高中数学:三角函数的诱导公式 (7)
三角函数的诱导公式
![三角函数的诱导公式](https://img.taocdn.com/s3/m/b0866916ba1aa8114431d96b.png)
三角函数的诱导公式一、知识要点:诱导公式(一)tan )2tan(cos )2(cos sin )2sin(ααπααπααπ=+=+=+k k k诱导公式(三))tan()cos( sin )sin(=+=+-=+απαπααπ诱导公式(二))tan(cos )cos( )sin(=-=-=-αααα诱导公式(四)tan )tan()cos( )sin(ααπαπαπ-=-=-=-诱导公式(五)=-=-)2cos( cos )2sin(απααπ诱导公式(六)=+=+)2cos( cos )2sin(απααπ方法点拨: 把α看作锐角一、前四组诱导公式可以概括为:函数名不变,符号看象限符号。
看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,,, ),Z (2-+-∈+k k公式(五)和公式(六)总结为一句话:函数名改变,符号看象限 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变二、基础自测:1、求下列各三角函数值:①cos225° ②tan (-11π)2、sin1560°的值为( )A 、21-B 、23-C 、21D 、233、cos -780°等于( ) A 、21B 、21- C 、23 D 、23-三、典型例题分析:例1、求值(1)29cos()6π= __________. (2)0tan(855)-= _______ ___.(3)16sin()3π-= __________.变式练习1:求下列函数值:665cos)1(π )431sin()2(π-的值。
求:已知、例)sin(2)4cos()3sin()2cos( ,3)tan( 2απααπαπαπ-+-+--=+变式练习2:若1sin()22πα-=-,则tan(2)πα-=________.变式练习3:已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan = .四、巩固练习:1、对于诱导公式中的角α,下列说法正确的是( ) A .α一定是锐角 B .0≤α<2πC .α一定是正角D .α是使公式有意义的任意角2、若(),2,53cos παππα<≤=+则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 54-3、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .434、)2cos()2sin(21++-ππ ( ) A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25、已知()21sin -=+πα,则()πα7cos 1+的值为 ( )A .332 B . -2 C . 332- D . 332±6、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π ( ) A 、21-B 、21C 、23-D 、237、α是第四象限角,1312cos =α,则sinα等于( ) A.135 B.135- C.125 D.125- 二、填空题1、计算:cos (-2640°)+sin1665°= .2、计算:)425tan(325cos 625sinπππ-++= . 3、化简:)(cos )5sin()4sin()3(sin )(cos )4cos(222πθθππθπθπθπθ--+-+++=______ ___.4、若a =αtan ,则()()απαπ+--3cos 5sin = ____ ____.5、已知x x f 3cos )(cos =,则)30(sin οf 的值为 。
高中三角函数诱导公式知识点
![高中三角函数诱导公式知识点](https://img.taocdn.com/s3/m/f2bc216159fafab069dc5022aaea998fcc2240e0.png)
⾼中三⾓函数诱导公式知识点三⾓函数是数学中属于初等函数中的超越函数的函数。
它们的本质是任何⾓的集合与⼀个⽐值的集合的变量之间的映射,那么接下来给⼤家分享⼀些关于⾼中三⾓函数诱导公式知识点,希望对⼤家有所帮助。
⾼中三⾓函数诱导公式知识1公式⼀:设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式⼆:设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意⾓α与 -α的三⾓函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利⽤公式⼀和公式三可以得到2π-α与α的三⾓函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三⾓函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα⾼中数学三⾓函数的诱导公式学习⽅法⼆推算公式:3π/2±α与α的三⾓函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα⾼⼀数学学习⽅法总结1.先看专题⼀,整数指数幂的有关概念和运算性质,以及⼀些常⽤公式,这公式不但在初中要求熟练掌握,⾼中的课程也是经常要⽤到的。
第7章-7.2.3-三角函数的诱导公式高中数学必修第一册苏教版
![第7章-7.2.3-三角函数的诱导公式高中数学必修第一册苏教版](https://img.taocdn.com/s3/m/e60e5588185f312b3169a45177232f60ddcce720.png)
∵
∘
∴
∘
+ = > , 为第三象限角,∴ ∘ + 为第四象限角,
+ =− −
∴ − ∘ =
∘
+ =− −
− 60∘ )
= −sin
60∘
=−
3
.
2
+
17π
例2
+ cos −
=______.
4
26π
17π
【解析】由题意得sin
+ cos −
=
3
4
26π
求值:sin
3
2π
sin
3
+ cos
π
−
4
=
π
sin
3
+
π
cos
4
=
3+ 2
.
2
例3 (2024·四川省宜宾市兴文二中期末)在平面直角坐标系中,角 与角 均以
则sin = sin(2π + ) = sin ;
当 = 2 + 1, ∈ 时, = (2 + 1)π − ,则
π
2
− = cos − ;
+ 这三个条件中任选一个,补充在下面问题中,并解决
该问题.
问题:已知____,
3sin +2cos
的值;
sin −cos
(1)求
3sin +2cos
【解析】
sin −cos
=
三角函数 高中数学诱导公式大全
![三角函数 高中数学诱导公式大全](https://img.taocdn.com/s3/m/b03cad45d1f34693dbef3ec4.png)
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以获得π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以获得2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-ta nαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比力好做.诱导公式记忆口诀规律总结上面这些诱导公式可以概括为:对π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,获得α的同名函数值,即函数名不改变;②当k是奇数时,获得α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号.(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα.当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”.所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限.公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限.各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种依照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦 ...........+............+............—............—. .......余弦 ...........+............—............—............+. .......正切 ...........+............—............+............—. .......余切 ...........+............—............+............—. .......同角三角函数基本关系同角三角函数的基本关系式倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法六角形记忆法:构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型.(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一极点上的函数值即是与它相邻的两个极点上函数值的乘积.(主要是两条虚线两真个三角函数值的乘积).由此,可得商数关系式.(3)平方关系:在带有阴影线的三角形中,上面两个极点上的三角函数值的平方和即是下面极点上的三角函数值的平方.两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))..... .*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2取代α即可.同理可推导余弦的万能公式.正切的万能公式可通过正弦比余弦获得.三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-co sαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)c osα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆★记忆方法:谐音、联想正弦三倍角:3元减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减 3元(减完之后还有“余”)☆☆注意函数名,即正弦的三倍角都用正弦暗示,余弦的三倍角都用余弦暗示.★另外的记忆方法:正弦三倍角:山无司令 (谐音为三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方余弦三倍角:司令无山与上同理和差化积公式三角函数的和差化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]积化和差公式三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就获得sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就获得cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以获得cos(a+b)+cos(a-b)=2cosa*cosb所以我们就获得,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就获得sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就获得了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2有了积化和差的四个公式以后,我们只需一个变形,就可以获得和差化积的四个公式.创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日。
高中数学诱导公式
![高中数学诱导公式](https://img.taocdn.com/s3/m/3cd96b44ad02de80d4d840a2.png)
最全高中数学诱导公式常用的诱导公式有以下几组:1公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα,cos(-α)=cosαtan(-α)=-tanα,cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα,cos(π-α)=-cosαtan(π-α)=-tanα,cot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα,cos(2π-α)=cosαtan(2π-α)=-tanα,cot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π/2-α)=cosα,cos(π/2-α)=sinαtan(π/2-α)=cotα,cot(π/2-α)=tanα,sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα,sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,tan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
三角函数公式及求导公式
![三角函数公式及求导公式](https://img.taocdn.com/s3/m/4b332cf880eb6294dd886c49.png)
一、诱导公式口诀:(分子)奇变偶不变,符号看象限。
1. sin (α+k•360)=sin αcos (α+k•360)=cos atan (α+k•360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二、两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三、二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos¬2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a’: cos2α=1-2sin2αcos2α=2cos2α-1四*、其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα= sin(a+φ),其中tanφ=b/a,其终边过点(a, b)asinα+bcosα= cos(a-φ),其中tanφ=a/b,其终边过点(b,a)2.降次、配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式si n3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ= 书p45 例5(2)sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2A=2sinA*cosA三倍角公式sin3a=3sina-4(sina)^3cos3a=4(cosa)^3-3cosatan3a=tana*tan(π/3+a)*tan(π/3-a)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)+cos(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2③(sinx)' = cosx(cosx)' = - sinx(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2)④(sinhx)'=coshx(coshx)'=sinhx(tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2(artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)。
数学诱导公式
![数学诱导公式](https://img.taocdn.com/s3/m/4671a1eaf8c75fbfc77db277.png)
cos(a-b)=cosa*cosb+sina*sinb ②
∴ ① + ② 得:
cos(a+b)+cos(a-b)=2cosa*cosb
∴ cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,若 ① - ② 得:
sina*sinb=-(cos(a+b)-cos(a-b))/2
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα*tanβ)
二倍角的正弦、余弦和正切公式(升幂缩角公式):
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
(以上k∈Z)
同角三角函数的基本关系式:
倒数关系:
tanα *cotα=1 sinα *cscα=1 cosα *secα=1
商的关系:
sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα
sin(3π/2+α)=-cosα sin(3π/2-α)=-cosα
高中数学诱导公式大全
![高中数学诱导公式大全](https://img.taocdn.com/s3/m/6ebf188b970590c69ec3d5bbfd0a79563c1ed498.png)
高中数学诱导公式大全高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)XXX(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαXXX(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαXXX(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαXXX(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαXXX(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαXXX(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαXXX(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαXXX(3π/2-α)=cotαcot(3π/2-α)=tanα这些诱导公式是在解决三角函数问题时非常有用的。
它们可以帮助我们简化计算,快速得到答案。
【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高
![【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高](https://img.taocdn.com/s3/m/1d65eabee009581b6bd9eb72.png)
三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。
高中三角函数公式及诱导公式大全
![高中三角函数公式及诱导公式大全](https://img.taocdn.com/s3/m/bad01cba7d1cfad6195f312b3169a4517723e5d4.png)
高中三角函数公式及诱导公式大全一、基本概念在高中数学学习中,三角函数是一个非常重要的概念。
三角函数包括正弦函数、余弦函数、正切函数等,它们是描述角度与边长关系的函数。
二、基本的三角函数公式1. 正弦函数(Sine)正弦函数表示为$$\\sin\\theta$$,其中$$\\theta$$为角度。
正弦函数的公式为:$$\\sin\\theta = \\frac {对边}{斜边} = \\frac {BC}{AC}$$2. 余弦函数(Cosine)余弦函数表示为$$\\cos\\theta$$。
余弦函数的公式为:$$\\cos\\theta = \\frac{邻边}{斜边} = \\frac{AB}{AC}$$3. 正切函数(Tangent)正切函数表示为$$\\tan\\theta$$。
正切函数的公式为:$$\\tan\\theta = \\frac{对边}{邻边} = \\frac{BC}{AB}$$三、三角函数的诱导公式1. 正弦函数的诱导公式对于一个角的三角函数,我们可以通过一些关系式得到其诱导公式。
正弦函数的诱导公式如下:$$\\sin(-\\theta) = -\\sin\\theta$$$$\\sin(\\pi - \\theta) = \\sin\\theta$$$$\\sin(\\pi + \\theta) = -\\sin\\theta$$2. 余弦函数的诱导公式余弦函数的诱导公式如下:$$\\cos(-\\theta) = \\cos\\theta$$$$\\cos(\\pi - \\theta) = -\\cos\\theta$$$$\\cos(\\pi + \\theta) = -\\cos\\theta$$3. 正切函数的诱导公式正切函数的诱导公式如下:$$\\tan(-\\theta) = -\\tan\\theta$$$$\\tan(\\pi - \\theta) = -\\tan\\theta$$$$\\tan(\\pi + \\theta) = \\tan\\theta$$四、三角函数公式的应用三角函数的公式在实际问题中有着广泛的应用,比如在三角测量、工程计算等领域中常常会用到。
高中数学诱导公式大全
![高中数学诱导公式大全](https://img.taocdn.com/s3/m/79189faff90f76c660371a2c.png)
高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)(2kπ+α)=tanα(k∈Z)tan cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα(π+α)=-cosαcos tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:(-α)=-sinαsin (-α)=cosαcos tan(-α)=-tanαcot (-α)=-cotα公式四:页 1 第利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos (π-α)=-cosαtan (π-α)=-tanαcot (π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα(2π-α)=cosαcos tan(2π-α)=-tanαcot (2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan (π/2+α)=-cotαcot (π/2+α)=-tanαsin(π/2-α)=cosα(π/2-α)=sinαcos (π/2-α)=cotαtan页 2 第cot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotα(3π/2-α)=tanαcot (以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高中数学《诱导公式》课件
![高中数学《诱导公式》课件](https://img.taocdn.com/s3/m/799fcc14e55c3b3567ec102de2bd960591c6d91e.png)
sin
α=y,cos
α=x,当x≠0时,tan
α=
y x
.
(1)如图5.2-8(1),作点P(x,y)关于x轴的对称点P1(x,-y),则∠xOP1=-α.
由三角函数的定义可得
sin(-α)=-y=-sin α,
cos(-α)=x=cos α,
当x≠0时,tan(-α)=
y x
y x
tan.
(1) 图5.2-8
2 诱导公式.
诱导公式揭示了终边具 有某种对称关系的两个角三 角函数之间的关系.
一 诱导公式
例
12
化简:
(1)
sin
3
2
;
(2)
cos
3
2
.
解
(1)
sin
3
2
sin
2
sin
2
cos
;
(2)
cos
3
2
cos
2
cos
2
sin
.
一 诱导公式
例
13
化简:cos cos
探究α与π -α之间的函数 关系,我们还可以从这两个角 的终边关于y轴对称来推导,试 试看.
一 诱导公式
为了使用方便,我们将上述探究得到的公式总结如下:
公式二 sin(-α)=-sin α, cos(-α)=cos α, tan(-α)=-tan α.
公式三 sin(π+α)=-sin α, cos(π+α)=-cos α, tan(π+α)=tan α.
利用公式五,可以实现正弦函数与余弦函数的相互转化.
一 诱导公式
当角α的终边不在坐标轴上时,还可以得出以下公式:
公式六
三角函数的8个诱导公式(汇总)
![三角函数的8个诱导公式(汇总)](https://img.taocdn.com/s3/m/213367c68662caaedd3383c4bb4cf7ec4afeb6ad.png)
三角函数的8个诱导公式(汇总)三角函数的8个诱导公式1. 正弦函数的诱导公式sin(-x) = -sin(x)这个公式表明,正弦函数的值在x轴上是关于原点对称的。
也就是说,如果一个角度的正弦值为a,那么它的相反数的正弦值就是-a。
这个公式在解三角形问题时非常有用,为它可以帮助我们计算负角度的正弦值。
2. 余弦函数的诱导公式cos(-x) = cos(x)这个公式表明,余弦函数的值在y轴上是关于原点对称的。
也就是说,如果一个角度的余弦值为a,那么它的相反数的余弦值也是a。
这个公式同样也可以帮助我们计算负角的余弦值。
3. 正切函数的诱导公式tan(-x) = -tan(x)这个公式表明,正切函数的值在原点上是关于y轴对称的。
也就是说,如果一个角的正切值为a,那么它的相反数的正切值就是-a。
这个公式在计算负角的正切值时非常有用。
4. 余切函数的诱导公式cot(-x) = -cot(x)这个公式表明,余切函数的值在原点上是关于x轴对称的。
也就是说,如果一个角的余切值为a,那么它的相反数的余切值就是-a。
这个公式同样也可以帮助我们计算负角的余切值。
5. 正弦函数的平方的诱导公式sin^2(x) + cos^2(x) = 1这个公式是三角函数中最著名的公式之一,它表明正弦函数的平方加上余弦函数的平方等于1。
这个公式在解三角形问题时非常有用,为它可以帮助我们计算三角形中的未知边长。
6. 正切函数的平方的诱导公式tan^2(x) + 1 = sec^2(x)这个公式表明,正切函数的平方加1等于其对应的正割函数的平方。
这个公式在计算三角形中的未知边长时非常有用。
7. 余切函数的平方的诱导公式cot^2(x) + 1 = csc^2(x)这个公式表明,余切函数的平方加1等于其对应的余割函数的平方。
这个公式同样也可以帮助我们计算三角形中的未知边长。
8. 正弦函数和余弦函数的诱导公式sin(x + π/2) = cos(x)cos(x + π/2) = -sin(x)这两个公式表明,正弦函数和余弦函数之间存在一种特殊的关系,即它们的相位差为π/2。
高中数学:三角函数的诱导公式 (7)
![高中数学:三角函数的诱导公式 (7)](https://img.taocdn.com/s3/m/a8687e89650e52ea551898c5.png)
第一章三角函数1.3三角函数的诱导公式(第二课时)学习目标1.经历诱导公式五、六的推导过程,体会数学知识的“发现”过程.2.掌握诱导公式五、六,能初步应用公式解决一些简单的问题.3.领会数学中转化思想的广泛性,了解诱导公式就是具有一定关系的几何特征关系的代数表示,从而对诱导公式能够达到属性结合的认识高度.学习过程一、课前完成部分(一)复习(预习课本P26~27,找出疑惑之处,并作记号)回顾旧知,引出新课问题1:上节课我们学习了三角函数的诱导公式二~四,大家还记得是哪几个公式吗?公式二:公式三:公式四:sin(π+α)= sin(-α)= sin(π-α)=cos(π+α)= cos(-α)= cos(π-α)=tan(π+α)= tan(-α)= tan(π-α)=它们的记忆口诀是:问题2:请想一下由诱导公式可将任意的三角函数化为锐角三角函数的一般步骤.练习:1.求下列三角函数值:(1)sin225°;(2)cos(-1290°).2.求下列各三角函数:(1)cos(-1665°);(2)sin(-13π4).3.已知sin(α+π)=45,且sinαcosα<0,求2sin(α-π)+3tan(3π-α)4cos(α-3π)的值.(二)探究新知:1.诱导公式五:问题3:你能画出角α关于直线y=x对称的角的终边吗?问题4:由图象我们可以看到,与角α关于直线y=x 对称的角可以表示为 .问题5:如图,单位圆中,假设点P 1的坐标为(x ,y ),你能说出P 2的坐标吗?请用三角函数的定义写出角π2-α的三角函数(诱导公式五):{sin (π2-α)=cos (π2-α)=2.诱导公式六:思考:同学们,角π2+α与角α又有怎样的关系呢?你仍然是画图研究,还是用已学的公式来探究呢?请试着写出你推导诱导公式六的过程.得到公式六:{sin (π2+α)=cos (π2+α)= 观察可得记忆口诀:二、课堂完成部分 (一)典型例题【例1】化简下列各式: (1)sin (π2+α)cos (π2-α)cos (π+α)+sin (π-α)cos (π2+α)sin (π+α);(2)sin 3(π2+α)+cos 3(π2+α)-sin(5π+α)cos(3π+α).【例2】化简sin (α+nπ)+sin (α-nπ)sin (α+nπ)cos (α-nπ)(n ∈Z ).【例3】(1)已知tan α=3,求值:2cos (π-α)-3sin (π+α)4cos (-α)+sin (2π-α); (2)已知sinα+cosαsinα-cosα=3,求sin 2(2π-α)+2sinαcosαtan (π+α)(1+sin 2α)的值;(3)求值√1-2sin100°cos100°2;(4)求sin 21°+sin 22°+…+sin 288°+sin 289°的值.(二)学习小结三、课堂练习1.已知sin(π+α)=√3,则sin(3π-α)值为( )A.12B.-12C.√32D.-√322.如果|cos x|=cos(-x+π).则x 的取值范围是( ) A.[-π2+2k π,π2+2k π](k ∈Z ) B.(π2+2k π,32π+2k π)(k ∈Z ) C.[π2+2k π,32π+2k π](k ∈Z ) D.(-π+2k π,π+2k π)(k ∈Z )3.设角α=-35π6,则2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+sin (π-α)-cos 2(π+α)的值等于( )A.√33B.-√33C.√3D.-√34.若f (cos x )=cos3x ,那么f (sin30°)的值为( ) A.0B.1C.-1D.√32四、课堂小结五、达标检测1.sin (180°-405°)sin (270°-765°)sin (90°+45°)tan (270°+45°)= .2.将下列三角函数转化为锐角三角函数,填在题中横线上:①sin263°42'= ;②cos(-104°26')= ;③sin(-53π)= ;④tan 17π6=.3.若cos α=23,α是第四象限角,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.4.化简:sin (2π-α)cos (π+α)cos (π2+α)cos (11π2-α)cos (π-α)sin (3π-α)sin (-π-α)sin (9π2+α).参考★答案★一、课前完成部分 (一)复习 问题1:公式二: 公式三: 公式四: sin(π+α)=-sin α sin(-α)=-sin α sin(π-α)=sin α cos(π+α)=-cos α cos(-α)=cos α cos(π-α)=-cos α tan(π+α)=tan α tan(-α)=-tan α tan(π-α)=-tan α 它们的记忆口诀是:2k π±α(k ∈Z ),-α,π±α的三角函数,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.问题2:由诱导公式可将任意的三角函数化为锐角三角函数,一般步骤如下: (1)化负角的三角函数为正角的三角函数; (2)化为[0,2π)上的三角函数; (3)化为锐角的三角函数.练习:1.解:(1)sin225°=sin(180°+45°)=-sin45°=-√22;(2)cos(-1290°)=cos1290°=cos(210°+3×360°)=cos210°=(180°+30°)=-cos30°=-√32. 2.解:(1)cos(-1665°)=cos1665°=cos(225°+4×360°)=cos225°=cos(180°+45°) =-cos45°=-√22; (2)sin(-13π4)=sin(-3×π-π4)=sin π4=√22.3.解:∵sin(α+π)=45,∴sin α=-45,又∵sin αcos α<0,∴cos α>0,cos α=2α=35, ∴tan α=-43.∴原式=-2sinα-3tanα-4cosα=-2×(-45)+3×(-43)4×35=-73.(二)探究新知:1.诱导公式五:问题3:作角α关于直线y=x 的轴对称图形.(如图) 问题4:π2-α.问题5:P 2的坐标为(y ,x ). 诱导公式五:sin(π2-α)=cos α,cos(π2-α)=sin α. 2.诱导公式六:公式六:sin(π2+α)=cos α,cos(π2+α)=-sin α.观察可得记忆口诀:把α看成锐角,“函数名奇变偶不变,符号看象限.” 二、课堂完成部分 (一)典型例题: 【例1】解:(1)sin (π2+α)cos (π2-α)cos (π+α)+sin (π-α)cos (π2+α)sin (π+α)=cosαsinα-cosα+-sinαsinα-sinα=-sin α+sin α=0. (2)sin 3(π2+α)+cos 3(π2+α)sin (3π+α)+cos (4π-α)-sin(5π2+α)cos(3π2+α)=cos 3α-sin 3α-sinα+cosα+cos αsin α=cos 2α-cos αsin α+sin 2α+cos αsin α=1【例2】解:当n 是奇数时,sin (α+nπ)+sin (α-nπ)sin (α+nπ)cos (α-nπ)=-sinα-sinα(-sinα)(-cosα)=-2cosα;当n 是偶数时,sin (α+nπ)+sin (α-nπ)sin (α+nπ)cos (α-nπ)=sinα+sinαsinαcosα=2cosα. 【例3】解:(1)2cos (π-α)-3sin (π+α)4cos (-α)+sin (2π-α)=-2cosα+3sinα4cosα-sinα=-2+3tanα4-tanα=7; (2)因为sinα+cosαsinα-cosα=3,所以tanα+1tanα-1=3,解得tan α=2.所以sin 2(2π-α)+2sinαcosαtan (π+α)(1+sin 2α)=sin 2α+2sinαcosαtanα(cos 2α+2sin 2α)=tan 2α+2tanαtanα(1+2tan 2α)=49; (3)√1-2sin100°cos100°=√sin 2100°-2sin100°cos100°+cos 2100°=-sin10°+cos10°cos10°-sin10°=1. (4)因为sin 21°+sin 22°+…+sin 289°=cos 21°+cos 22°+…+cos 289°, 所以2(sin 21°+sin 22°+…+sin 288°+sin 289°)=89, 所以sin 21°+sin 22°+…+sin 288°+sin 289°=89.(二)学习小结1.诱导公式反映了各种不同形式的角的三角函数之间的相互关系,并具有一定的规律性,“奇变偶不变,符号看象限”是记住这些公式的有效方法.2.诱导公式是三角变换的基本公式,其中角α可以是一个单角,也可以是一个复角,应用时要注意整体把握、灵活变通.三、课堂练习1.C2.C3.C4.A四、课堂小结1.应用诱导公式求三角函数值时的一般步骤为:负角化正角→大角化小角→查表求值;2.对(2k+1)·π2±α(k∈Z)的诱导公式,简记为“函数名互余,符号看象限”.3.应用诱导公式时必须注意符号.五、达标检测1.√222.-cos7°18';-sin14°26';sinπ3;-tanπ63.-√5104.tanα。
三角函数 高中数学诱导公式大全
![三角函数 高中数学诱导公式大全](https://img.taocdn.com/s3/m/09eb27d7a5e9856a571260c1.png)
时常使用的诱导公式有以下几组:之阳早格格创做公式一:设α为任性角,末边相共的角的共一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任性角,π+α的三角函数值与α的三角函数值之间的闭系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任性角α与-α的三角函数值之间的闭系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二战公式三不妨得到π-α与α的三角函数值之间的闭系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一战公式三不妨得到2π-α与α的三角函数值之间的闭系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的闭系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:正在干题时,将a瞅成钝角去干会比较佳干.诱导公式影象心诀顺序归纳上头那些诱导公式不妨综合为:对付于π/2*k ±α(k∈Z)的三角函数值,①当k是奇数时,得到α的共名函数值,即函数名没有改变;②当k是奇数时,得到α相映的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变奇没有变)而后正在前里加上把α瞅成钝角时本函数值的标记.(标记瞅象限)比圆:sin(2π-α)=sin(4·π/2-α),k=4为奇数,所以与sinα.当α是钝角时,2π-α∈(270°,360°),sin(2π-α)<0,标记为“-”.所以sin(2π-α)=-sinα上述的影象心诀是:奇变奇没有变,标记瞅象限.公式左边的标记为把α视为钝角时,角k·360°+α(k∈Z),-α、180°±α,360°-α地圆象限的本三角函数值的标记可影象火仄诱导名没有变;标记瞅象限.百般三角函数正在四个象限的标记怎么样推断,也不妨记开心诀“一齐正;二正弦(余割);三二切;四余弦(正割)”.那十二字心诀的意义便是道:第一象限内所有一个角的四种三角函数值皆是“+”;第二象限内惟有正弦是“+”,其余局部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内惟有余弦是“+”,其余局部是“-”.上述影象心诀,一齐正,二正弦,三内切,四余弦另有一种依照函数典型分象规定正背:函数典型第一象限第二象限第三象限第四象限正弦 ...........+............+............—............—........余弦 ...........+............—............—............+........正切 ...........+............—............+............—........余切 ...........+............—............+............—........共角三角函数基础闭系共角三角函数的基础闭系式倒数闭系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的闭系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα仄圆闭系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)共角三角函数闭系六角形影象法六角形影象法:构制以"上弦、中切、下割;左正、左余、中间1"的正六边形为模型.(1)倒数闭系:对付角线上二个函数互为倒数;(2)商数闭系:六边形任性一顶面上的函数值等于与它相邻的二个顶面上函数值的乘积.(主假如二条实线二端的三角函数值的乘积).由此,可得商数闭系式.(3)仄圆闭系:正在戴有阳影线的三角形中,上头二个顶面上的三角函数值的仄圆战等于底下顶面上的三角函数值的仄圆.二角战好公式二角战与好的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式二倍角的正弦、余弦战正切公式(降幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦战正切公式(落幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(果为cos^2(α)+sin^2(α)=1)再把*分式上下共除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))而后用α/2代替α即可.共理可推导余弦的万能公式.正切的万能公式可通过正弦比余弦得到.三倍角公式三倍角的正弦、余弦战正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-c osαsin^2(α) -2sin^2(α)cosα)上下共除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcos α+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2co sαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式奇像影象★影象要领:谐音、奇像正弦三倍角:3元减4元3角(短债了(被减成背数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减3元(减完之后另有“余”)☆☆注意函数名,即正弦的三倍角皆用正弦表示,余弦的三倍角皆用余弦表示.★其余的影象要领:正弦三倍角:山无司令(谐音为三无四坐) 三指的是"3倍"sinα,无指的是减号,四指的是"4倍",坐指的是sinα坐圆余弦三倍角:司令无山与上共理战好化积公式三角函数的战好化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]积化战好公式三角函数的积化战好公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]战好化积公式推导附推导:最先,咱们知讲sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb咱们把二式相加便得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2共理,若把二式相减,便得到cosa*sinb=(sin(a+b)-sin(a-b))/2共样的,咱们还知讲cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把二式相加,咱们便不妨得到cos(a+b)+cos(a-b)=2cosa*cosb所以咱们便得到,cosa*cosb=(cos(a+b)+cos(a-b))/2共理,二式相减咱们便得到sina*sinb=-(cos(a+b)-cos(a-b))/2那样,咱们便得到了积化战好的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2有了积化战好的四个公式以去,咱们只需一个变形,便不妨得到战好化积的四个公式.咱们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示便不妨得到战好化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.cos5° D.2sin5°
数 学 必 修 ④
· 人 教 A 版
(C)
返回导航
第一章 三角函数
2.已知 sinα=35,则 sin(π2+α)的值为
A.-35
B.-45
C.45
D.±45
3.计算:sin211°+sin279°=___1__.
数
4.若 cos(π2+α)=m,则 sinα=__-__m____.
数
=-cos(π4-α)=- 1-a2.
学
必 修
[点评] 在公式“奇变偶不变,符号看象限”中角可以单角,也可以是一个
④
· 人复角.教来自A版返回导航
第一章 三角函数
〔跟踪练习 4〕已知 cos(π+α)=-12,求 cos(π2+α)的值.
[解析] ∵cos(π+α)=-cosα=-12, ∴cosα=12,∴α 为第一或第四象限角.
[解析] ∵α∈(π,32π),∴sinα<0,
数 学
∴ 1-sin232π-α= 1-cos2α=-sinα.
必
修
④
·
人
教
A
版
( B)
返回导航
第一章 三角函数
5.若 α 是三角形内角,且 sin(π2+α)=-sinπ6,则 α=___23_π____.
[解析] sin(π2+α)=cosα=-12,又∵α∈(0,π),∴α=23π.
公式六
sin(π2+α)=____c_o_s_α_____
公式五和公式六可以概括为:
cos(π2-α)=______si_n_α____ cos(π2+α)=______-__si_n_α____
数 学
π2±α 的正弦(余弦)函数值,分别等于 α 的余弦(正弦)函数值,前面加上一个把 α
必
修 ④
看成__锐__角____时原函数值的符号,公式一~六都叫做诱导公式
公式,需将角写成符合公式的某种形式,这就需要将角中的某一部分作为一个
数 整体来看.
学 必 修 ④
· 人 教 A 版
返回导航
第一章 三角函数
[解析] 当 n 为偶数时,设 n=2k(k∈Z),
则原式=sin(8k-4 1π-α)+cos(8k+4 1π-α)
=sin[2kπ+(-π4-α)]+cos[2kπ+(π4-α)]
=sin(π4+α)-sin(π4+α)=0.
数 学
故 sin(4n- 4 1π-α)+cos(4n+ 4 1π-α)=0.
必
修
④
·
人
教
A
版
返回导航
第一章 三角函数
『规律总结』 1.本题的化简过程,突出体现了分类讨论的思想,当然除了 运用分类讨论的思想将n分两类情况来讨论外,在解答过程中还处处体现了化归 思想和整体思想.
第一章 三角函数
1.若 cos65°=a,则 sin25°的值是 A.-a C. 1-a2
B.a D.- 1-a2
[解析] sin25°=sin(90°-65°)=cos65°=a.
数 学 必 修 ④
· 人 教 A 版
( B)
返回导航
第一章 三角函数
2.若 sin(π2+θ)<0,且 cos(π2-θ)>0,则 θ 是
C.±45
D.35
[解析] ∵cosπ2+α=-35,∴-sinα=-35,∴sinα=35,
数 学
又 α 是第二象限角,∴cosα=-45,
必
修 ④
· 人
∴sinα-32π=cosα=-45.
教
A
版
返回导航
第一章 三角函数
4.若 α∈(π,32π),则 A.sinα C.cosα
1-sin232π-α= B.-sinα D.-cosα
=sin[2kπ+(34π-α)]+cos[2kπ+(54π-α)]
=sin(34π-α)+cos(54π-α)
数 学
=sin[π-(π4+α)]+cos[π+(π4-α)]
必
修
④
·
人
教
A
版
返回导航
第一章 三角函数
=sin(π4+α)-cos(π4-α)
=sin(π4+α)-cos[π2-(π4+α)]
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
[解析] 因为cosθ<0,sinθ>0,∴θ是第二象限角.
数 学 必 修 ④
· 人 教 A 版
( B)
返回导航
第一章 三角函数
3.已知 cosπ2+α=-35,且 α 是第二象限角,则 sinα-32π的结果是 ( B )
A.45
B.-45
学
必 修
(2)若 α=-1920°,求 f(α)的值.
④
·
人 教
[思路分析] 若f(α)的表达式很繁琐,可先化简再代入求值.
A
版
返回导航
第一章 三角函数
[解析]
f(α)=sinα·cosco-sαα+·csoiπns3322ππ--αα=sinα·c-oscαo·s--α csoinsαα=-cosα.
数 学 必 修
右边 公式―― 一→、二
tanθ+1 tanθ-1
切化―弦―,→化简
sinθ+cosθ sinθ-cosθ
得证 .
④
·
人
教
A
版
返回导航
第一章 三角函数
[证明] 左边=-2sin321π--2θs·in-2θsinθ-1
=2sin[π+1-π22-siθn2]θsinθ-1=-2sin1-π2-2sθins2iθnθ-1
新课标导学
数学
必修④ ·人教A版
第一章
三角函数 1.3 三角函数的诱导公式
第2课时 诱导公式五、六
1
自主预习学案
2
互动探究学案
3
课时作业学案
第一章 三角函数
自主预习学案
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
留恋于湖光山色,观山赏水,看山在水中倒映,山的巍
峨、水的柔媚在那一刻融合……如果你的手中拿着一个度数
〔跟踪练习 1〕sinco-sαπ2--3α2π·c·soisnπ232+π-αα·c·otas2n2π-2πα- α.
[解析]
原式=sinc-osαπ2+-π2α·[·-cossinπ2+π2-αα·c]o·sta2nπ2-2πα- α
数
=csoinsαα··--scionsαα··ctoasn22αα=tsainn22αα=co1s2α.
=sin(-π4-α)+cos(π4-α)
=-sin(π4+α)+cos[π2-(π4+α)]
数 学 必 修
=-sin(π4+α)+sin(π4+α)=0.
④
· 人
当 n 为奇数时,设 n=2k+1(k∈Z),
教
A
版
返回导航
第一章 三角函数
则原式=sin(8k+4 3π-α)+cos(8k+4 5π-α)
学
必
修
④
·
人
教
A
版
( D)
返回导航
第一章 三角函数
互动探究学案
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
命题方向1 ⇨利用诱导公式进行化简、求值
典例 1 已知 α 是第三象限角,
f(α)=sinπ-αcocoss2-π-αα-tπan-α+32π.
数
(1)若 cosα-32π=15,求 f(α)的值;
2.在转化过程中,缺乏整体意识,是出错的主要原因.
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
〔跟踪练习 3〕已知 A=scionskπ2π-+αα+csoisnkπ2π+-αα(k∈Z),则 A 的值构成的集合
是
(C )
A.{1,-1,2,-2}
B.{-2,0}
C.{2,-2}
·
人
教
A
版
返回导航
第一章 三角函数
[知识点拨]1.对诱导公式五、六的两点说明 (1)诱导公式五、六反映的是角π2±α 与 α 的三角函数值之间的关系.可借用口 诀“函数名改变,符号看象限”来记忆.
(2)诱导公式是三角变换的基本公式,其中角可以是是一个单角,也可以是一
个复角,应用时要注意整体把握,灵活变通.
A
版
返回导航
第一章 三角函数
『规律总结』 利用诱导公式证明等式问题,主要思路在于如何配角、如 何去分析角之间的关系.
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
〔跟踪练习 2〕求证:cossi3nπθ--θ5cπocso3s2ππ2+-θθsisnin-π2+4πθ- θ=-1. [证明] 左边=cos-π-sinθ5siπn-θ[θ-ssiinnθc4oπs+θ θ]
修 ④
· 人
sin(54π+α)=sin[32π-(π4-α)]=cos(π4-α)= 1-a2.
教
A
版
返回导航
第一章 三角函数
[错因分析] 对诱导公式三角函数值的符号确定掌握不好,在 sin[32π-(π4-α)] 中,要把“π4-α”看成锐角来确定三角函数值符号.
[思路分析] 诱导公式共有六组公式,公式较多,易错记错用(如本题错 解),特别是诱导公式右边的符号要记准.
2.对诱导公式一~六的两点说明
(1)诱导公式一~六揭示了终边具有某种对称关系的两个角的三角函数之间
数 的关系.