最新高考-2018届高考数学函数专题复习1 精品
2018届高考数学(理)热点题型:函数与导数((有答案))

函数与导数热点一 利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围.【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a-1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a>1时,g(a)>0.因此,实数a的取值范围是(0,1).【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a+a-1<0,则需要构造函数来解.【对点训练】已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a的取值范围.解(1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x< 2.所以函数f(x)的单调递增区间是(-2,2).(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0对x∈(-1,1)都成立,因为f′(x)=(-2x+a)e x+(-x2+ax)e x=[-x2+(a-2)x+a]e x,所以[-x2+(a-2)x+a]e x≥0对x∈(-1,1)都成立.因为e x>0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,即a≥x2+2xx+1=(x+1)2-1x+1=(x+1)-1x+1对x∈(-1,1)都成立.令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增,所以y <(1+1)-11+1=32.即a ≥32. 因此实数a 的取值范围为a ≥32.热点二 利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围. 【例2】设函数f(x)=ln x +mx ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数. 解 (1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2,由f ′(x )=0,得x =e. ∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2, ∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点; ②当m =23时,函数g (x )有且只有一个零点; ③当0<m <23时,函数g (x )有两个零点; ④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点; 当m =23或m ≤0时,函数g (x )有且只有一个零点; 当0<m <23时,函数g (x )有两个零点.【类题通法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.【对点训练】函数f (x )=(ax 2+x )e x,其中e 是自然对数的底数,a ∈R . (1)当a >0时,解不等式f (x )≤0;(2)当a =0时,求整数t 的所有值,使方程f (x )=x +2在[t ,t +1]上有解. 解 (1)因为e x >0,(ax 2+x )e x ≤0. ∴ax 2+x ≤0.又因为a >0, 所以不等式化为x ⎝ ⎛⎭⎪⎫x +1a ≤0.所以不等式f (x )≤0的解集为⎣⎢⎡⎦⎥⎤-1a ,0.(2)当a =0时,方程即为x e x =x +2, 由于e x >0,所以x =0不是方程的解, 所以原方程等价于e x -2x -1=0. 令h (x )=e x -2x -1,因为h ′(x )=e x +2x 2>0对于x ∈(-∞,0)∪(0,+∞)恒成立, 所以h (x )在(-∞,0)和(0,+∞)内是单调递增函数, 又h (1)=e -3<0,h (2)=e 2-2>0,h (-3)=e -3-13<0,h (-2)=e -2>0,所以方程f (x )=x +2有且只有两个实数根且分别在区间[1,2]和[-3,-2]上,所以整数t 的所有值为{-3,1}. 热点三 利用导数研究不等式问题导数在不等式中的应用是高考的热点,常以解答题的形式考查,以中高档题为主,突出转化思想、函数思想的考查,常见的命题角度:(1)证明简单的不等式;(2)由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题. 【例3】设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a .(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点. 当a >0时,设u (x )=e 2x ,v (x )=-ax ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-ax 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验), 故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0) 由于2e2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a .【类题通法】1.讨论零点个数的答题模板 第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数. 2.证明不等式的答题模板第一步:根据不等式合理构造函数; 第二步:求函数的最值;第三步:根据最值证明不等式.【对点训练】 已知函数f (x )=ax +ln x (a ∈R ). (1)若a =2,求曲线y =f (x )在x =1处的切线方程; (2)求f (x )的单调区间;(3)设g (x )=x 2-2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1]使得f (x 1)<g (x 2),求a 的取值范围.解 (1)由已知得f ′(x )=2+1x (x >0),所以f ′(1)=2+1=3,所以斜率k =3.又切点为(1,2),所以切线方程为y -2=3(x -1),即3x -y -1=0, 故曲线y =f (x )在x =1处的切线方程为3x -y -1=0. (2)f ′(x )=a +1x =ax +1x (x >0),①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0,所以f (x )的单调增区间为(0,+∞).②当a <0时,由f ′(x )=0,得x =-1a .在区间⎝ ⎛⎭⎪⎫0,-1a 上,f ′(x )>0,在区间⎝ ⎛⎭⎪⎫-1a ,+∞上,f ′(x )<0,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞.(3)由已知得所求可转化为f (x )max <g (x )max , g (x )=(x -1)2+1,x ∈[0,1], 所以g (x )max =2,由(2)知,当a ≥0时,f (x )在(0,+∞)上单调递增, 值域为R ,故不符合题意.当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,故f (x )的极大值即为最大值,是f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-1-ln(-a ),1所以2>-1-ln(-a),解得a<-e3.。
2018高考复习数学第一轮 第21讲反函数(知识点、例题、讲解、练习、拓展、答案)

2018高考复习数学第一轮第21讲 反函数一、知识要点1、反函数的定义:一般地,对于函数()y f x =,设它的定义域为D ,值域为A ,如果对A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,使()y f x =,这样得到的x =()1fy -.在习惯上,自变量用x 表示,而函数用y 表示,所以把它改写为()1y f x -=()x A ∈2、求反函数的一般方法:(1)由()y f x =解出1()x f y -=;(2)将1()x f y -=中的,x y 互换位置,得1()y f x -=; (3)求()y f x =的值域得1()y f x -=的定义域3、图象:互为反函数的两个函数具有相同的单调性,它们的图象关于y x =对称4、反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;二、 例题精讲例1、 求下列函数的反函数(1)()()12log 111y x x =-+<;(2))110y x =-≤≤答案:(1)()1112x y x R -⎛⎫=-∈ ⎪⎝⎭;(2))01y x =≤≤例2、已知函数()21x f x x a +=+()x a ≠-且12a ≠,求反函数()1f x -,并当()f x 与()1f x -的图像重合时求a .答案:2a =-例3、已知函数()2xf x a =+的反函数是()1y fx -=,设()1,P x a y +、()2,Q x y 、()32,R a y +是()1y f x -=图像上不同的三点.(1) 如果存在正实数x ,使得123,,y y y 依次成等差数列,试用x 表示实数a ; (2) 在(1)的条件下,如果实数x 是唯一的,试求实数a 的范围.答案:(1))02a x x x =>≠且;(2)0a >或12a =-.例4、已知函数())0f x a =<,其反函数为()1f x -.(1)若点)1P-在反函数()1f x -的图像上,求a 的值;(2)求证:函数()f x 的图像与y x =的图像有且仅有一个公共点.答案:(1)1a =-;(2)提示:y y x⎧=⎪⎨=⎪⎩有且只有一解落在20,a ⎛⎤- ⎥⎝⎦内即可.例5、已知函数(()log 1a y x a =+>的反函数()1f x -.(1) 若()()111fx f --<,求x 的取值范围;(2) 判断()12f-与()121f -、()13f -与()131f -的大小关系,并加以证明;(3) 请你根据(2)归纳出一个更一般的结论,并给予证明. 答案:(1)1x <;(2)()12f ->()121f -,()13f ->()131f -;(3)()()()111,2f n nf n N n -->∈≥例6、已知函数()1y fx -=是()y f x =的反函数,定义:若对给定的实数()0a a ≠,函数()y f x a =+与()1y f x a -=+互为反函数,则称()y f x =满足“a 和性质”;若函数()y f ax =与()1y fax -=互为反函数,则称()y f x =满足“a 积性质”. (1) 判断函数()()210g x x x =+>是否满足“1和性质”,并说明理由;(2) 求所有满足“2和性质”的一次函数;(3) 设函数()()0y f x x =>对任何0a >,满足“a 积性质”,求()y f x =的表达式.答案:(1)不满足;(2)()y x b b R =-+∈;(3)()()0kf x k x=≠三、课堂练习1、函数()()2log 14f x x x =+≥的反函数()1f x -的定义域是 .答案:[)3,+∞2、已知()f x 是定义在[]4,0-上的减函数,其图像端点为()4,1A -,()0,1B -,记()f x 的反函数是()1f x -,则()11f -的值是 ,()f x 的值域是 . 答案:4-,[]1,1-3、若lg lg 0a b +=(其中1,1a b ≠≠),则函数()xf x a =与()xg x b =的图像关于对称. 答案:y 轴4、设函数()y f x =的反函数为()1y fx -=,且()21y f x =-的图像经过点1,12⎛⎫⎪⎝⎭,则()y f x =的反函数的图像必过点( ) A 、1,12⎛⎫⎪⎝⎭B 、11,2⎛⎫⎪⎝⎭C 、()1,0D 、()0,1答案:C5、已知函数()f x 存在反函数()1f x -,若1y f x ⎛⎫=⎪⎝⎭过点()2,3,则函数11f x -⎛⎫ ⎪⎝⎭恒过点( ) A 、()3,2B 、11,23⎛⎫⎪⎝⎭C 、11,32⎛⎫⎪⎝⎭D 、1,23⎛⎫ ⎪⎝⎭答案:C四、 课后作业 一、填空题1、函数()()1312f x x =-+的反函数()1f x -= .答案:()()321x x R -+∈2、若直线1y ax =+与直线2y x b =-+关于直线y =x 对称,则a = ,b = .答案:12-,23、已知函数()34log 2f x x ⎛⎫=+ ⎪⎝⎭,则方程()14f x -=的解为x = . 答案:14、已知函数()()y f x x D =∈的值域为A ,其反函数()1y fx -=,则方程()0f x =有解x a =,且()()f x x x D >∈的充要条件是 . 答案;()10fa -=且()()1f x x x A -<∈5、设()()12,01,0xa x f x f x x -⎧-≤⎪=⎨->⎪⎩,若()f x x =有且只有两个实数根,则实数a 的取值范围是 . 答案:[)2,46、若函数()xf x a k =+的图像经过点()1,7,又函数()14fx -+的图像经过点()0,0,则()f x 的解析式为 . 答案:()43xf x =+二、选择题7、函数()223f x x ax =--在区间[]1,2上存在反函数的充要条件是( )A 、(],1a ∈-∞B 、[)2,a ∈+∞C 、[]1,2a ∈D 、(][),12,a ∈-∞+∞答案:D8、函数()()1ln1,1x y x x +=∈+∞-的反函数为( ) A 、()1,0,1x xe y x e -=∈+∞+B 、()1,0,1x xe y x e +=∈+∞- C 、()1,0,1x xe y x e -=∈+∞+D 、()1,0,1x xe y x e +=∈+∞- 答案:B9、设函数()()()log 0,1a f x x b a a =+>≠的图像过点()2,1,其反函数的图像过点()2,8,则a b +等于( )A 、6B 、5C 、4D 、3答案:C三、解答题10、已知函数()lg 101xy =-.(1)求()y f x =的反函数()1y f x -=;(2)若方程()()12fx f x λ-=+总有实根,求实数λ的取值范围.答案:(1)()()()1lg 101xf x x R -=+∈;(2)()lg 2λ≥11、给定实数a (0a ≠且1a ≠),设函数11x y ax -=-(x R ∈且1x a≠),求证: (1)经过这个函数图像上任意两个不同的点的直线不平行于x 轴;(2)这个函数图像关于直线y x =成轴对称图形;(3)你能否再给出一些函数,其图像关于直线y x =成轴对称图形? 答案:(1)提示:证明斜率不为0即可;(2)提示:证明其反函数为其自身;(3)())2,,0,0,01ax by x y x b y bc a c y x cx a+==-+=+≠≠=≤≤-等.12、为研究“原函数图像与其反函数图像的交点是否在直线y x =上”这个课题,我们可以分三步进行研究:(1)首先选取如下函数:21y x =+,21xy x =+,y = 求出以上函数图像与其反函数图像的交点坐标:21y x =+与其反函数12x y -=的交点坐标为()1,1--, 21x y x =+与其反函数2x y x=-的交点坐标为()()0,0,1,1,y =()210y x x =-≤的交点坐标为⎝⎭,()1,0-,()0,1-;(2)观察分析上述结果得到研究结论;(3)对得到的结论进行证明. 现在请你完成(2)和(3) 答案:(2)原函数图像与其反函数图像的交点不一定在直线y x =上; (3)提示:反证法.。
最新-2018届高考数学一轮复习 第4讲函数及其表示课件 理 新人教课标A版 精品

第4讲 │ 要点探究
(1)函数 y= kx2-6x+k+8的定义域为 R,则 k 的取值
范围是( )
A.k≥0 或 k≤-9
B.k≥1
C.-9≤k≤1
D.0<k≤1
(2)若函数 f(x)=mx2+x-4m4x+3的定义域为 R,则实数 m 的取值 范围是________.
第4讲 │ 要点探究
(1)B (2)0,34 [解析] (1)∵kx2-6x+k+8≥0 恒成立,k≤0 显然不符,∴kΔ>=0,36-4kk+8≤0, 解得 k≥1.
第4讲 │ 要点探究
(3)当 x>1 或 x<-1 时,x2-1>0, ∴g[f(x)]=g(x2-1)= (x2-1) -1=x2-2. 当-1≤x≤1 时,x2-1≤0, ∴g[f(x)]=g(x2-1)=2-(x2-1)=-x2+3, 故 g[f(x)]=-x2-x2+2,3,x>-1或1≤x<x-≤11,.
B.f(x)= x2x-4,x∈-∞,-2∪2,+∞
C.f(x)=- 4-x x2,x∈-2,0∪0,2
D.f(x)= 4-x x2,x∈-2,0∪0,2
第4讲 │ 要点探究
(3)[2010·合肥模拟] 已知函数 f(2x)定义域是[1,2],则函数
f(log2x)的定义域为________.
[思路] (1)(2)是根据函数解析式求其定义域,只要根据使函数表
(3)∵f(2x)的定义域为[1,2],因此函数 f(x)的定义域为[2,4],由 2≤log2x≤4,解得 4≤x≤16,因此函数 f(log2x)的定义域为[4,16].
[点评] (1)由函数解析式求定义域,关键是列出使函数有意义的条 件,解出各条件中自变量取值范围,并结合数轴求得它们的交集,从 而得到函数的定义域;(2) 若函数 f(x)的定义域为[a,b],则复合函数 y=f[g(x)]的定义域是不等式 a≤g(x)≤b 的解集;(3)函数的定义域应 写成区间或集合的形式.对于已知函数定义域求字母参数问题,可转 化为恒成立问题求解,如下面的变式题.
2018届高考数学(文)二轮专题复习课件:第1部分 专题二 函数、不等式、导数 1-2-3

(3)已知切线上一点(非切点),求 y=f(x)的切线方程: 设切点 P(x0,y0),利用导数求得切线斜率 f′(x0),然后由斜率 公式求得切线斜率,列方程(组)解得 x0,再由点斜式或两点式写出 方程. 2.利用切线(或方程)与其他曲线的关系求参数 已知过某点的切线方程(斜率)或其与某线平行、垂直,利用导 数的几何意义、切点坐标、切线斜率之间的关系构建方程(组)或函 数求解.
1 解析:通解:令 f(x)=x+ln x,求导得 f′(x)=1+x ,f′(1)= 2,又 f(1)=1,所以曲线 y=x+ln x 在点(1,1)处的切线方程为 y-1 =2(x-1),即 y=2x-1.设直线 y=2x-1 与曲线 y=ax2+(a+2)x +1 的切点为 P(x0,y0),则 y′|x=x0=2ax0+a+2=2,得 a(2x0+ 1)=0, 1 2 ∴a=0 或 x0=-2,又 ax2 + ( a + 2) x + 1 = 2 x - 1 ,即 ax 0 0 0 0+ax0 1 +2=0,当 a=0 时,显然不满足此方程,∴x0=-2,此时 a=8.
解析:通解:由题意可得 f′(x)=3ax2+1, ∴f′(1)=3a+1, 又 f(1)=a+2,∴f(x)=ax3+x+1 的图象在点(1,f(1))处的切 线方程为 y-(a+2)=(3a+1)(x-1),又此切线过点(2,7), ∴7-(a+2)=(3a+1)(2-1),解得 a=1.
5-a 优解:∵f(1)=2+a,由(1,f(1))和(2,7)连线斜率 k= 1 =5 -a,f′(x)=3ax2+1,∴5-a=3a+1,∴a=1.
当 a<0 时,f(x)图象如图,x1 为极小值点,x2 为极大值点.
3.若函数 y=f(x)为偶函数,则 f′(x)为奇函数; 若函数 y=f(x)为奇函数,则 f′(x)为偶函数. 4.y=ex 在(0,1)处的切线方程为 y=x+1; y=ln x 在(1,0)处的切线方程为 y=x-1.
(完整word版)2018高考一轮复习函数知识点及最新题型归纳

2018高考一轮复习函数知识点及题型归纳一、函数的及其表示题型一:函数的概念映射的概念:设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的每一个元素在集合B 中都有唯一确定的元素和它对应,那么这样的对应叫做从集合A 到集合B 的映射,记作f :A →B .函数的概念:如果A 、B 都是非空的数集.....,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,记作()y f x = ,其中x ∈A ,y ∈B ,原象的集合A 叫做定义域,象的集合C 叫做函数()y f x =的值域. 映射的基本条件:1. 可以多个x 对应一个y ,但不可一个x 对应多个y 。
2. 每个x 必定有y 与之对应,但反过来,有的y 没有x 与之对应。
函数是一种特殊的映射,必须是数集和数集之间的对应。
例1:已知集合P={40≤≤x x },Q={20≤≤y y },下列不表示从P 到Q 的映射是( ) A. f ∶x →y=21x B. f ∶x →y=x 31 C. f ∶x →y=x 32 D. f ∶x →y=x例2:设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N , 则f (x )的图象可以是( )例3:下列各组函数中,函数)(x f 与)(x g 表示同一函数的是(1))(x f =x ,)(x g =xx 2; (2))(x f =3x -1,)(t g =3t -1;(3))(x f =0x ,)(x g =1; (4))(x f =2x ,)(x g =2)(x ;题型二:函数的表达式1. 解析式法例4:已知函数()32,0,4tan ,0,2x x f x f f x x ππ⎧<⎛⎫⎪⎛⎫==⎨ ⎪ ⎪-≤≤⎝⎭⎝⎭⎪⎩则 .真题:【2017年山东卷第9题】设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B ) 4 (C ) 6 (D ) 8[2014·江西卷] 已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≥0,2-x ,x <0(a ∈R ).若f [f (-1)]=1,则a =( )A.14B.12C .1D .2 【2015高考新课标1文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74-(B )54- (C )34- (D )14- 2. 图象法例5:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是_______________ 例6:向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系的图象如图2—4所示,那么水瓶的形状是( )例7:如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线1l ,2l 之间,l //1l ,l 与半圆相交于F,G 两点,与三角形ABC 两边相交于E,D 两点.设弧FG 的长为x(0<x <π),y=EB+BC+CD ,若l 从1l 平行移动到2l ,则函数y=f(x)的图像大致是( )真题:【2015高考北京】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是st OA .st Ost OstOB .C .D .A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【2015年新课标2文科】如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .3.表格法例8:已知函数()f x ,()g x 分别由下表给出x 123x 123f(x)131g(x)321则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是.题型三:求函数的解析式.1. 换元法例9:已知1)1(+=+x x f ,则函数)(x f =变式1:已知x x x f 2)12(2-=+,则)3(f =变式2:已知f (x 6)=log 2x ,那么f (8)等于2.待定系数法例10:已知二次函数f (x)满足条件f (0)=1及f (x+1)-f (x)=2x 。
2018年高考真题汇编(函数与导数)

函数与导数1.【2018年浙江卷】函数y=sin2x的图象可能是A. B.C. D.【答案】D点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D.【答案】D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则A. B. C. D.【答案】B【解析】分析:求出,得到的范围,进而可得结果。
2018年度高考文科数学分类汇编专栏三函数与导数

《2018年高考文科数学分类汇编》第三篇:函数与导数一、选择题1.【2018全国一卷6】设函数()()321f x x a x ax =+-+.假设()f x 为奇函数,那么曲线()y f x =在点()00,处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =2.【2018全国二卷10】若()cos sin f x x x =-在[,]a a -是减函数,那么a 的最大值是A .π4B .π2C .3π4D .π3.【2018全国三卷9】函数422y x x =-++的图像大致为4.【2018浙江卷5】函数y =||2x sin2x 的图象可能是A .B .C .D .二、填空题1.【2018全国二卷13】曲线2ln y x =在点(1,0)处的切线方程为__________.2.【2018天津卷10】已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,那么f ′(1)的值为__________.3.【2018江苏卷11】假设函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,那么()f x 在[1,1]-上的最大值与最小值的和为 .三.解答题1.【2018全国一卷21】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.2.【2018全国二卷21】已知函数()()32113f x x a x x =-++.(1)假设3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点.3.【2018全国三卷21】已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.4.【2018北京卷19】设函数2()[(31)32]e xf x ax a x a =-+++.(Ⅰ)假设曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)假设()f x 在1x =处取得极小值,求a 的取值范围.5.【2018天津卷20】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )假设20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程; (II )假设3d =,求()f x 的极值;(III )假设曲线()y f x =与直线2()63y x t =---有三个互异的公共点,求d 的取值范围.6.【2018江苏卷17】某农场有一块农田,如下图,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 组成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现计划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ别离表示矩形ABCD 和CDP △的面积,并确信sin θ的取值范围;(2)假设大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、θ为何值时,能乙两种蔬菜的单位面累年产值之比为43∶.求当使甲、乙两种蔬菜的年总产值最大.7.【2018江苏卷19】(本小题总分值16分)记(),()f x g x ''别离为函数(),()f x g x 的导函数.假设存在0x ∈R ,知足00()()f x g x =且00()()f x g x ''=,那么称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”;(2)假设函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;8.【2018浙江卷22】已知函数f (x x ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:关于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.9.【2018上海卷19】(此题总分值14分,第1小题总分值6分,第2小题总分值8分)某群体的人均通勤时刻,是指单日内该群体中成员从居住地到工作地的平均历时,某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中()%0100x x <<的成员自驾时,自驾群体的人均通勤时刻为⎪⎩⎪⎨⎧<<-+≤<=10030,9018002300,30)(x x x x x f (单位:分钟), 而公交群体的人均通勤时刻不受x 阻碍,恒为40分钟,试依照上述分析结果回答以下问题: I )当x 在什么范围内时,公交群体的人均通勤时刻少于自驾群体的人均通勤时刻?II )求该地上班族S 的人均通勤时刻g x ()的表达式;讨论g x ()的单调性,并说明其实际意义.参考答案 一、选择题1.D2.A3.D4.D 二、填空题1. 22-=x y2.e 3.3-三.解答题1.解:(1)f (x )的概念域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,因此a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.因此f (x )在(0,2)单调递减,在(2,+∞)单调递增. (2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.因此x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥.2.解:(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x =3-x =3+当x ∈(–∞,3-3++∞)时,f ′(x )>0;当x ∈(3-3+ f ′(x )<0.故f (x )在(–∞,3-3++∞)单调递增,在(3-3+(2)由于210x x ++>,因此()0f x =等价于32301x a x x -=++. 设()g x =3231x a x x -++,那么g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0,因此g (x )在(–∞,+∞)单调递增.故g (x )最多有一个零点,从而f (x )最多有一个零点.又f (3a –1)=22111626()0366a a a -+-=---<,f (3a +1)=103>,故f (x )有一个零点.综上,f (x )只有一个零点.3.解:(1)2(21)2()e xax a x f x -+-+'=,(0)2f '=.因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+. 令21()1e x g x x x +≥+-+,那么1()21e x g x x +'≥++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 因此()g x (1)=0g ≥-.因此()e 0f x +≥.4.解:(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++,因此2()[(1)1]e xf x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)方式一:由(Ⅰ)得2()[(1)1]e (1)(1)e xxf x ax a x ax x '=-++=--. 若a >1,那么当1(,1)x a∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>. 因此()f x 在x =1处取得极小值.若1a ≤,那么当(0,1)x ∈时,110ax x -≤-<, 因此()0f x '>.因此1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞.方式二:()(1)(1)e xf x ax x '=--.(1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的转变情形如下表:∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x ==. ①当12x x =,即a =1时,2()(1)e 0xf x x '=-≥,∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的转变情形如下表:∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的转变情形如下表:∴()f x 在x =1处取得极小值,即a >1知足题意. (3)当a <0时,令()0f x '=得121,1ax x ==. (),()f x f x '随x 的转变情形如下表:∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞.5.解:(I )由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故()f x '=3x 2−1,因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y −f (0)=(0)f '(x −0),故所求切线方程为x +y =0.(Ⅱ)由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故()f x '=3x 2−6t 2x +3t 22−9.令()f x '=0,解得x =t 2,或x =t 2 当x 转变时,()f x ',f (x )的转变如下表:因此函数f (x )的极大值为f (t 2)3−9×(f (x )的极小值为f (t 2+3−)=−(Ⅲ)解:曲线y =f (x )与直线y =−(x −t 2)−x 的方程(x −t 2+d )(x −t 2)(x −t 2−d )+(x −t 2有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u .设函数g (x )=x 3+(1−d 2)x ,那么曲线y =f (x )与直线y =−(x −t 2)−y =g (x )有三个零点.()g'x =3x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=,x 2.易患,g (x )在(−∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增.g (x )的极大值g (x 1)=g (+.g (x )的极小值g (x 2)=g)=+ 若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )最多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也确实是||d >现在2||d x >,(||)||630,g d d =+>且312||,(2||)6||2||636210630d x g d d d -<-=--+<-+<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意. 因此,d 的取值范围是(,10)(10,)-∞-+∞.6.解:(1)连结PO 并延长交MN 于H ,那么PH ⊥MN ,因此OH =10.过O 作OE ⊥BC 于E ,那么OE ∥MN ,因此∠COE =θ, 故OE =40cos θ,EC =40sin θ,那么矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,别离交圆弧和OE 的延长线于G 和K ,那么GK =KN =10. 令∠GOK =θ0,那么si n θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出知足条件的矩形ABCD , 因此sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面累年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 那么年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,因此f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,因此f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.7.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,那么f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,那么1221e 22(e )a -==. 当e2a =时,120e x -=知足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不中断的,因此存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,那么b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 现在,0x 知足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.8.解:(Ⅰ)函数f (x )的导函数11()2f x x x '=-, 由12()()f x f x ''=得1212111122x x x x -=-, 因为12x x ≠,因此121112x x +=. 由大体不等式得4121212122x x x x x x =+≥. 因为12x x ≠,因此12256x x >. 由题意得12112212121()()ln ln ln()2f x f x x x x x x x x x +=-+-=-. 设1()ln 2g x x x =-,那么1()(4)4g x x x '=-, 因此x(0,16) 16 (16,+∞) ()g x '− 0 + ()g x 2−4ln2因此g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-.(Ⅱ)令m =()e a k -+,n =21()1a k++,那么 f (m )–km –a >|a |+k –k –a ≥0,f (n )–kn –a <()a n k n n --≤()n k n<0, 因此,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,因此,关于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点.由f (x )=kx +a 得ln x x a k --=设h (x )ln x x a -- 则h ′(x )=22ln 1()12x x a g x a x x --+--+=, 其中g (x )ln x x . 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,因此h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0最多1个实根. 综上,当a ≤3–4ln2时,关于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.9.解(1)①当300≤<x 时,自驾群体人均通勤时刻为30分钟,公交群体人均通勤时刻为40分钟,现在公交群体人均通勤时刻大于自驾群体人均通勤时刻。
2018届高考数学理科全国通用一轮总复习课件:第二章 函数、导数及其应用 2.11.1 精品

【加固训练】
1.已知函数f(x)=x+ a +lnx(a∈R).
x
(1)求函数f(x)的单调区间.
(2)若函数f(x)在(1,+∞)上单调递增,求a的取值范围.
【解析】(1)函数f(x)=x+ a +lnx的定义域为
x
(0,+∞),f′(x)=
1-
a x2
+1=x2 x
x x2
a
.
①当Δ=1+4a≤0,即a≤- 1时,x2+x-a≥0恒成立,即
数φ(x)=
2 x
1 x2
( 1 故1)只2 要1,2m≥1即可,即
x
m 1. 2
答案:[1 , )
2
考向一 利用导数判断或证明函数的单调性 【典例1】(1)(2015·湖南高考)设函数f(x)=ln(1+x)ln(1-x),则f(x)是 ( ) A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数
第十一节 导数在研究函数中的应用 第一课时 利用导数研究函数的单调性
【知识梳理】 函数的单调性与导数的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内_单__调__递__增__; (2)若f′(x)<0,则f(x)在这个区间内_单__调__递__减__; (3)若f′(x)=0,则f(x)在这个区间内是_常__数__函__数__.
(4)确定f′(x)在各个区间内的符号,根据符号判定函 数在每个相应区间内的单调性.
【变式训练】已知函数f(x)=(-x2+2x)ex,x∈R,e为自 然对数的底数.则函数f(x)的单调递增区间为 .
2018届高考数学文二轮复习全国通用课件:专题一 函数与导数、不等式 第5讲 含解析 精品

(2)f(x)=xx+ln 1x,∀x∈[1,+∞),f(x)≤m(x-1), 即 ln x≤mx-1x.设 g(x)=ln x-mx-1x, 即∀x∈[1,+∞),g(x)≤0 恒成立,等价于函数 g(x)在[1,+∞)
上的最大值 g(x)max≤0. g′(x)=1x-m1+x12=-mx2x+2 x-m. ①若 m≤0,g′(x)>0,g(x)在[1,+∞)上单调递增,
=0,即当 x>1 时,f(x)<x-1.
(3)解 由(2)知,当 k=1 时,不存在 x0>1 满足题意. 当 k>1 时,对于 x>1,有 f(x)<x-1<k(x-1), 则 f(x)<k(x-1), 从而不存在 x0>1 满足题意. 当 k<1 时, 令 G(x)=f(x)-k(x-1),x∈(0,+∞), 则有 G′(x)=1x-x+1-k=-x2+(1x-k)x+1.
(ⅱ)当 a>2 时,令 g′(x)=0 得, x1=a-1- (a-1)2-1,x2=a-1+ (a-1)2-1. 由 x2>1 和 x1x2=1 得 x1<1, 故当 x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)单调递减, 因此 g(x)<0, 综上,a 的取值范围是(-∞,2].
当 a≥12时,令 h(x)=f(x)-g(x)(x≥1),当 x>1 时,h′(x)=2ax-1x+ x12-e1-x>x-1x+x12-1x=x3-x22x+1>x2-x22x+1>0.
因此,h(x)在区间(1,+∞)上单调递增. 又因为 h(1)=0,所以当 x>1 时,h(x)=f(x)-g(x)>0, 即 f(x)>g(x)恒成立. 综上,a∈12,+∞. 探究提高 (1)恒成立问题一般与不等式有关,解决此类问 题需要构造函数利用函数单调性求函数最值,从而说明函 数值大于或恒小于某一确定的值.(2)在求参数范围时首先要 考虑参数能否分离出来.
2018年高考数学一轮复习(讲+练+测): 专题4.5 函数y=Asin(ωx+φ)的图象及其应用(练)

专题4.5 函数y =Asin (ωx +φ)的图象及其应用【基础巩固】一、填空题1.(2016·全国Ⅱ卷改编)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为________. 【答案】x =k π2+π6(k ∈Z )2.(2017·衡水中学金卷)若函数y =sin(ωx -φ)(ω>0,|φ|<π2)在区间⎣⎢⎡⎦⎥⎤-π2,π上的图象如图所示,则ω,φ的值分别是________.【答案】2,π3【解析】由题图可知,T =2⎣⎢⎡⎦⎥⎤π6-⎝ ⎛⎭⎪⎫-π3=π,所以ω=2πT =2,又sin ⎝ ⎛⎭⎪⎫2×π6-φ=0,所以π3-φ=k π(k∈Z ),即φ=π3-k π(k ∈Z ),而|φ|<π2,所以φ=π3.3.(2017·苏北四市调研)如图,已知A ,B 分别是函数f (x )=3sin ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =π2,则该函数的周期是________.【答案】4【解析】设函数的周期为T ,由图象可得A ⎝ ⎛⎭⎪⎫T 4,3,B ⎝ ⎛⎭⎪⎫3T 4,-3,则OA →·OB →=3T 216-3=0,解得T =4.4.(2017·南京师大附中、淮阴中学、海门中学、天一中学四校联考)将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数y =f (x )的图象,若函数f (x )的图象过原点,则φ=________.【答案】3π4【解析】将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图象,若函数f (x )的图象过原点,则f (0)=sin ⎝ ⎛⎭⎪⎫π4+φ=0,π4+φ=k π,k ∈Z ,φ=k π-π4,k ∈Z ,又0<φ<π,则φ=3π4. 5.(2017·南京调研)如图,它是函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈[0,2π))图象的一部分,则f (0)的值为________.【答案】3226.(2017·龙岩模拟)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6x -6(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃. 【答案】20.5【解析】因为当x =6时,y =a +A =28; 当x =12时,y =a -A =18,所以a =23,A =5, 所以y =f (x )=23+5cos ⎣⎢⎡⎦⎥⎤π6x -6,所以当x =10时,f (10)=23+5cos ⎝ ⎛⎭⎪⎫π6×4=23-5×12=20.5.7.已知函数f(x)=sin(ωx+φ)⎝⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎪⎫2,-12,则函数f(x)的解析式为________.【答案】f(x)=sin⎝⎛⎭⎪⎫πx2+π68.函数f(x)=3sinπ2x-log12x的零点的个数是________.【答案】5【解析】函数y=3sinπ2x的周期T=2ππ2=4,由log12x=3,可得x=18.由log12x=-3,可得x=8.在同一平面直角坐标系中,作出函数y=3sinπ2x和y=log12x的图象(如图所示),易知有5个交点,故函数f(x)有5个零点.二、解答题9.已知函数f(x)=sin ωx+cos⎝⎛⎭⎪⎫ωx+π6,其中x∈R,ω>0.(1)当ω=1时,求f⎝⎛⎭⎪⎫π3的值;(2)当f(x)的最小正周期为π时,求f(x)在⎣⎢⎡⎦⎥⎤0,π4上取得最大值时x的值.10.(2017·苏、锡、常、镇四市调研)已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π.(1)求f ⎝ ⎛⎭⎪⎫π4的值; (2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.解 (1)因为f (x )的图象上相邻最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤φ<π2,所以k =0, 所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6,则f ⎝ ⎛⎭⎪⎫π4=3sin ⎝ ⎛⎭⎪⎫2×π4-π6=3sin π3=32.(2)将f (x )的图象向右平移π12个单位后,得到f ⎝⎛⎭⎪⎫x -π12的图象,所以g (x )=f ⎝ ⎛⎭⎪⎫x -π12=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6=3sin ⎝⎛⎭⎪⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z ).【能力提升】11.(2017·南京模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,给出下列结论:①f (x )的图象关于直线x =π3对称; ②f (x )的图象关于点⎝⎛⎭⎪⎫π6,0对称;③f (x )的最小正周期为π,且在⎣⎢⎡⎦⎥⎤0,π12上为增函数;④把f (x )的图象向右平移π12个单位,得到一个偶函数的图象.其中正确的是________(填序号). 【答案】③12.(2017·泰州一模)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.【答案】(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞ 【解析】当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω, 由题意知π4ω≤-π2,∴ω≤-2.综上可知,ω的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞.13.(2015·湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________. 【答案】π214.(2017·扬州中学质检)如图,函数y =2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2的部分图象与y 轴交于点(0,3),最小正周期是π.(1)求ω,φ的值;(2)已知点A ⎝ ⎛⎭⎪⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是PA 的中点,当y 0=32,x 0∈⎣⎢⎡⎦⎥⎤π2,π时,求x 0的值.解 (1)将点(0,3)代入y =2cos(ωx +φ),得cos φ=32, ∵0≤φ≤π2,∴φ=π6.∵最小正周期T =π,且ω>0,∴ω=2πT=2.(2)由(1)知y =2cos ⎝⎛⎭⎪⎫2x +π6. ∵A ⎝ ⎛⎭⎪⎫π2,0,Q (x 0,y 0)是PA 中点,y 0=32,∴P ⎝ ⎛⎭⎪⎫2x 0-π2,3.。
高考数学真题——函数压轴题(含答案)

所以当 x 1 时, g '(x) 0 ,而 g(1) 0 ,故当 x 1 时, g( x) 0 .
从而 g (x2) f (2 x2) 0 ,故 x1 x2 2 .
2013 年数学全国 1 卷
设函数
=
,
=
,若曲线
P(0 , 2) ,且在点 P 处有相同的切线
(Ⅰ)求 , , , 的值;
(Ⅱ)当 ≥- 2 时,
f ( x)
令 x 1 得: f (0) 1
f (1)ex 1
f (0) x
f ( x) f (1)ex 1 x 1 x2 2
f (0) f (1)e 1 1
f (1) e
得: f (x) ex x 1 x2 2
g( x) f (x) ex 1 x
g ( x) ex 1 0 y g (x) 在 x R 上单调递增
a 2)
n 0 e n0 n 0 2 n0 n 0 0
.
3 ln( 1) 由于 a
ln a ,因此 f ( x) 在 ( ln a,
) 有一个零点 .
综上, a的取值范围为 (0,1)
2016 年数学全国 1 卷
已知函数 f ( x) (x 2)e x a( x 1)2 有两个零点 .
( I)求 a 的取值范围;
2
) 时, f ( x) 0 ;
a 当 x(
a2 4 a ,
2
a2 4 )时,
2
f (x )
. 所 以 f (x) 在
(0, a
增.
a2 4 a ),(
2
a2 4 ,
2
a ) 单调递减,在 (
a2 4 a ,
2
a2 4 ) 单调递
2018届高考数学理二轮复习全国通用课件 专题一 函数与导数、不等式 第1讲 精品

热点二 函数图象的问题 [微题型1] 函数图象的变换与识别 【例2-1】 (1)(2016·成都诊断)已知f(x)=2x-1,g(x)=1-x2,
规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)= -g(x),则h(x)( )
A.有最小值-1,最大值1 B.有最大值1,无最小值 C.有最小值-1,无最大值 D.有最大值-1,无最小值
第1讲 函数图象与性质及函数与方程
高考定位 1.以分段函数、二次函数、指数函数、对数函数为载 体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用 图象研究函数性质、方程及不等式的解,综合性强;3.以基本初 等函数为依托,考查函数与方程的关系、函数零点存在性定理. 数形结合思想是高考考查函数零点或方程的根的基本方式.
若存在唯一的整数x0使得f(x0)<0,则实数a的取值范围是( )
A.-23e,1 C.23e,34
B.-23e,34 D.23e,1
解析 (1)函数y=|f(x)|的图象如图.y=ax为过原点的一条直线, 当a>0时,与y=|f(x)|在y轴右侧总有交点,不合题意;当a=0 时成立;当a<0时,找与y=|-x2+2x|(x≤0)相切的情况,即 y′=2x-2,切线方程为y=(2x0-2)(x-x0),由分析可知x0=0, 所以a=-2,综上,a∈[-2,0].
D.4m
解析 (1)由f(x)=2|x-m|-1是偶函数可知m=0,
所以f(x)=2|x|-1.
所以a=f(log0.53)=2|log0.53|-1=2log23-1=2, b=f(log25)=2|log25|-1=2log25-1=4, c=f(0)=2|0|-1=0,所以c<a<b.
2018年高考数学复习专题测试课件:函数的图象

2
1 1 sin 2x≤ ,排除B,故选C. 2 2
令 x , 得 f 0 思路分析 特殊值代入排除A,D , 观察 B 、 C 的不同点 x ∈ 0, 时, f(x)max与 2 2 2
1 上的最大值排除B. 的大小关系不同 ,利用函数y=f(x)在 0, 2
思路分析 求P位于特殊位置时PA+PB的值,分析选项中图象,利用排除法判断.
4.(2014课标全国Ⅰ,6,5分,0.682)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边 为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的
函数f(x),则y=f(x)在[0,π]上的图象大致为 (
m i 1
2
2
=m.故选B. 思路分析 分析出函数y=f(x)和y= 的图象都关于点(0,1)对称,进而得两函数图象的交点成对 出现,且每一对交点都关于点(0,1)对称,从而得出结论.
x 1 x
3.(2015课标全国Ⅱ,10,5分,0.439)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边 BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大
2
B组 自主命题·省(区、市)卷题组
考点一 函数图象的识辨
) 1.(2017浙江,7,5分)函数y=f(x)的导函数y=f ‘(x)的图象如图所示,则函数y=f(x)的图象可能是(
答案 D
本题考查函数图象的识辨,利用导数判断函数的单调性和极值.
不妨设导函数y=f '(x)的零点依次为x1,x2,x3,其中x1<0<x2<x3,由导函数图象可知,y=f(x)在(-∞,x1)上 为减函数,在(x1,x2)上为增函数,在(x2,x3)上为减函数,在(x3,+∞)上为增函数,从而排除A,C.y=f(x)在x =x1,x=x3处取到极小值,在x=x2处取到极大值,又x2>0,排除B,故选D.
2018年高考数学分类汇编函数及答案解析

2018年高考数学分类汇编函数一.选择题1、(2018年高考全国卷I文科5)(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.2、(2018年高考全国卷1文科9)(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.3、(2018年高考全国卷1理科2)(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.4、(2018年高考全国卷1理科5)(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.5、(2018年高考全国卷1理科9)(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.6、(2018年高考全国卷2文科3)(5分)函数f(x)=的图象大致为()A.B.CD.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.7、(2018年高考全国卷2文科12)(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.8、(2018年高考全国卷2理科3)(5分)函数f(x)=的图象大致为()A.B.C.D.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.9.(2018年高考全国卷2理科11)(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.10.(2018年高考全国卷3文科7)(5分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)【解答】解:首先根据函数y=lnx的图象,则:函数y=lnx的图象与y=ln(﹣x)的图象关于y轴对称.由于函数y=lnx的图象关于直线x=1对称.则:把函数y=ln(﹣x)的图象向右平移2个单位即可得到:y=ln(2﹣x).即所求得解析式为:y=ln(2﹣x).故选:B.11.(2018年高考全国卷3文科9)(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x<﹣或0<x<,此时函数单调递增,排除C,故选:D.12.(2018年高考全国卷3理科7)(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x<﹣或0<x<,此时函数单调递增,排除C,故选:D.13.(2018年高考全国卷3理科12)(5分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3=,b=log20.3=,∴=,,∵,,∴ab<a+b<0.故选:B.14.(2018年北京市高考数学试卷文科8)(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y ≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x ﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;故选:D.15.(2018年北京市高考数学试卷理科8)(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay ≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y ≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x ﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;故选:D.16.(2018年上海市高考数学试卷16)(5分)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【解答】解:设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,故f(1)=cos=,故选:B.17.(2018年浙江省高考数学试卷5)(4分)函数y=2|x|sin2x的图象可能是()A.B.C.D.【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.18.(2018年天津市高考数学试卷文科3)(5分)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.19.(2018年天津市高考数学试卷文科5)(5分)已知a=log3,b=(),c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:∵a=log 3,c=log=log35,且5,∴,则b=()<,∴c>a>b.故选:D.20.(2018年天津市高考数学试卷理科5)(5分)已知a=log2e,b=ln2,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log 2e>1,0<b=ln2<1,c=log=log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.二.填空题1.(2018年高考全国卷I文科13)(5分)已知函数f(x)=log2(x2+a),若f(3)=1,则a=.【解答】解:函数f(x)=log2(x2+a),若f(3)=1,可得:log2(9+a)=1,可得a=﹣7.故答案为:﹣7.2.(2018年高考全国卷2文科13)(5分)曲线y=2lnx在点(1,0)处的切线方程为.【解答】解:∵y=2lnx,∴y′=,当x=1时,y′=2∴曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.故答案为:y=2x﹣2.3.(2018年高考全国卷2理科13)(5分)曲线y=2ln(x+1)在点(0,0)处的切线方程为.【解答】解:∵y=2ln(x+1),∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.4.(2018年高考全国卷3文科16)(5分)已知函数f(x)=ln(﹣x)+1,f(a)=4,则f(﹣a)=.【解答】解:函数g(x)=ln(﹣x)满足g(﹣x)=ln(+x)==﹣ln(﹣x)=﹣g(x),所以g(x)是奇函数.函数f(x)=ln(﹣x)+1,f(a)=4,可得f(a)=4=ln(﹣a)+1,可得ln(﹣a)=3,则f(﹣a)=﹣ln(﹣a)+1=﹣3+1=﹣2.故答案为:﹣2.5.(2018年高考全国卷3理科14)(5分)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.【解答】解:曲线y=(ax+1)e x,可得y′=ae x+(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,可得:a+1=﹣2,解得a=﹣3.故答案为:﹣3.6.(2018年北京市高考数学试卷理科13)(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.【解答】解:例如f(x)=sinx,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sinx.7.(2018年江苏省高考数学试卷5)(5分)函数f(x)=的定义域为.【解答】解:由题意得:≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).8.(2018年江苏省高考数学试卷9)(5分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f()=cos()=cos=,即f(f(15))=,故答案为:9.(2018年江苏省高考数学试卷11)(5分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.10(2018年上海市高考数学试卷4)(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.10.(2018年上海市高考数学试卷7)(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.11.(2018年上海市高考数学试卷11)(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:612.(2018年上海市高考数学试卷12)(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然d1+d2≤AB=1,即+的最大值为1,故答案为:1.13.(2018年天津市高考数学试卷文科10)(5分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为.【解答】解:函数f(x)=e x lnx,则f′(x)=e x lnx+•e x;∴f′(1)=e•ln1+1•e=e.故答案为:e.14.(2018年天津市高考数学试卷文科13)(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=.即a=﹣3时取等号.函数的最小值为:.故答案为:.15.(2018年天津市高考数学试卷文科14)(5分)己知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是.【解答】解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,则直线y=x的下方或在y=x上,由﹣x2+2x﹣2a=x,即x2﹣x+2a=0,由判别式△=1﹣8a≤0,得a≥,综上≤a≤2,故答案为:[,2].16.(2018年天津市高考数学试卷理科13)(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=.即a=﹣3时取等号.函数的最小值为:.故答案为:.17.(2018年天津市高考数学试卷理科14)(5分)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a=﹣,设g(x)=﹣,则g′(x)=﹣=﹣,由g(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a=设h(x)=,则h′(x)==,由h(x)>0得x>4,此时递增,由h(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)19(2018年浙江省高考数学试卷15)(6分)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.【解答】解:当λ=2时函数f(x)=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)=的草图如图:函数f(x)恰有2个零点,则λ∈(1,3].故答案为:{x|1<x<4};(1,3].三.解答题1.(2018年高考全国卷I文科21)(12分)已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.【解答】解:(1)∵函数f(x)=ae x﹣lnx﹣1.∴x>0,f′(x)=ae x﹣,∵x=2是f(x)的极值点,∴f′(2)=ae2﹣=0,解得a=,∴f(x)=e x﹣lnx﹣1,∴f′(x)=,当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴f(x)在(0,2)单调递减,在(2,+∞)单调递增.证明:(2)当a≥时,f(x)≥﹣lnx﹣1,设g(x)=﹣lnx﹣1,则﹣,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴x=1是g(x)的最小值点,故当x>0时,g(x)≥g(1)=0,∴当a≥时,f(x)≥0.2.(2018年高考全国卷I理科21)(12分)已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤4时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0+0﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x +,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x +>0,故2lnx>x﹣,则<a﹣2成立.3.(2018年高考全国卷2文科21)(12分)已知函数f(x)=x3﹣a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.【解答】解:(1)当a=3时,f(x)=x3﹣a(x2+x+1),所以f′(x)=x2﹣6x﹣3时,令f′(x)=0解得x=3,当x∈(﹣∞,3﹣2),x∈(3﹣2,+∞)时,f′(x)>0,函数是增函数,当x∈(3﹣2时,f′(x)<0,函数是单调递减,综上,f(x)在(﹣∞,3﹣2),(3﹣2,+∞),上是增函数,在(3﹣2上递减.(2)证明:因为x2+x+1=(x+)2+,所以f(x)=0等价于,令,则,所以g(x)在R上是增函数;取x=max{9a,1},则有=,取x=min{9a,﹣1},则有=,所以g(x)在(min{9a,﹣1},max{9a,1})上有一个零点,由单调性则可知,f(x)只有一个零点.4.(2018年高考全国卷2理科21)(12分)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当∈(0,ln2)时,h′(x)<0,当∈(ln2,+∞)时,h′(x)>0,∴h(x)≥h(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2),f(x)在(0,+∞)只有一个零点⇔方程e x﹣ax2=0在(0,+∞)只有一个根,⇔a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递增,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2)=.5.(2018年高考全国卷3文科21)(12分)已知函数f(x)=.(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.【解答】解:(1)=﹣.∴f′(0)=2,即曲线y=f(x)在点(0,﹣1)处的切线斜率k=2,∴曲线y=f(x)在点(0,﹣1)处的切线方程方程为y﹣(﹣1)=2x.即2x﹣y﹣1=0为所求.(2)证明:函数f(x)的定义域为:R,可得=﹣.令f′(x)=0,可得,当x时,f′(x)<0,x时,f′(x)>0,x∈(2,+∞)时,f′(x)<0.∴f(x)在(﹣),(2,+∞)递减,在(﹣,2)递增,注意到a≥1时,函数g(x)=ax2+x﹣1在(2,+∞)单调递增,且g(@)=4a+1>0函数g(x)的图象如下:∵a≥1,∴,则≥﹣e,∴f(x)≥﹣e,∴当a≥1时,f(x)+e≥0.6.(2018年高考全国卷3理科21)(12分)已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.【解答】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1).,,可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0∴f′(x)在(﹣1,0)递减,在(0,+∞)递增,∴f′(x)≥f′(0)=0,∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0.∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得f′(x)=(1+2ax)ln(1+x)+﹣2=,令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1),h′(x)=4ax+(4ax+2a+1)ln(x+1).当a≥0,x>0时,h′(x)>0,h(x)单调递增,∴h(x)>h(0)=0,即f′(x)>0,∴f(x)在(0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意.当a<0时,h″(x)=8a+4aln(x+1)+,显然h″(x)单调递减,①令h″(0)=0,解得a=﹣.∴当﹣1<x<0时,h″(x)>0,当x>0时,h″(x)<0,∴h′(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴h′(x)≤h′(0)=0,∴h(x)单调递减,又h(0)=0,∴当﹣1<x<0时,h(x)>0,即f′(x)>0,当x>0时,h(x)<0,即f′(x)<0,∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴x=0是f(x)的极大值点,符合题意;②若﹣<a<0,则h″(0)=1+6a>0,h″(e﹣1)=(2a﹣1)(1﹣e)<0,∴h″(x)=0在(0,+∞)上有唯一一个零点,设为x0,∴当0<x<x0时,h″(x)>0,h′(x)单调递增,∴h′(x)>h′(0)=0,即f′(x)>0,∴f(x)在(0,x0)上单调递增,不符合题意;③若a<﹣,则h″(0)=1+6a<0,h″(﹣1)=(1﹣2a)e2>0,∴h″(x)=0在(﹣1,0)上有唯一一个零点,设为x1,∴当x1<x<0时,h″(x)<0,h′(x)单调递减,∴h′(x)>h′(0)=0,∴h(x)单调递增,∴h(x)<h(0)=0,即f′(x)<0,∴f(x)在(x1,0)上单调递减,不符合题意.综上,a=﹣.7.(2018年北京市高考数学试卷文科19)(13分)设函数f(x)=[ax2﹣(3a+1)x+3a+2]e x.(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;(Ⅱ)若f(x)在x=1处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(3a+1)x+3a+2]e x的导数为f′(x)=[ax2﹣(a+1)x+1]e x.曲线y=f(x)在点(2,f(2))处的切线斜率为0,可得(4a﹣2a﹣2+1)e2=0,解得a=;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(a+1)x+1]e x=(x﹣1)(ax﹣1)e x,若a=0则x<1时,f′(x)>0,f(x)递增;x>1,f′(x)<0,f(x)递减.x=1处f(x)取得极大值,不符题意;若a>0,且a=1,则f′(x)=(x﹣1)2e x≥0,f(x)递增,无极值;若a>1,则<1,f(x)在(,1)递减;在(1,+∞),(﹣∞,)递增,可得f(x)在x=1处取得极小值;若0<a<1,则>1,f(x)在(1,)递减;在(,+∞),(﹣∞,1)递增,可得f(x)在x=1处取得极大值,不符题意;若a<0,则<1,f(x)在(,1)递增;在(1,+∞),(﹣∞,)递减,可得f(x)在x=1处取得极大值,不符题意.综上可得,a的范围是(1,+∞).8.(2018年北京市高考数学试卷理科18)(13分)设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]e x的导数为f′(x)=[ax2﹣(2a+1)x+2]e x.由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,可得(a﹣2a﹣1+2)e=0,解得a=1;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]e x=(x﹣2)(ax﹣1)e x,若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.x=2处f(x)取得极大值,不符题意;若a>0,且a=,则f′(x)=(x﹣2)2e x≥0,f(x)递增,无极值;若a>,则<2,f(x)在(,2)递减;在(2,+∞),(﹣∞,)递增,可得f(x)在x=2处取得极小值;若0<a<,则>2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,可得f(x)在x=2处取得极大值,不符题意;若a<0,则<2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,可得f(x)在x=2处取得极大值,不符题意.综上可得,a的范围是(,+∞).9.(2018年江苏省高考数学试卷19)(16分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g (x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,f()=﹣=g()=﹣lna2,得a=;(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.10.(2018年天津市高考数学试卷文科20)(14分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d的取值范围.【解答】解:(Ⅰ)函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),t2=0,d=1时,f(x)=x(x+1)(x﹣1)=x3﹣x,∴f′(x)=3x2﹣1,f(0)=0,f′(0)=﹣1,∴y=f(x)在点(0,f(0))处的切线方程为y﹣0=﹣1×(x﹣0),即x+y=0;(Ⅱ)d=3时,f(x)=(x﹣t2+3)(x﹣t2)(x﹣t2﹣3)=﹣9(x﹣t2)=x3﹣3t2x2+(3﹣9)x ﹣+9t2;∴f′(x)=3x2﹣6t2x+3﹣9,令f′(x)=0,解得x=t2﹣或x=t2+;当x变化时,f′(x),f(x)的变化情况如下表;x(﹣∞,t2﹣)t2﹣(t2﹣,t2+)t2+(t2+,+∞)f′(x)+0﹣0+f(x)单调增极大值单调减极小值单调增∴f(x)的极大值为f(t2﹣)=﹣9×(﹣)=6,极小值为f(t2+)=﹣9×=﹣6;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程(x﹣t2+d)(x﹣t2)(x﹣t2﹣d)+(x﹣t2)﹣6=0有三个互异的实数根,令u=x﹣t2,可得u3+(1﹣d2)u+6=0;设函数g(x)=x3+(1﹣d2)x+6,则曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有3个互异的公共点,等价于函数y=g(x)有三个不同的零点;又g′(x)=3x2+(1﹣d2),当d2≤1时,g′(x)≥0恒成立,此时g(x)在R上单调递增,不合题意;当d2>1时,令g′(x)=0,解得x1=﹣,x2=;∴g(x)在(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上也单调递增;∴g(x)的极大值为g(x1)=g (﹣)=+6>0;极小值为g(x2)=g ()=﹣+6;若g(x2)≥0,由g(x)的单调性可知,函数g(x)至多有两个零点,不合题意;若g(x2)<0,即>27,解得|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且﹣2|d|<x1;g(﹣2|d|)=﹣6|d|3﹣2|d|+6<0,从而由g(x)的单调性可知,函数y=g(x)在区间(﹣2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意;∴d的取值范围是(﹣∞,﹣)∪(,+∞).11.(2018年天津市高考数学试卷理科20)(14分)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【解答】(Ⅰ)解:由已知,h(x)=a x﹣xlna,有h′(x)=a x lna﹣lna,令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:x(﹣∞,0)0(0,+∞)h′(x)﹣0+h(x)↓极小值↑∴函数h(x)的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x)=a x lna,可得曲线y=f(x)在点(x1,f(x1))处的切线的斜率为lna.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a为底数的对数,得log a x2+x1+2log a lna=0,∴x1+g(x2)=;(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,曲线y=g(x)在点(x2,log a x2)处的切线l2:.要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,即只需证明当a≥时,方程组由①得,代入②得:,③因此,只需证明当a≥时,关于x1的方程③存在实数解.设函数u(x)=,既要证明当a≥时,函数y=u(x)存在零点.u′(x)=1﹣(lna)2xa x,可知x∈(﹣∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′=<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即.由此可得,u(x)在(﹣∞,x0)上单调递增,在(x0,+∞)上单调递减,u(x)在x=x0处取得极大值u(x0).∵,故lnlna≥﹣1.∴=.下面证明存在实数t,使得u(t)<0,由(Ⅰ)可得a x≥1+xlna,当时,有u(x)≤=.∴存在实数t,使得u(t)<0.因此,当a≥时,存在x1∈(﹣∞,+∞),使得u(x1)=0.∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.12.(2018年浙江省高考数学试卷22)(15分)已知函数f(x)=﹣lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【解答】证明:(Ⅰ)∵函数f(x)=﹣lnx,∴x>0,f′(x)=﹣,∵f(x)在x=x1,x2(x1≠x2)处导数相等,∴=﹣,∵x1≠x2,∴+=,由基本不等式得:=≥,∵x1≠x2,∴x1x2>256,由题意得f(x 1)+f(x2)==﹣ln(x1x2),设g(x)=,则,∴列表讨论:x(0,16)16(16,+∞)g′(x)﹣0+g(x)↓2﹣4ln2↑∴g(x)在[256,+∞)上单调递增,∴g(x1x2)>g(256)=8﹣8ln2,∴f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,f(n)﹣kn﹣a<n(﹣﹣k)≤n(﹣k)<0,∴存在x0∈(m,n),使f(x0)=kx0+a,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,其中g(x)=﹣lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.312018高考数学汇编函数第页共页。
2018年高考数学—函数(解答+答案)

3
8.(18 北京文(19)(本小题 13 分))
设函数 f (x) [ax2 (3a 1)x 3a 2]ex . (Ⅰ)若曲线 y f (x) 在点 (2, f (2)) 处的切线斜率为 0,求 a; (Ⅱ)若 f (x) 在 x 1处取得极小值,求 a 的取值范围.
9.(18 全国二文 21.(12 分))
当 1 x 0 时,g(x) 0 ;当 x 0 时,g(x) 0 .故当 x 1 时,g(x) g(0) 0 ,
且仅当 x 0 时, g(x) 0 ,从而 f (x) 0 ,且仅当 x 0 时, f (x) 0 .
所以 f (x) 在 (1, ) 单调递增.学#科网
又 f (0) 0 ,故当 1 x 0 时, f (x) 0;当 x 0 时, f (x) 0 .
f (x) 在 (0, ) 只有一个零点当且仅当 h(x) 在 (0, ) 只有一个零点.
(i)当 a 0 时, h(x) 0 , h(x) 没有零点; (ii)当 a 0 时, h'(x) ax(x 2)ex .
当 x (0, 2) 时, h'(x) 0 ;当 x (2, ) 时, h'(x) 0 .
7
综上, f (x) 在 (0, ) 只有一个零点时, a e2 . 4
4.解:(1)当 a 0 时, f (x) (2 x) ln(1 x) 2x , f (x) ln(1 x) x . 1 x
设函数 g(x)
f
(x)
ln(1 x) x 1 x
,则 g(x)
x (1 x)2
.
(1)若 a 0 ,证明:当 1 x 0时, f x 0 ;当 x 0 时, f x 0 ; (2)若 x 0 是 f x 的极大值点,求 a .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数专题(理科)一、考点回顾1.理解函数的概念,了解映射的概念.2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.二、经典例题剖析考点一:函数的性质与图象函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.这部分内容的重点是对函数单调性和奇偶性定义的深入理解.函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f (x )的图象关于直线x =a 对称的充要条件是对定义域内的任意x ,都有f (x +a )=f (a -x )成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。
因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。
复习函数图像要注意以下方面。
1.掌握描绘函数图象的两种基本方法——描点法和图象变换法.2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题. 3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题. 4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力. 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点.例1设a >0,求函数)ln()(a x x x f +-=(x ∈(0,+∞))的单调区间.分析:欲求函数的单调区间,则须解不等式()0f x '≥(递增)及()0f x '<(递减)。
解:)0(121)(>+-='x ax xx f . 当a >0,x >0时f '(x )>0⇔x 2+(2a -4)x +a 2>0, f '(x )<0⇔x 2+(2a -4)x +a 2<0. (ⅰ)当a > 1时,对所有x > 0,有 x 2+(2a -4)x +a 2>0,即f '(x )>0,此时f (x )在(0,+∞)内单调递增.(ⅱ)当a =1时,对x ≠1,有 x 2+(2a -4)x +a 2>0,即f '(x )>0,此时f (x )在(0,1)内单调递增,在(1,+∞)内单调递增. 又知函数f (x )在x =1处连续,因此,函数f (x )在(0,+∞)内单调递增. (ⅲ)当0<a <1时,令f '(x )>0,即 x 2+(2a -4)x +a 2>0,解得a a x ---<122,或a a x -+->122.因此,函数f (x )在区间),a a ---1220(内单调递增,在区间),∞+-+-a a 122(内也单调递增.令f '(x )<0,即x 2+(2a -4)x +a 2 < 0, 解得 :a a x a a -+-<<---122122.因此,函数f (x )在区间),a a a a -+----122122(内单调递减. 点评:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力.例2 已知0>a ,函数),0(,1)(+∞∈-=x x ax x f 。
设ax 201<<,记曲线)(x f y =在点))(,(11x f x M 处的切线为l 。
(Ⅰ)求l 的方程;(Ⅱ)设l 与x 轴交点为)0,(2x 。
证明: ① ax 102≤<; ② 若a x 11<,则ax x 121<< (Ⅰ)分析:欲求切线l 的方程,则须求出它的斜率,根据切线斜率的几何意义便不难发现,问题归结为求曲线)(x f y =在点))(,(11x f x M 的一阶导数值。
解:求)(x f 的导数:2'1)(x x f -=,由此得切线l 的方程: )(1)1(1211x x xx ax y --=--。
(Ⅱ)分析:①要求2x 的变化范围,则须找到使2x 产生变化的原因,显然,2x 变化的根本原因可归结为1x 的变化,因此,找到2x 与1x 的等量关系式,就成;② 欲比较2x 与1x 的大小关系,判断它们的差的符号即可。
证:依题意,切线方程中令y =0,ax ax x x ax x x 20)2()1(1111112<<-=+-=,其中. ① 由a a x a x x ax x x a x 1)1(,0),2(,2021221121+--=>-=<<及有 a x a x a x 11,10212==≤∴时,当且仅当〈.②ax x ax x x ax a x 1)2(112111211<>-=<<,且由①,,因此,时,当 ax x 121<<所以。
点评:本小题主要考查利用导数求曲线切线的方法,考查不等式的基本性质,以及分析和解决问题的能力。
例3、 函数y =1-11-x 的图象是( )解析一:该题考查对f (x )=x 1图象以及对坐标平移公式的理解,将函数y =x1的图形变形到y =11-x ,即向右平移一个单位,再变形到y =-11-x 即将前面图形沿x 轴翻转,再变形到y =-11-x +1,从而得到答案B . 解析二:可利用特殊值法,取x =0,此时y =1,取x =2,此时y =0.因此选B . 答案:B点评:1、选择题要注意利用特值排除法、估值排除法等。
2、处理函数图像的平移变换及伸缩变化等问题的一般方法为:先判断出函数的标准模型,并用换元法将问题复合、化归为所确定的标准模型。
考点二:二次函数二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了.学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法.例4 设二次函数,方程的两个根满足. 当时,证明.分析:在已知方程两根的情况下,根据函数与方程根的关系,可以写出函数()x x f -的表达式,从而得到函数)(x f 的表达式.证明:由题意可知))(()(21x x x x a x x f --=-.ax x x 1021<<<< , ∴ 0))((21>--x x x x a , ∴ 当时,x x f >)(.又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f , ,011,0221>->+-<-ax ax ax x x 且 ∴ 1)(x x f <,综上可知,所给问题获证.点评:本题主要利用函数与方程根的关系,写出二次函数的零点式()().21x x x x a y --=。
例5 已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ; (2)如果21<x ,212=-x x ,求b 的取值范围.分析:条件4221<<<x x 实际上给出了x x f =)(的两个实数根所在的区间,因此可以考虑利用上述图像特征去等价转化.解:设1)1()()(2+-+=-=x b ax x x f x g ,则0)(=x g 的二根为1x 和2x . (1)由0>a 及4221<<<x x ,可得 ⎩⎨⎧><0)4(0)2(g g ,即⎩⎨⎧>-+<-+034160124b a b a ,即⎪⎪⎩⎪⎪⎨⎧<+⋅--<-⋅+,043224,043233a a b aa b两式相加得12<ab,所以,10->x ; (2)由aa b x x 4)1()(2221--=-, 可得 1)1(122+-=+b a . 又0121>=ax x ,所以21,x x 同号.∴ 21<x ,212=-x x 等价于⎪⎩⎪⎨⎧+-=+<<<1)1(1220221b a x x 或⎪⎩⎪⎨⎧+-=+<<-<1)1(1202212b a x x ,即 ⎪⎪⎩⎪⎪⎨⎧+-=+>>1)1(120)0(0)2(2b a g g 或⎪⎪⎩⎪⎪⎨⎧+-=+>>-1)1(120)0(0)2(2b a g g解之得 41<b 或47>b . 点评:在处理一元二次方程根的问题时,考察该方程所对应的二次函数图像特征的充要条件是解决问题的关键。