010+1011+…+3028=20192D .1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是(2n+1)粒.7.按规律写出空格中的数:-2,4,-8,16,-32,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是13a+21b.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有6058个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2019个单项式是-4037x2019,第2020个单项式是4039x2020.。

2.1 整式-探索规律问题 人教版数学七年级上册专项练习(含答案)

2.1 整式-探索规律问题 人教版数学七年级上册专项练习(含答案)

2023年人教版数学七年级上册《探索规律问题》专项练习一、选择题1.小王利用计算机设计了一个计算程序,输入和输出的数据如表:输入…12345…输出……那么,当输入数据为8时,输出的数据为( )A. B. C. D.2.找出以如图形变化的规律,则第20个图形中黑色正方形的数量是( )A.28B.29C.30D.313.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为( )A.2998B.3001C.3002D.30054.观察图并寻找规律,x处填上的数字是( )A.﹣136B.﹣150C.﹣158D.﹣1625.将一个边长为1的正方形按如图所示的方法进行分割:部分①是整个正方形面积通过计算此图形中部分①、部分②、部分③…的面积之和,可得到式子12+14+18+…的近似值为()A.0.5B.1C.2D.46.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为22024的末位数字是( )A.2B.4C.6D.87.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n 边形“扩展”而来的多边形的边数为( )A.n(n ﹣1)B.n(n +1)C.(n +1)(n ﹣1)D.n 2+28.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250,251,252,…,299,2100.若250=a ,用含a 的式子表示这组数的和是( )A.2a 2-2aB.2a 2-2a -2C.2a 2-aD.2a 2+a9.已知一组数a 1,a 2,a 3,…,a n ,…,其中a 1=1,对于任意的正整数n ,满足a n +1a n +a n +1﹣a n =0,通过计算a 2,a 3,a 4的值,猜想a n 可能是( )A.1n B.nC.n 2D.110.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A.12B.14C.16D.18二、填空题11.用●表示实心圆,用○表示空心圆,现有若干个实心圆与空心圆,按一定的规律排列如下:●○●●○●●●○●○●●○●●●○●○●●○●●●○…,在前2029个圆中,有 个实心圆.12.下图是某同学一次旅游时在沙滩上用石子摆成的小房子.观察图形的变化规律,写出第n个小房子用了块石子.13.下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出 个“树枝”.14.有一串式子:﹣x,2x2,﹣3x3,4x4,…,﹣19x19,20x20,… ,写出第n个 .15.按下列图示的程序计算,若开始输入的值为x=﹣6,则最后输出的结果是 .16.观察下列各正方形图案,每条边上有n(n≥2)个圆点,每个图案中圆点的总数是s,按此规律推断出s与n的关系为 .17.如图,将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪裁成四个小正方形,如此继续下去,…,根据以上操作方法,请你填写表:操作次数N 12345…n 正方形的个数47101316…a n则a n = (用含n 的代数式表示).18.如图是用小棒按一定规律摆成的一组图案,第1个图案中有5根小棒,第2个图案中有9个小棒,…,若第n 个图案中有65根小棒,则n 的值为 .三、解答题19.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n 个最小的连续偶数相加时,它们的和S 与n 之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.20.下面的图形是由边长为l 的正方形按照某种规律排列而组成的.(1)观察图形,填写下表:图形①②③正方形的个数8 图形的周长18 (2)推测第n个图形中,正方形的个数为 ,周长为 (都用含n的代数式表示).(3)这些图形中,任意一个图形的周长y与它所含正方形个数x之间的关系可表示为y = .21.用火柴棒摆出下列一组图形:(1)填写下表:图形编号123图形中的火柴棒数 (2)照这样的方式摆下去,写出摆第n个图形中的火柴棒数;(用含n的代数式表示)(3)如果某一图形共有2027根火柴棒,你知道它是第几个图形吗?22.观察下列等式:13+23=3213+23+33=6213+23+33+43=102…(1)根据观察得到规律写出:13+23+33+43+53= .(2)根据观察得到规律写出13+23+33+43+…+1003= .(3)13+23+33+43+53+…+n3= .23.阅读材料:求1+2+22+23+24+…+22023的值.解:设S=1+2+22+23+24+…+22022+22023,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22023+22024将下式减去上式得2S﹣S=22024﹣1即S=22024﹣1即1+2+22+23+24+…+22023=22024﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).答案1.C2.C.4.D.5.B.6.C.7.B.8.C9.A10.C11.答案为:1353.12.答案为:(n2+4n).13.答案为:80.14.答案为:(﹣1)n nx n .15.答案为:120.16.答案为:S=4(n﹣1).17.答案为:1+3n.18.答案为:16.19.解:(1))∵1个最小的连续偶数相加时,S=1×(1+1),2个最小的连续偶数相加时,S=2×(2+1),3个最小的连续偶数相加时,S=3×(3+1),…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+ (400)=(2+4+6+…+400)﹣(2+4+6+…+160),=200×201﹣80×81,=40200﹣6480,=33720.20.解:(1)∵n=1时,正方形有8个,即8=5×1+3,周长是18,即18=10×1+8;n=2时,正方形有13个,即13=5×2+3,周长是28,即28=10×2+8;n=3时,正方形有18个,即18=5×3+3,周长是38,即38=10×3+8;(2)由(1)可知,n=n时,正方形有5n+3个,周长是10n+8.(3)∵y=10n+8,x=5n+3,∴y=2x+2.21.解:(1)第一个图形中火柴棒数=2+5=7,第二个图形中火柴棒数=2+5+5=12,第三个图形中火柴棒数=2+5+5+5=17;故答案为:7;12;17;(2)由(1)的规律可知第n个图形的火柴棒根数=2+5n;(3)由题意可知2027=2+5n,解得n=407,∴是第402个图形.22.解:(1)依题意,得13+23+33+43+53=(1+2+3+4+5)2=152=225;(2)依题意,得13+23+33+…+1003=(1+2+3+…+100)2=50502;(3)一般规律为:13+23+33+…+n3=(1+2+3+…+n)2=[]2.故答案为225;50502;[]2.23.解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得:2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n①,两边同时乘以3得:3S=3+32+33+34+…+3n+3n+1②,②﹣①得:3S﹣S=3n+1﹣1,即S=12(3n+1﹣1),则1+3+32+33+34+…+3n=12(3n+1﹣1).。

初一数学整式试题答案及解析

初一数学整式试题答案及解析

初一数学整式试题答案及解析1.若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的平均数是()A.B.C.D.【答案】D.【解析】因为m个数的平均数x,则m个数的总和为mx;n个数的平均数y,则n个数的总和为ny;然后求出m+n个数的平均数为:.故选D.【考点】加权平均数.2.若,则若则【答案】-4,18【解析】由得,则;由,.【考点】有理指数幂运算.3.观察下列各式:32-12=4×2,102-82=4×9,172-152=4×16…你发现了什么规律?(1)试用你发现的规律填空:352-332=4×,642-622=4×.(2)请你用含一个字母n(n≥1)的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.【答案】(1)32,64;(2),说明见解析.【解析】(1)观察一系列等式,得到规律,填写即可.(2)归纳总结得到一般性规律,证明即可.试题解析:(1).(2)可以得出规律:,说明如下:∵左边=,右边=4n+4,∴.【考点】1.探索规律题(数字的变化类);2.平方差公式.4.如图,两个正方形的边长分别为和,如果a+b=10,ab=20,那么阴影部分的面积是()A.B.C.D.【答案】B【解析】S阴影部分=S△BCD+S正方形CEFG﹣S△BGF=•a•a+b2﹣•b•(a+b)=a2+b2﹣ab﹣b2= [(a2+b2)﹣ab]= [(a+b)2﹣3ab],= [102﹣3×20]=20.当a+b=10,ab=20时,S阴影部分故选B.【考点】整式的混合运算.5.多项式3ma2-6mab的公因式是.【答案】3ma.【解析】3ma2-6mab中,3与6的公因式是:3,ma2与mab的公因式是:ma,∴多项式3ma2-6mab的公因式是:3ma.故答案是3ma.【考点】公因式.6.先化简,再求值:(2x+1)(x-2)-(2-x)2, 其中x=-2.【答案】-4.【解析】先化简原式,利用整式的乘法和加法,再代入x=-2求值即可.原式=2x2-3x-2-4+4x-x2=x2+x-6当x=-2时,原式=(-2)2+(-2)-6=-4.【考点】整式的混合运算—化简求值.7.若,,则____________;【答案】7【解析】根据完全平方公式以及整体代换的思想即可得出答案观察题目,联想到完全平方公式.∵,∴两边平方得:(1),又∵,∴整体代入(1)式得:【考点】1.完全平方公式;2.整体代换思想.8.已知则。

七年级上册数学 第二章 整式的加减 训练题 (6)-0725(含答案解析)

七年级上册数学 第二章 整式的加减 训练题 (6)-0725(含答案解析)

七年级上册数学 第二章 整式的加减 训练题 (6)一、单选题1.在代数式12x y -,5a ,223x y -+,1π,xyz ,5y -,3x y z +-中有( )A .5个整式B .4个单项式,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式个数相同2.如图,题中图形是用棋子按照一定规律摆成的,按照这种摆法,第n 个图形中共有棋子( )A .2n 枚B .(n 2+1)枚C .(n 2-n )枚D .(n 2+n )枚 3.下列各代数式中与代数式(3)a b c --的值相等的是( )A .(3)a b c +-+B .(3)a b c +-C .(3)a b c ++D .(3)a b c +--4.和谐公园内有一段长方形步道,它由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道地砖的排列方式,若正方形地砖为连续排列且总共有40块,则这段步道用了白色等腰直角三角形地砖( )A .80块B .81块C .82块D .84块5.由点组成的正方形,每条边上的点数n 与总点数s 的关系如图所示,则当n =50时,计算s 的值为( )A .196B .200C .204D .1986.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .85 7.若长方形的周长为6m ,其中一边长为m n +,则另一边的长为( ) A .2m n +B .42m n -C .3m n +D .2m n -8.下列图形都是由同样大小的“〇”按照一定规律所组成的,其中第①图形有3个“〇”,第②个图形有8个“〇”,第③个图形有15个“〇”,…按此规律排列下去,则第⑥个图形中“〇”的个数为( )A .35B .42C .48D .639.下列说法错误的是( )A .单项式235x y的系数是35B .单项式3a 2b 2的次数是4C .多项式a 3﹣1的常数项是1D .多项式4x 2﹣3是二次二项式10.一个自然数的n 次方(n =1,2,3,……)的末位数字是按照一定规律变化的.末位数字0,1,2,3,4,5,6,7,8,9的n 次方后的末位数字如表所示. 末尾数字n 次方 01234567891次方 01234567892次方 0 1 4 9 6 5 6 9 4 13次方 0 1 8 7 4 5 6 3 2 94次方 0 1 6 1 6 5 6 1 6 1 5次123456789方 6次方 01496569417次方 0 1 8 7 4 5 6 3 2 98次方 0 1 6 1 6 5 6 1 6 19次方 0 1 2 3 4 5 6 7 8 910次方 0 1 4 9 6 5 6 9 4 1 …………………………………………………………那么20132019的末位数字是( ) A .1B .9C .3D .711.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需( )根火柴.A .156B .157C .158D .159 12.一个两位数的个位数字是a ,十位数字是b ,这个两位数用代数式表示为( )A .a+bB .a-bC .10a+bD .10b+a二、填空题13.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为_____.14.单项式13xy -的系数是________________,次数是_______________. 15.单项式3213ab c π-的系数是___________,多项式3239a b a -+-是_________次三项式16.一个两位数,个位上的数字是a ,十位上的数字是b ,把个位和十位上的数对调得到一个新的两位数,则原来的两位数与新两位数的差为_____. 17.按下图规律,在第四个方框内填入的数应为___________.18.观察下列图形的构成规律,按此规律,第20个图形中棋子的个数为_________.19.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.20.如图1,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”的图案,如图2所示,再将剪下的两个小长方形无缝隙无重叠的拼接成一个新的长方形,如图3所示,则新长方形的周长.......为______.用含a ,b 的代数式表示)A .59a b -B .11212a b -C .45a b -D .58a b -三、解答题21.定义:任意两个数a 、b ,按规则c =a +b ﹣ab 扩充得到一个新数c ,称所得的新数c 为“如意数”.(1)若a =2,b =﹣3,直接写出a 、b 的“如意数”c ;(2)若a =2,b =x 2+1,求a 、b 的“如意数”c ,并比较b 与c 的大小;(3)已知a =2,且a 、b 的“如意数”c =x 3+3x 2﹣1,则b = (用含x 的式子表示). 22.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题化简求值:()222313a a b b a ---★ 其中★为不等于零的任意数,1,2019a b =-=.(1)令1=★,求原式的值.(2)老师补充说:“若给的条件2019b =是多余的,这道题不给b 的值,照样可以求出结果来.”亲爱的同学,你们能算出★值吗?说明你的理由.23.已知m 、x 、y 满足:(1)﹣2ab m 与4ab 3是同类项;(2)(x ﹣5)2+|y ﹣23|=0. 求代数式:2(x 2﹣3y 2)﹣3(2223x y m --)的值.24.先化简,再求值已知|x ﹣2|+(y +1)2=0,求2x 2﹣[5xy ﹣3(x 2﹣y 2)]﹣5(﹣xy +y 2)的值. 25.先化简,再求值:2222(22)[2(1)32]a b ab a b ab +--++,其中a=2 , b=-2 26.化简:(1)()()22231322x x x x -+--- (2)22225321mn m n mn m n +--- 27.先化简再求值: ()1232ab a b b ab ⎛⎫-+-+⎪⎝⎭,其中25a b +=-. 28.观察下列等式的规律11111111111141112233445223344555+++=-+-+-+-=-=⨯⨯⨯⨯请用上述等式反映出的规律解决下列问题: (1)请直接写出111111223344520192020++++⋅⋅⋅+⨯⨯⨯⨯+的值为 . (2)化简:()11111122334451n n ++++⋅⋅⋅+⨯⨯⨯⨯⨯+【答案与解析】一、单选题 1.D 解析:D对每个代数式分析即可得出答案.5a ,xyz ,1π是单项式,也是整式;12x y -, 223x y -+, 3x y z +-是多项式,也是整式;5y -既不是单项式,也不是多形式.故选D. 【点睛】本题考查了单项式和多项式的有关概念,单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和;多项式的次数是多项式中次数最高的项的次数.解决本题的关键是熟练掌握单项式和多项式的概念和联系.2.D解析:D观察每个图形中棋子的个数的规律即可发现有关棋子个数的通项公式,从而得到答案. 第一个图形中有1×2=2个棋子, 第二个图形中有2×3=6个棋子, 第三个图形中有3×4=12个棋子, …∴第n 个图形中共有n (n+1)=(n 2+n )个棋子, 故选:D . 【点睛】本题是对图形变化规律的考查,难度中等,发现棋子的规律是解题的关键.3.A解析:A根据去括号和添括号的法则求解即可. 解:原式=a-b+3c,A 、a+(-b+3c )=a-b+3c ,相等,正确;B 、a+(b-3c )=a+b-3c ,不相等,正确;C 、(3)a b c ++=a+b+3c ,不相等,错误;D 、a+(-b-3c )=a-b-3c ,不相等,错误;故选:A.【点睛】本题考查了去括号和添括号的知识,注意掌握去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.4.D解析:D通过图形可以得到规律,中间一个正方形对应两个等腰直角三角形,加上两边的,从而得到三角形的数量.解: 通过图形可以看出一个灰色正方形地砖对应两个白色等腰直角三角形地砖,左边额外有三块等腰直角三角形地砖,右边有一块等腰直角三角形地砖,由题意得:3+40×2+1=84答:这段步道用了白色等腰直角三角形地砖为84块.故选 D【点睛】此题主要考查了图形的规律问题,正确总结归纳规律是解题的关键.5.A解析:A观察可得规律:n每增加一个数,s就增加四个.解:由题意得:n=2时,s=4=1×4;n=3时,s=8=2×4;n=4时,s=12=3×4;…;n=50时,s=(50﹣1)×4=196.故选:A.【点睛】本题考查根据图形找规律,根据图形特点找到排布规律是解答本题的关键.6.D解析:D观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n+++n2,根据规律求解.通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4,第二个图形为:()1332+⨯+22=10,第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31,…,所以第n个图形为:()()122n n+++n2,当n=7时,()()72712+++72=85,故选:D.【点睛】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.7.D解析:D由长方形周长=2×(长+宽),求出另一边的长即可.解:根据题意,得:另一边的长为:62m m n-(+)2=42m n-2=2m-n故选:D【点睛】本题结合长方形周长考查多项式的加减法和去括号法则,根据题意列出整式是解题的关键.8.C解析:C设第n个图形有a n个“〇”(n为正整数),观察图形,根据各图形中“〇”个数的变化可得出变化规律“a n=n(n+2)(n为正整数)”,再代入n=6即可求出结论.解:设第n个图形有a n个“〇”(n为正整数),观察图形,可知:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,∴a n=n(n+2)(n为正整数),∴a6=6×8=48.故选:C.【点睛】本题考查了规律型-图形的变化类,根据各图形中“〇”个数的变化找出变化规律“a n=n (n+2)(n为正整数)”是解题的关键.9.C解析:C利用单项式系数、次数定义,多项式项与次数定义判断即可.解:A、单项式235x y的系数是35,不符合题意;B、单项式3a2b2的次数是4,不符合题意;C、多项式a3﹣1的常数项是﹣1,符合题意;D、多项式4x2﹣3是二次二项式,不符合题意,故选:C.【点睛】本题考查了单项式系数、次数定义,多项式项与次数定义,掌握单项式系数、次数定义,多项式项与次数定义是解题的关键.10.D解析:D根据表格中的数据和所求的数据,可以发现所求数据n次方后末位数字的变化规律,从而可以解答本题.∵2013的末尾数字是3,末位数字是3的n次方后的末位数字为:3,9,7,1,3,9,7,1…,2019÷4=504…3,∴20132019的末位数字是7.故选:D.【点睛】本题考查了规律:数字的变化类,解答本题的关键是明确题意,发现题目中末位数字的变化规律,求出相应数字的末位数字.11.B解析:B根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.“点睛”此题主要考查图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.12.D解析:D依据两位数=10×十位数字+个位数字即可解答.这个两位数可表示为:10b+a.故选:D.【点睛】此题考查列代数式问题,解决问题的关键是读懂题意,找到所求的量的等量关系.二、填空题13.{解析}根据三个相邻格子的整数的和相等列式求出ac的值再根据第9个数是3可得b=2然后找出格子中的数每3个为一个循环组依次循环再用2018除以3根据余数的情况确定与第几个数相同即可得解∵任意三个相邻解析:-1{解析}根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(−1),3+(−1)+b=−1+b+c,∴a=−1,c=3,∴数据从左到右依次为3、−1、b、3、−1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、−1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为−1.故答案为:−1.【点睛】此题考查数字的变化规律以及有理数的加法,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.14.{解析}根据单项式的系数是指单项式中的数字因数指数是指所有字母指数之和进行求解即可单项式的数字因数是所有字母指数和为1+1=2所以单项式的系数是次数是2故答案为:;2【点睛】本题考查了单项式的系数与解析:13-{解析}根据单项式的系数是指单项式中的数字因数,指数是指所有字母指数之和进行求解即可.单项式13xy-的数字因数是13-,所有字母指数和为1+1=2,所以单项式13xy-的系数是13-,次数是2,故答案为:13- ;2.【点睛】本题考查了单项式的系数与次数,熟练掌握单项式的系数与次数的求解方法是解题的关键. 15.四 解析:13π- 四 根据单项式的系数的定义,以及多项式的项的定义求解. 解:单项式3213ab c π-的系数是13π-,多项式3239a b a -+-是四次三项式, 故答案为:13π-,四. 【点睛】本题考查了单项式的系数的定义,以及多项式的项的定义,是一个基础题. 16.9b-9a解析:9b-9a设十位数字为b ,个位数字为a ,调换后新的两位数个位b ,十位为a ,根据数位知识列出原来的和对调后的两位数,再根据题意列式计算.解:设十位数字为b ,个位数字为a ,则原来的数表示为:10b+a ;调换后新的两位数个位b ,十位为a ,则表示为:10a+b ;则原数与新数的差为:10b+a ﹣(10a+b )=9(b ﹣a )=9b-9a .故答案为:9b-9a【点睛】本题考查数位问题,用个位、十位数字表示两位数是解答此题的关键.17.-260解析:-260.观察发现:1×2×(3+4)=14,2×3×(4+5)=54,由此即可确定第四个方框内填入的数. 解:∵1×2×(3+4)=14,2×3×(4+5)=54,∴第四个方框内填入的数应为-4×5×(6+7)=-260.故答案为-260.18.61解析:61根据各个图形中棋子的个数,找出棋子的变化规律,并归纳公式即可得出结论. 解:第1个图形中棋子的个数为4=3+1;第2个图形中棋子的个数为7=3×2+1;第3个图形中棋子的个数为10=3×3+1;∴第n 个图形中棋子的个数为3n +1∴第20个图形中棋子的个数为3×20+1=61故答案为:61.【点睛】此题考查的是探索规律题,找出规律并归纳公式是解决此题的关键.19.{解析}根据题意列出算式利用整式的加减混合运算法则计算出结果解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为:2m2+3m-解析:2234m m +-{解析}根据题意列出算式,利用整式的加减混合运算法则计算出结果.解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为:2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.20.A解析:A根据题目中的图形,可以用含a 、b 的代数式表示出新长方形的周长.解:由图可得,新长方形的周长是:{[(a-b )+(a-2b )]+(a-3b )×12}×2 =(2a-3b+12a-32b )×2 =(52a −92b )×2 =59a b -,故选:A.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.三、解答题21.(1)5;(2)b ≥c ;(3)﹣x 3﹣3x 2+3(1)将已知a 、b 的值直接代入c=a+b-ab 即可;(2)将已知a 、b 的值直接代入c=a+b-ab ,利用作差法比较b 、c 的大小;(3)将c 、a 的值代入c=a+b-ab 即可求b .(1)将a =2,b =﹣3代入c =a +b ﹣ab ,∴c =2﹣3+6=5;(2)将a =2,b =x 2+1代入c =a +b ﹣ab ,∴c =2+x 2+1﹣2(x 2+1)=1﹣x 2,∵b ﹣c =x 2+1﹣1+x 2=2x 2≥0,∴b ≥c ;(3)由c =a +b ﹣ab ,a =2,∴x 3+3x 2﹣1=2+b ﹣2b =2﹣b ,∴b =﹣x 3﹣3x 2+3;【点睛】本题考查整式的运算;熟练掌握整式的加法与减法运算法则,代数式的求值方法是解题关键.22.(1)2015;(2)32,见解析 (1)去括号,合并同类项,代入数据计算即可;(2)设x =★,把1a =-代入,化简,令b 的系数为0,即可求解.(1)()222313a a b b a ---★ 222331a b b a a =-+-231a a b +-=把1a =-,2019b =代入,∴原式()()212019311=-⨯+⨯-- 201931=--2015=(2)设x =★,并把1a =-代入得,()222313a a b b a ---★223(1)2(1)31b a b x ⨯-⎡⎤=--⎣⎦-- (32)13x b x =---∵条件2019b =是多余的,即与b 的取值无关,∴320x -=, 解得:32x =, 故32=★. 【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.注意理解代数式的值与字母的取值无关,说明此项的系数为0.23.233{解析}试题分析:由同类项的定义可得m 的值,由非负数之和为0,非负数分别为0可得出x 、y 的值,代入所求式子中计算即可得到结果.试题解析:∵﹣2ab m 与4ab 3是同类项,(x ﹣5)2+|y ﹣23|=0, ∴m=3,x=5,y=23, 则原式=2x 2﹣6y 2﹣2x 2+3y 2+3m=﹣3y 2+3m=﹣43+9=233. 24.5x 2﹣8y 2,12 先去括号、合并同类项化简原式,继而根据非负数的性质得出x ,y 的值,再将x ,y 的值代入计算可得.原式=2x 2﹣5xy +3(x 2﹣y 2)﹣5(﹣xy +y 2)=2x 2﹣5xy +3x 2﹣3y 2+5xy ﹣5y 2=5x 2﹣8y 2,因为|x ﹣2|+(y +1)2=0,所以x =2,y =﹣1,所以,原式=5×22﹣8×(﹣1)2=20﹣8=12.【点睛】本题考查了整式的加减,最后将非负性求得的值代入化简后的式子就可以求出结论.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.25.-ab 2,8本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把a ,b 的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:原式=2a 2b+2ab 2−(2a 2b−2+3ab 2+2)=2a 2b+2ab 2−2a 2b−3ab 2=−ab 2,当a=2,b=−2时,原式=−2×(−2)2=−826.(1)21258x x -++;(2)2241mn m n +-(1)原式去括号合并即可得到结果;(2)原式合并同类项即可得到结果.解:(1)()()22231322x x x x -+--- 2222626361258x x x x x x =-+-++=-++(2)22225321mn m n mn m n +---2241mn m n =+-【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.27.-2a-b ,5.试题分析:先去括号,合并同类项,然后代入求值即可.试题解析:解:原式=ab -2a +2b -3b -ab =-2a -b当2a +b =-5时,原式=-(2a +b )=-(-5)=5.28.(1)20192020;(2)1n n + (1)根据题目中的式子的特点和规律,代数即可求出式子的值;(2)找出题目中式子的特点和规律,根据规律即化简所求式子.解:(1)111111223344520192020+++++⨯⨯⨯⨯⨯ 1111111111223344520192020=-+-+-+-++- 211200=-20192020=故答案为:20192020. (2)()11111122334451n n ++++⋯+⨯⨯⨯⨯⨯+ 111111111122334451n n =-+-+-+-++-+ 111n =-+ 1nn =+【点睛】本题考查数字的变化类、有理数的混合运算、代数式的运算,明确题意,发现题目中式子的变化特点,求出所求式子的值是解题的关键.。

初一数学整式规律探索含答案

初一数学整式规律探索含答案

初一数学整式规律探索含答案规律探索中考要求内容基本要求略高要求较高要求。

学生需要根据特定的问题所提供的资料,合理选用知识和方法,通过代数式的适当变形求代数式的值。

同时,他们需要能够用整式的加减运算对多项式进行变形,进一步解决有关问题。

代式学生需要了解代数式的值概念并能求代数式的值。

他们还需要能根据代数式的值或特征,推断这些代数式反映的规律。

整式有关概念学生需要了解整式及其有关概念。

他们需要理解整式加减运算法则并能进行简单的整式加减运算。

重难点学生需要能根据图、表、数、式中的排列特征,探究其中蕴藏的数式规律。

课前预德国著名大科学家XXX(1777~1855)出生在一个贫穷的家庭。

XXX在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。

长大后,他成为当代最杰出的天文学家和数学家。

他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。

数学家们则称呼他为“数学王子”。

他八岁时进入乡村小学读书。

教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。

而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。

同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。

“你们今天替我算从1加2加3一直到100的和。

谁算不出来就罚他不能回家吃午饭。

”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好。

有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,XXX拿起了他的石板走上前去。

“老师,答案是不是这样?”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?XXX发现了一种计算级数1+2+3+。

(完整版)七年级数学整式的加减探索规律(习题及答案)

(完整版)七年级数学整式的加减探索规律(习题及答案)

探索规律(习题)➢例题示范例1:观察图1至图4中小圆圈的摆放规律,并按这样的规律继续摆放,记第n个图中小圆圈的个数为M,则M=__________(用含n的代数式表示).…图1 图2 图3 图4思路分析做图形规律的题,我们一般从两个方面来研究:(1)观察图形的构成.(2)转化.观察本题的图形,发现后面的图形总比前面的图形多3个小圆圈,可以采用分类的手段进行解决.分成原来的和增加的两类.①2+3×1②2+3×2③2+3×3④2+3×4则第n个:2+3n=3n+2.验证:当n=1时,3n+2=5,成立.故第n个图形中有(3n+2)个小圆圈.(想一想,还有其他观察角度吗?)例2:观察下列球的排列规律(其中●是实心球,○是空心球):…从第1个球起到第2 014个球止,共有实心球________个.思路分析①判断该题是循环规律,查找重复出现的结构,即循环节;②观察图形的变化规律,发现每10个球为一个循环,每个循环节里有3个实心球.故2 014÷10=201…4,201×3=603;③再从某个循环节开始查前4个球,发现有2个实心球,故总数为603+2=605(个).➢巩固练习1.如下数表是由从1开始的连续自然数组成,观察规律并完成下列各题.123456781011121314151617181920212223242526272829303132333435369…(1)表中第8行的最后一个数是_____,它是自然数______ 的平方,第8行共有________个数;(2)用含n 的代数式表示:第n 行的第一个数是_________, 最后一个数是_________,第n 行共有_________个数. 2. 将1,-2,3,-4,5,-6,…按一定规律排成下表:(1)第8行的数是_________________________________; (2)第50行的第一个数是_______.3. 下列图形由边长为1的正方形按某种规律排列而成,依此规律,则第8个图形中正方形有( )…图3图2图1A.38个 B.41个 C.43个D.48个4.如下图所示,摆第1个“小屋子”要5枚棋子,摆第2个要11枚棋子,摆第3个要17枚棋子,则摆第30个要_________枚棋子.…第3个第2个第1个5. 下列图案由边长相等的黑白两色正方形按一定规律拼接而成,依此规律,第n 个图案中白色正方形的个数为_________.…图3图2图16. 观察下列图形,根据图形及相应点的个数的变化规律,第n 个图形中点的个数为__________.图5图4图1图2图3…7. 如图1,一等边三角形的周长为1,将这个等边三角形的每边三等分,在每边上分别以中间的一段为边作等边三角形,然后去掉这一段,得到图2;再将图2中的每一段作类似变形,得到图3;按上述方法继续下去得到图4,则第4个图形的周长为________,第n 个图形的周长为________________.…图1 图2 图38. 一个纸环链,纸环按“红黄绿蓝紫”的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )红 黄 绿 蓝 紫 红 黄 绿 … … 黄 绿 蓝 紫 A .2 012B .2 013C .2 014D .2 0159. 小时候我们就用手指练习过数数,一个小朋友按图中的规则练习数数,数到2 013时对应的手指头是( ) A .大拇指B .食指C .小拇指D .无名指大拇指1234567891011121314151617181910. 如图,平面内有公共端点的八条射线OA ,OB ,OC ,OD ,OE ,OF ,OG ,OH ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,8,9,….(1)“20”在射线______________上; (2)请任意写出三条射线上的数字排列规律; (3)“2 015”在哪条射线上?➢ 思考小结1. 我们学习了数的规律、式的规律、图形规律、循环规律等,它们都有对应的操作方法.(1)数与式的规律:①_________;②_________;③处理符号;④验证. (2)图形规律:①观察图形的构成:____________________;②转化:________________________________________. (3)循环规律:①________________;②____________________.HD【参考答案】➢巩固练习1.(1)64,8,15;(2)(n-1)2+1(或n2-2n+2),n2,(2n-1).2.(1)29,-30,31,-32,33,-34,35,-36;(2)-1 226.3. C4.1795.5n+36.n2-n+17.6427,143n-⎛⎫⎪⎝⎭8. B9. C10.(1)OD(2)射线OA:8n-7;射线OB:8n-6;射线OC:8n-5;射线OD:8n-4;射线OE:8n-3;射线OF:8n-2;射线OG:8n-1;射线OH:8n.任选三个即可.(3)在射线OG上.➢思考小结1.(1)①标序号;②找结构.(2)①分类,去重,补形;②转化为数的规律或其他图形的规律.(3)①确定起始位置;②找循环节.。

初一数学整式的加减能力提升专题突破练习题2(探索规律 附答案)

初一数学整式的加减能力提升专题突破练习题2(探索规律  附答案)

初一数学整式的加减能力提升专题突破练习题2(探索规律 附答案)1.已知整数a 1、a 2、a 3、a 4、……满足下列条件:a 1=-1,a 2=-11a +,a 3=-22a +,a 4=-33a +,……,a n+1=-an n +(n 为正整数)依此类推,则a 2019的值为( ) A .-1007B .-1008C .-1009D .-10102.按图示的方法,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,依此类推,若搭m 个三角形需2019根火柴棒,则m =A .1008B .1009C .1010D .10113.下列图案均是用相同的小正方形按一定的规律拼成:拼第1个图案需1个小正方形,拼第2个图案3个小正方形,….,依此规律,拼第6个图案需小正方形( )个.A .15B .21C .24D .124.古希腊著名的毕达哥拉斯学派把1、3、6、10、……这样的数称为“三角形数”,而把1、4、16、……这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.按下列图示中的规律,请写出第9个等式_____.5.将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,S 1+S 2+S 3+S 4+…+S 2017=_____.6.如下图,用同样大小的黑白两种颜色的正方形纸片,按一定规律拼成的一系列图案,则第n个图案中含有白色纸片____张.7.阅读并计算填写以下等式(1)22-21=2;23-22=22;24-23=______;25-24=______;…………2n-2n-1=______.(2)请你根据以上规律计算22018-22017-22016-…-23-22+28.张华发现某月的日历中一个有趣的问题,他用笔在上面画如图所示的十字框,若设任意一个十字框里的五个数为a、b、c、d、k.设中间的一个数为k,如图:试回答下列问题:(1)此日历中能画出个十字框?(2)若a+b+c+d=84,求k的值;(3)是否存在k的值,使得a+b+c+d=108,请说明理由.9.先观察下列等式,然后用你发现的规律解答下列问题.……(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.9.在一次数学社团活动中,指导老师给同学们提出了以下问题:问题:有67张卡片叠在一起,按从上而下....的顺序先把第一张拿走,把第二张放到底层,然后把第三张拿走,再把第四张放到底层,如此进行下去,直至只剩最后一张卡片.问仅剩的这张卡片是原来..的第几张卡片?由于卡片数量较多,指导老师建议同学们先对较少的张数进行尝试,以便熟悉游戏规则并发现一些规律!请你也试着在草稿纸上进行试验,填写相应结果:(1)起初有2张卡片,按游戏规则最后剩下的卡片是原来的第张;(2)起初有4张卡片,按游戏规则最后剩下的卡片是原来的第张;(3)起初有8张卡片,按游戏规则最后剩下的卡片是原来的第张.(4)根据试验结果进行规律总结,直接判断若起初有64张卡片,最后剩下的卡片是原来的第张.回到最初的67张卡片情形,请你给出答案并简要说明理由.10.在生活中,人们经常通过一些标志性建筑确定位置,在数学中往往也是这样.(1)将正整数如图1的方式进行排列:小明同学通过仔细观察,发现每一行第一列的数字有一定的规律,所以每一行第一列的数字可以作为标志数,于是他认为第七行第一列的数字是,第7行、第5列的数字是.(2)方法应用观察下面一列数:1,﹣2,3,﹣4,5,﹣6,7,…并将这列数按照如图2方式进行排列:按照上述方式排列下去,问题1:第10行从左边数第9个数是;问题2:第n行有个数;(用含n的代数式表示)问题3:数字2019在第行,从左边数第个数.11.如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表:剪的次数 1 2 3 4 5正方形个数(2)如果剪n次,共剪出多少个小正方形?(3)如果剪了100次,共剪出多少个小正方形?(4)观察图形,剪了n次,小正方形的边长为原来的,面积是原来的答案: 1.D根据条件求出前几个数的值,再分n 是奇数时,结果等于12n ,n 是偶数时,结果等于22n ,然后求a 2019的值即可. 解:a 1=−1,a 2=−|a 1+1|=−|−1+1|=0, a 3=−|a 2+2|=−|0+2|=−2, a 4=−|a 3+3|=−|−2+3|=−1, a 5=−|a 4+4|=−|−1+4|=−3, a 6=−|a 5+5|=−|−3+5|=−2,…, 所以,n 是奇数时,a n =12n ,n 是偶数时,a n =22n , ∴a 2019=2019110102,故选:D . 2.B易得第1个图形中火柴的根数为3,得到其余图形中火柴的根数在3的基础上增加几个2,利用这一规律得到通项公式,代入即可求解. 解:∵一个三角形需要3根火柴, 2个三角形需要3+2=5根火柴, 3个三角形需要3+2×2=7根火柴,…m 个三角形需要3+2(m-1)=(2m+1)根火柴. 由2m+1=2019 解得m=1009所以有2019根火柴棒,可以搭出这样的三角形1009个. 故选:B . 3.B设拼第n 个图案需要a n 个小正方形(n 为正整数),观察图形,根据各图案中小正方形个数的变化可得出变化规律“a n =(n 为正整数)”,再代入n =6即可求出结论.解:设拼第n 个图案需要a n 个小正方形(n 为正整数),观察图形,可知:a 1=1,a 2=1+2,a 3=1+2+3,a 3=1+2+3+4,…, ∴a n =1+2+3+…+n =(n 为正整数),∴a 6==21.故选B . 4.100=55+45观察图象中点的个数的规律有第一个图形是4=22=1+2+1,第二个图形是9=32=1+2+3+2+1,第三个图形是16=42=1+2+3+4+3+2+1,…则按照此规律得到第9个图形的规律即可.解:∵第1个图形是4=22=1+2+1, 第2个图形是9=32=1+2+3+2+1, 第3个图形是16=42=1+2+3+4+3+2+1,…∴第9个图形是102=(1+2+3+4+5+6+7+8+9+10)+(9+8+7+6+5+4+3+3+2+1)=55+45. 故答案为:100=55+45. 5.1﹣201712根据翻折变换表示出所得图形的面积,再根据各部分图形的面积之和等于正方形的面积减去剩下部分的面积进行计算即可得解. 解:由题意可知,S 1=12, S 2=212, S 3=312,…, S 2017=201712,剩下部分的面积=S 2017=201712,所以,S 1+S 2+S 3+…+S 2017=12+212+312+…+201712设S=12+212+312+…+201712① 则12S=212+312+…+201812②①-②得S =1﹣201712,故答案为:1﹣2017126.3n+1依据图形找出其中的规律,即第n 个图案中一共有白纸片5n-(2n-1)=3n+1(张) 解:第一个图案中共有白纸片4张,即5×1-1; 第二个图案中共有白纸片7张,即5×2-3; 第三个图案中共有白纸片10张,即5×3-5; …∴第n 个图案中共有白纸片5n-(2n-1)=3n+1张. 故答案为:3n+1. 7.(1)23,24,2n ;(2)6(1)根据规律可得公式2n+1-2n =2n (2-1)=2n ;(2)根据规律以此类推可得出:22018-22017-22016-…-23-22+2的值.解:(1)观察可得22-21=2;23-22=22;24-23=23;25-24=24;…………2n -2n-1=2n . 故答案为:23,24,2n (2)∵2n+1-2n =2n (2-1)=2n ∴22018-22017-22016-…-23-22+2 =22017-22016-…-23-22+2 =22016-…-23-22+2 =22+2 =6.8.(1)12;(2)k=21;(3)不存在k 的值,使得a+b+c+d=108,理由见解析. 分析:(1)直接利用已知图表分析得出符合题意的位置;(2)利用日历中数据之间的关系进而得出k的值;(3)利用日历中数据之间的关系进而分析得出答案.解:(1)由题意可得:十字框顶端分别在:1,2,5,6,7,8,9,12,13,14,15,16一共有12个位置;(2)由题意可得:设最上面为a,最左边为b,最右边为c,最下面为d,则b=a+6,c=a+8,d=a+14,k=a+7,故a+a+6+a+8+a+14=84,解得:a=14,则k=21;(3)不存在k的值,使得a+b+c+d=108,理由:当a+b+c+d=108,则a+a+6+a+8+a+14=108,解得:a=20,故d=34>31(不合题意),故不存在k的值,使得a+b+c+d=1089.(1)原式=;(2)原式=;(3)经检验n=17是方程的根,n=17.分析:(1)、根据简便计算法则得出答案;(2)、根据简便计算法则得出答案;(3)、根据题意得出关于n的方程,然后求出n的值.解:(1)、原式=1-+-+-+-+-=1-=(2)、原式=1-+-+-++-=1-=(3)、原式=×(1-+-+-++-)=×(1-)==解得:n=1710.(1)2;(2)4;(3)8;(4)第6张解:(1)根据上述操作,起初有2张卡片,按游戏规则最后剩下的卡片是原来的第二张;(2)根据上述操作,先拿走了第一张,再拿走了第三张,然后拿走了第二张,最后剩下的卡片是原来的第四张;(3)按游戏规则最后剩下的卡片是原来的第八张;(4)根据试验结果进行规律总结,当卡片个数N=2a时,剩下的一定是第2a张,直接判断若起初有64=26张卡片,最后剩下的卡片是原来的第64张.当N=2a+M时,剩下的这张卡片是原来那一摞卡片的第2(N-2a)张.回到最初的67张卡片情形卡片个数N=26+3,所以剩下的这种卡片为原来的6张. 11.(1)49,45;(2)﹣90;2n﹣1;45,83.分析:(1)找出规律第n行第一列的数字为n2,即可得出结果;(2)找出规律每一行最末的数字的绝对值是行数的平分,所有数取绝对值后是连续的正整数,所有数中奇数为正整数、偶数为负整数;问题1:第9行最末的数字的绝对值是81,第10行从左边数第9个数的绝对值是81+9=90,因偶数为负整数,故第10行从左边数第9个数是﹣90;问题2:由每行数的个数为1,3,5,7…;则第n行有2n﹣1个数;问题3:由2019=442+83,即可得出结果.解:(1)∵每一行第一列的数字为该行的平分,即第n行第一列的数字为n2,∴第七行第一列的数字是:72=49,第5列的数字是:49﹣4=45,故答案为:49,45;(2)由题意得:每一行最末的数字的绝对值是行数的平分,所有数取绝对值后是连续的正整数,所有数中奇数为正整数、偶数为负整数,每行数的个数为:1,3,5,7…;问题1:∵第9行最末的数字的绝对值是81,∴第10行从左边数第9个数的绝对值是81+9=90,∵偶数为负整数,∴第10行从左边数第9个数是﹣90;问题2:∵每行数的个数为:1,3,5,7…;∴第n行有2n﹣1个数;问题3:∵2019=442+83,∴数字2019在第45行,从左边数第83个数;故答案为:﹣90;2n﹣1;45,83.73.(1)正方形个数4,7,10,13,16;(2)(3n+1)个;(3)301个;(4)12n;21()2n.分析:根据题意可以发现:每一次剪的时候,都是把上一次的图形中的一个进行剪.依次多3个,继而解答各题即可.解:1)填表如下:(2)如果剪了n次,共剪出m=3n+1个小正方形;(3)如果剪了100次,共剪出3×100+1=301个小正方形;(4)最初正方形纸片为1,则剪n次后,最小正方形的边长为:12n,面积是原来的21()2n。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32014的值是()A.32015-1B.32014-1C.D.【答案】C.【解析】设S=1+3+32+33+ (32014)则有3S=3+32+33+ (32015)∴3S﹣S=32015﹣1,解得:S=(32015﹣1),则1+3+32+33+…+32014=.故选C.【考点】整式的混合运算.2.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.【答案】见解析【解析】解:设原来的两位数是,则调换位置后的新数是.∴.∴这个数一定能被9整除.3.先化简,再求值:,其中a是方程的一个根。

【答案】,1【解析】因为a是方程根据求根公式可得x=则代入【考点】整式运算及求根公式。

点评:本题难度中等,主要考查学生对整式化简求值运算的掌握。

需要涉及平方差公式和完全平方公式等等。

4.如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度= ;第二个图案的长度= ;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度(m)之间的关系;(2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数。

【答案】(1) 0.9 ,1.5 (2) (3)50【解析】=0.3×3=0.9m,=0.3×5=1.5m(2)根据图像可知:n=1时,=0.3×3=0.9m,n=2时,=0.3×5=1.5m,…当n=n时,(3)30.3=0.3(2n+1),解得n=50【考点】探索规律点评:本题难度较高,需要学生通过图像分析总结出规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索规律(习题)
例题示范
例1:观察图1至图4中小圆圈的摆放规律,并按这样的规律继续摆放,记第n个图中小圆圈的个数为M,则M=__________(用含n的代数式表示).

图1 图2 图3 图4
思路分析
做图形规律的题,我们一般从两个方面来研究:
(1)观察图形的构成.
(2)转化.
观察本题的图形,发现后面的图形总比前面的图形多3个小圆圈,可以采用分类的手段进行解决.分成原来的和增加的两类.
①2+3×1
②2+3×2
③2+3×3
④2+3×4
则第n个:2+3n=3n+2.
验证:当n=1时,3n+2=5,成立.
故第n个图形中有(3n+2)个小圆圈.
(想一想,还有其他观察角度吗?)
例2:观察下列球的排列规律(其中●是实心球,○是空心球):

从第1个球起到第2 014个球止,共有实心球________个.
思路分析
①判断该题是循环规律,查找重复出现的结构,即循环节;
②观察图形的变化规律,发现每10个球为一个循环,每个循环节里有3个
实心球.故2 014÷10=201…4,201×3=603;
③再从某个循环节开始查前4个球,发现有2个实心球,故总数为603+2=605
(个).
巩固练习
1.如下数表是由从1开始的连续自然数组成,观察规律并完成下列各题.
12345678101112131415161718192021222324252627282930
31323334
3536
9…
(1)表中第8行的最后一个数是_____,它是自然数______ 的平方,第8行共有________个数;
(2)用含n 的代数式表示:第n 行的第一个数是_________, 最后一个数是_________,第n 行共有_________个数. 2. 将1,-2,3,-4,5,-6,…按一定规律排成下表:
(1)第8行的数是_________________________________; (2)第50行的第一个数是
_______.
3. 下列图形由边长为1的正方形按某种规律排列而成,依此规律,则第8个图
形中正方形有( )

图3图2图1
A
.38个
B .
41个
C
.43

D
.48

4.
如下图所示,摆第1
个“小屋子”要5
枚棋子,摆第2
个要11
枚棋子,摆

3个要
17枚棋子,则摆第30个要_________枚棋子.

第3个
第2个第1个
5. 下列图案由边长相等的黑白两色正方形按一定规律拼接而成,依此规律,第
n 个图案中白色正方形的个数为_________.

图3
图2
图1
6.观察下列图形,根据图形及相应点的个数的变化规律,第n个图形中点的个
数为__________.
图5
图4
图1图2图3

7.如图1,一等边三角形的周长为1,将这个等边三角形的每边三等分,在每
边上分别以中间的一段为边作等边三角形,然后去掉这一段,得到图2;再将图2中的每一段作类似变形,得到图3;按上述方法继续下去得到图4,则第4个图形的周长为________,第n个图形的周长为________________.

图1 图2 图3
8.一个纸环链,纸环按“红黄绿蓝紫”的顺序重复排列,截去其中的一部分,
剩下部分如图所示,则被截去部分纸环的个数可能是()
红黄绿蓝紫红黄绿……黄绿蓝紫
A.2 012 B.2 013 C.2 014 D.2 015
9.小时候我们就用手指练习过数数,一个小朋友按图中的规则练习数数,数到
2 013时对应的手指头是()
A.大拇指B.食指C.小拇指D.无名指
大拇指
1
2345
6
789
10111213
14151617
18
19
10. 如图,平面内有公共端点的八条射线OA ,OB ,OC ,OD ,OE ,OF ,OG ,OH ,
从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,8,9,….
(1)“20”在射线______________上; (2)请任意写出三条射线上的数字排列规律; (3)“2 015”在哪条射线上?
思考小结
1. 我们学习了数的规律、式的规律、图形规律、循环规律等,它们都有对应的
操作方法.
(1)数与式的规律:
①_________;②_________;③处理符号;④验证. (2)图形规律:
①观察图形的构成:____________________;
②转化:________________________________________. (3)循环规律:
①________________;②____________________.
H
D
【参考答案】
巩固练习
1.(1)64,8,15;
(2)(n-1)2+1(或n2-2n+2),n2,(2n-1).2.(1)29,-30,31,-32,33,-34,35,-36;
(2)-1 226.
3. C
4.179
5.5n+3
6.n2-n+1
7.64
27

1
4
3
n-
⎛⎫

⎝⎭
8. B
9. C
10.(1)OD
(2)射线OA:8n-7;射线OB:8n-6;射线OC:8n-5;
射线OD:8n-4;射线OE:8n-3;射线OF:8n-2;射线OG:8n-1;射线OH:8n.任选三个即可.
(3)在射线OG上.
思考小结
1.(1)①标序号;②找结构.
(2)①分类,去重,补形;②转化为数的规律或其他图形的规律.
(3)①确定起始位置;②找循环节.。

相关文档
最新文档