北京市第四中2020年中考数学冲刺复习专题训练圆讲垂径定理(无答案).

合集下载

2020--2021学年中考数学一轮复习专项练习圆的三大定理:垂径定理(含答案)

2020--2021学年中考数学一轮复习专项练习圆的三大定理:垂径定理(含答案)

一轮复习专项练习圆的三大定理:垂径定理一.选择题1.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm2.如图,△ABC中,AB=5,AC=4,BC=2,以A为圆心AB为半径作圆A,延长BC交圆A 于点D,则CD长为()A.5 B.4 C.D.23.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.44.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()A.4B.5 C.4 D.35.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A.10 B.8 C.5 D.36.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.27.如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O.如果半径为4,那么⊙O的弦AB长度为()A.2 B.4 C.2D.48.如图,点C是半圆O的中点,AB是直径,CF⊥弦AD于点E,交AB于点F,若CE=1,EF =,则BF的长为()A.B.1 C.D.9.如图,AB是⊙O的直径,弦CD⊥AB,DE∥CB.若AB=10,CD=6,则DE的长为()A.B.C.6 D.10.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,AC,BC的中点分别是M,N,PQ若MP+NQ=12,AC+BC=18,则AB的长为()A.9B.C.11 D.15二.填空题11.若过⊙O内一点M的最长弦为10,最短弦为6,则OM的长为.12.已知⊙O的半径为13,弦AB=24,CD=10,且AB∥CD,则弦AB与CD之间的距离为.13.如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=cm.14.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ =24,则OM的长为.15.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.三.解答题16.如图,AB为⊙O的直径,C,D是半圆上两点,且AC=CD=DB,AB=10cm (1)求AC的长度;(2)证明CD∥AB.17.如图,已知BC是⊙O的直径,弦AD⊥BC于点H,与弦BF交于点E,AD=8,BH=2.(1)求⊙O的半径;(2)若∠EAB=∠EBA,求证:BF=2AH.18.如图①,已知点O是∠EPF的平分线上的一点,以点O为圆心的圆与角两边分别交于A,B和C,D四点.(1)求证:AB=CD;(2)若角的顶点P在圆上,如图②,其他条件不变,结论成立吗?(3)若角的顶点P在圆内,如图③,其他条件不变,结论成立吗?19.如图,直线l:y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1为半径画弧交x轴于点A2;再过点A2作x的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去.求:(1)点B1的坐标和∠A1OB1的度数;(2)弦A4B3的弦心距的长度.20.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.参考答案一.选择题1.解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在Rt△OAC中,OC===6(cm),故选:D.2.解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=5,根据垂径定理,得DE=BE,∴CE=BE﹣BC=DE﹣2,根据勾股定理,得AD2﹣DE2=AC2﹣CE2,∴52﹣DE2=42﹣(DE﹣2)2,解得DE=,∴CD=DE+CE=2DE﹣2=.故选:C.3.解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.4.解:∵∠BAC=∠BOD,∴=,∴AB⊥CD,∵AE=CD=8,∴DE=CD=4,设OD=r,则OE=AE﹣r=8﹣r,在Rt△ODE中,OD=r,DE=4,OE=8﹣r,∵OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5.故选:B.5.解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,∵PC=4,OP=3,∴OC===5.故选:C.6.解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选:D.7.解:如图;过O作OC⊥AB于D,交⊙O于C,连接OA;则AD=BD,由折叠的性质得:OD=CD,在Rt△OAD中,OD=CD=OC=2,OA=4;根据勾股定理得:AD===2,∴AB=2AD=4;故选:D.8.解:如图,连接AC,BC,OC,过点B作BH⊥CF交CF的延长线于H,设OC交AD于J.∵=,∴AC=BC,OC⊥AB,∵AB是直径,∴ACB=90°,∴∠ACJ=∠CBF=45°,∵CF⊥AD,∴∠ACF+∠CAJ=90°,∠ACF+∠BCF=90°,∴∠CAJ=∠BCF,∴△CAJ≌△BCF(ASA),∴CJ=BF,AJ=CF=1+=,∵OC=OB,∴OJ=OF,设BF=CJ=x.OJ=OF=y,∵∠AEC=∠H=90°,∠CAE=∠BCH,CA=CB,∴△ACE≌△CBH(AAS),∴EC=BH=1,∵∠ECJ=∠FCO,∠CEJ=∠COF=90°,∴△CEJ∽△COF,∴==,∴==,∴EJ=,∵BF=CJ,∠H=∠CEJ,∠CJE=∠BFH,∴△BHF≌△CEJ(AAS),∴FH=EJ=,∵AE∥BH,∴=,∴=,整理得,10x2+7xy﹣6y2=0,解得x=y或x=﹣y(舍弃),∴y=2x,∴=,解得x=或﹣(舍弃).∴BF=,故选:A.9.解:设AB与CD交于H,连接OD,作OM⊥DE,交BC于N,作DG⊥BC,∵DE∥BC,∴MN⊥BC,DG⊥DE,∴DG=MN,∵OM⊥DE,ON⊥BC,∴DM=EM=DE,BN=CN,∵AB是⊙O的直径,弦CD⊥AB,弦DE∥CB.∴CH=DH=CD=3,∴OH===4,∴BH=9,∴BC==3,∴BN=BC=,∴ON==,∵sin∠BCH==,即=,∴DG=,∴MN=DG=,∴OM=MN﹣ON=,∴DM==,∴DE=2DM=.故选:A.10.解:连接OP,OQ,∵DE,FG,,的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BD的中点,∴OH+OI=(AC+BC)=9,∵MH+NI=AC+BC=18,MP+NQ=12,∴PH+QI=18﹣12=6,∴AB=OP+OQ=OH+OI+PH+QI=9+6=15,故选:D.二.填空题(共5小题)11.解:由已知可知,最长的弦是过M的直径AB,最短的是垂直平分直径的弦CD,已知AB=10,CD=6,则OD=5,MD=3,由勾股定理得OM=4.故答案为:4.12.解:①当弦AB和CD在圆心同侧时,如图1,∵AB=24,CD=10,∴AE=12,CF=5,∵OA=OC=13,∴EO=5,OF=12,∴EF=12﹣5=7;②当弦AB和CD在圆心异侧时,如图2,∵AB=24,CD=10,∴AE=12,CF=5,∵OA=OC=13,∴EO=5,OF=12,∴EF=OF+OE=17.∴AB与CD之间的距离为7或17.故答案为7或17.13.解:∵CD⊥OB,∴CE=DE=CD=4,在Rt△OCE中,OE==3,∴AE=AO+OE=5+3=8(cm).故答案为8.14.解:作OF⊥PQ于F,连接OP,∴PF=PQ=12,∵CD⊥AB,PQ∥AB,∴CD⊥PQ,∴四边形MEOF为矩形,∵CD=PQ,OF⊥PQ,CD⊥AB,∴OE=OF,∴四边形MEOF为正方形,设半径为x,则OF=OE=18﹣x,在直角△OPF中,x2=122+(18﹣x)2,解得x=13,则MF=OF=OE=5,∴OM=5.故答案为:5.15.解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵AB=2,∴AE=,PA=2,∴PE=1.∵点D在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∵⊙P的圆心是(2,a),∴点D的横坐标为2,∴OC=2,∴DC=OC=2,∴a=PD+DC=2+.故答案为:2+.三.解答题(共5小题)16.解:(1)连接OC,OD,∵AB为⊙O的直径,AB=10cm,∴OA=OB=5cm.∵AC=CD=DB,∴∠AOC=∠COD=∠BOD=60°,∴△AOC是等边三角形,∴OA=AC=5cm;(2)∵由(1)知∠AOC=∠COD=∠BOD=60°,∴△AOC、△COD与△BOD均是等边三角形,∴∠A+∠ACD=180°,∴CD∥AB.17.(1)解:连结OA交BF于G,如图,⊙O的半径为r,∵AD⊥OB,在Rt△OHA中,OH=r﹣2,OA=r,∴r2=42+(r﹣2)2,解得r=5,即⊙O的半径为5;(2)证明:连结CF,如图,∵AD⊥OB,∴弧AB=弧DB,∵∠EAB=∠EBA,∴弧BD=弧AF,∴弧AB=弧AF,∴OA⊥BG,∴BG=FG,∴∠OAH=∠OBG,在△OAH和△OBG中,,∴△OAH≌△OBG(AAS),∴AH=BG,∴BF=2AH.18.解:(1)相等.如图:作OG⊥AB于G,OH⊥CD于H,连接OA,OC,OB,OD.AG=BG,CH=DH,∵∠EPO=∠FPO,∴OG=OH.在Rt△OBG和Rt△ODH中,由HL定理得:△OBG≌△ODH,∴GB=HD,∴AB=CD;(2)点P在圆上,结论成立:顶点P在圆上,此时点P,A,C重合于点A,作OG⊥AB于G,OH⊥AD于H,∴AG=GB,AH=HD,∵∠EAO=∠DAO,∴OG=OH.在Rt△OAG和Rt△OAH中,由HL定理得:△OAG≌△OAH,∴AG=AH,∴AB=AD.即点P在圆上,结论成立.(3)顶点P在圆内,作OG⊥AB于G,OH⊥CD于H,则AG=GB,CH=HD,∵∠EPO=∠FPO,∴OG=OH,∴GB=HD,∴AB=CD.即点P在圆内,结论成立.19.解:(1)∵直线的解析式y=x,∴tan∠A1OB1==,∴∠A1OB1=60°,OA1=1,∴A1B1=,OA2=OB1=2,∴B1(1,).(2)连接A 4B 3,作OH ⊥A 4B 3于H .由题意OA 1=1,OA 2=2,OA 3=4,OA 4=8,∵OA 4=OB 3,OH ⊥A 4B 3,∴∠A 4OH =∠A 4OB 3=30°,∴OH =OA 4•cos30°=8×=4.20.解:(1)如图1中,连接OB ,OC .设BF =EF =x ,OF =y .∵AB ∥CD ,EF ⊥AB ,∴EF ⊥CD ,∴∠CEF =∠BFO =90°∴AF =BF =x ,DE =EC =2, 根据勾股定理可得:, 解得(舍弃)或,∴BF =4,AB =2BF =8.(2)如图2中,作CH ⊥AB 于H .∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.。

北京市第四中学中考数学冲刺复习 专题训练 圆 第7讲《圆》(无答案)

北京市第四中学中考数学冲刺复习 专题训练 圆 第7讲《圆》(无答案)

第七讲:《圆》单元复习知识考点:圆的概念(圆心,半径,弦,弧),垂径定理,弧、弦、圆心角、圆周角的关系,直径所对的圆周角,直线与圆的位置关系,切线的判定和性质,切线的长,切线长定理,两圆的位置关系,内心、外心、内切圆、外接圆,正多边形(中心、中心角、边心距),弧长、扇形面积、圆锥的侧面积和全面积。

自主学习例1、如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则△ABC外接圆半径的长度为.例2、如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°, 则BC的长为()A.19 B.16 C.18 D.20例3.如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,AOB∠=︒,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有45OP=,则x的取值范围是()公共点, 设xA.-1≤x≤1 B.≤x≤2C.0≤x≤2 D.x>2例4. 如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O 于点E ,交AC 于点C ,使BED C ∠=∠. (1)判断直线AC 与圆O 的位置关系,并证明你的结论;(2)若8AC =,4cos 5BED ∠=,求AD 的长.例5. 如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC , 连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF .(1)证明:AF 平分∠BAC ;(2)证明:BF =FD ;(3)若EF =4,DE =3,求AD 的长。

例6. 如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的 圆O 与AD 、AC 分别交于点E 、F ,且∠ACB=∠DCE .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论;(2)若tan ∠ACB=22,BC=2,求⊙O 的半径.CAO B E D。

2020—2021年北师大版初中数学九年级下册垂径定理强化训练题及答案解析.docx

2020—2021年北师大版初中数学九年级下册垂径定理强化训练题及答案解析.docx

北师大版九年级数学下册《圆:3.3垂径定理》强化训练一、选择题1.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB ⊥CD ,垂足为M ,则AC 的长为( )A .B .C .或D .cm 或2.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .6B .5C .4D .33.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论一定错误的是( )A .CE=DEB .AE=OEC .»»BC BD D .△OCE ≌△ODE4.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE=2,DE=8,则AB 的长为( )A.2 B.4 C.6 D.85.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为a 的值是()A.4 B.3 C.D.3+6.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.117.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A .3B .2.5C .4D .3.58.⊙O 过点B ,C ,圆心O 在等腰直角△ABC 内部,∠BAC=90°,OA=1,BC=6,则⊙O 的半径为( )CA .C D .9.已知⊙O 的面积为2π,则其内接正三角形的面积为( )CA .B .CD 10.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB=30°,⊙O 的半径为5cm ,则圆心O 到弦CD 的距离为( )AA .52cm B .3cm C .D .6cm二、填空题11.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,若CD=6,BE=1,则⊙O 的直径为 .12.如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O的半径长为.13.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.14.如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为.15.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB 为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.16.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .17.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB 延长线上一点,BP=2cm,则tan∠OPA的值是.18.如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题19.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB 的距离为6,求AC的长.20.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.21.如图,半径为O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA•PB=PC•PD;(2)设BC的中点为F,连接FP并延长交AD于E,求证:EF ⊥AD;(3)若AB=8,CD=6,求OP的长.22.如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.23.如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若tan∠C=12,求弦MN的长.参考答案1C 2B 3B 4D 5B 6A 7C 8C 9C 10A11.10 12.13.52 14.12 15.60 16.4 17.3 18.19. (1)证明:过O 作OE ⊥AB 于点E ,则CE=DE ,AE=BE ,∴BE ﹣DE=AE ﹣CE ,即AC=BD ;(2)解:由(1)可知,OE ⊥AB 且OE ⊥CD ,连接OC ,OA , ∴OE=6,∴==8==,∴AC=AE ﹣CE=8﹣2.20.连接BD .∵AB 是⊙O 直径,∴BD ⊥AD .又∵CF ⊥AD ,∴BD ∥CF ,∴∠BDC=∠C.又∵∠BDC=12∠BOC,∴∠C=12∠BOC.∵AB⊥CD,∴∠C=30°,∴∠ADC=60°.21.(1)证明:∵∠A、∠C所对的圆弧相同,∴∠A=∠C,∴Rt△APD∽Rt△CPB,∴AP PD CP PB,∴PA•PB=PC•PD;(2)证明:∵F为BC的中点,△BPC为直角三角形,∴FP=FC,∴∠C=∠CPF.又∠C=∠A,∠DPE=∠CPF,∴∠A=∠DPE.∵∠A+∠D=90°,∴∠DPE+∠D=90°,∴EF⊥AD;(3)解:作OM ⊥AB 于M ,ON ⊥CD 于N ,连接PO ,∴OM 2=(2﹣42=4,ON 2=(2﹣32=11, 易证四边形MONP 是矩形,∴ 22.(1)证明:∵AD 是直径,∴∠ABD=∠ACD=90°,在Rt △ABD 和Rt △ACD 中,AB AC AD AD =⎧⎨=⎩,∴Rt △ABD ≌Rt △ACD ,∴∠BAD=∠CAD ,∵AB=AC ,∴BE=CE ;(2)四边形BFCD 是菱形.证明:∵AD 是直径,AB=AC ,∴AD ⊥BC ,BE=CE ,∵CF ∥BD ,∴∠FCE=∠DBE ,在△BED 和△CEF 中FCE DBE BE CEBED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BED ≌△CEF ,∴CF=BD ,∴四边形BFCD 是平行四边形,∵∠BAD=∠CAD ,∴BD=CD ,∴四边形BFCD 是菱形;(3)解:∵AD 是直径,AD ⊥BC ,BE=CE ,∴CE 2=DE •AE ,设DE=x ,∵BC=8,AD=10,∴42=x (10﹣x ),解得:x=2或x=8(舍去)在Rt △CED 中,==23.(1)∵CD ∥AB ,∴∠OAB=∠OCD ,∠OBA=∠ODC ,∴△OAB ∽△OCD ,∴OA OB OC OD=,即OA OB OA AC OD=+,又OA=3,AC=2,∴OB=3,∴3332OD=+,∴OD=5;(2)过O作OE⊥CD,连接OM,则ME=12MN,∵tan∠C=12,即12OECE=,∴设OE=x,则CE=2x,在Rt△OEC中,OC2=OE2+CE2,即52=x2+(2x)2,解得在Rt△OME中,OM2=OE2+ME2,即32=2+ME2,解得ME=2.∴MN=4,答:弦MN的长为4.。

2020年九年级中考数学专题复习:圆的垂径定理的应用(含解析)

2020年九年级中考数学专题复习:圆的垂径定理的应用(含解析)

中考数学专题复习:圆的垂径定理的应用(含解析)班级:姓名:一、单选题1.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是( )A. 5cmB. 8cmC. 10cmD. 12cm2.下列命题:①三点确定一个圆,②弦的平分线过圆心,③弦所对的两条弧的中点的连线是圆的直径,④平分弦的直线平分弦所对的弧,其中正确的命题有()A. 3个B. 2个C. 1个D. 0个3.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A. 4B. 6C. 8D. 104.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A. 0.5B. 1C. 2D. 45.如图,⊙O的弦AB=8,C是AB的中点,且OC=3,则⊙O的半径等于( )A. 8B. 5C. 10D. 46.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A. 4cmB. 3cmC. 2cmD. 1cm7.如图,以O为圆心的两个同心圆中,半径分别为3和5,若大圆的弦AB与小圆相交,则弦AB的长的取值范围是()A. 8≤AB≤10B. 8<AB<10C. 8<AB≤10D. 6≤AB≤108.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=弧AEB,正确结论的个数是( )A. 2B. 3C. 4D. 59.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则AD长为()A. 8B. 5C. D.二、填空题10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为________厘米.11.如图,已知⊙O的半径为5,点P是弦AB上的一动点,且弦AB的长为8.则OP的取值范围为________.12.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为________.三、解答题13.如图①是某校存放学生自行车的车棚的示意图(尺寸如图所示,单位:m),车棚顶部是圆柱侧面的一部分,其展开图是矩形;如图②是车棚顶部截面的示意图, 所在圆的圆心为点O,车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π)14.如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8 cm,CD=2 cm.求破残的圆形残片的半径.15.如图,某公司的一座石拱桥是圆弧形(劣弧),其跨度AB为24m,拱高CD为8m,求石拱桥拱的半径.四、综合题16.如图,C、D两点在以AB为直径的半圆O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.(1)求DE的长.(2)求证:AC=2OE.17.如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).将四边形OABC绕点O顺时针旋转90°后,点A,B,C分别落在点A′,B′,C′处.(1)请你在所给的直角坐标系中画出旋转后的四边形OA′B′C′;(2)点C旋转到点C′所经过的弧的半径是________,点C经过的路线长是________.答案解析部分一、单选题1.【答案】C【考点】垂径定理的应用【解析】【解答】解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=r,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=r﹣2,在Rt△OAB中,OA2+AB2=OB2 ,即(r﹣2)2+42=r2 ,解得:r=5.∴该光盘的直径是10cm.故选:C.【分析】设光盘的圆心为O,过点O作OA垂直直尺于点A,连接OB,再设OB=r,利用勾股定理求出r的值即可.2.【答案】C【考点】垂径定理的应用,三角形的外接圆与外心,命题与定理【解析】【解答】解:①不在同一直线上的3个点确定一个圆,故错误;②弦的垂直平分线经过圆心,故错误;③根据圆的轴对称性可得,正确;④平分弦(非直径)的直径平分弦所对的弧,故错误;正确的有1个,故选C.【分析】根据垂径定理的知识及过3点圆的知识可得正确选项.3.【答案】C【考点】垂径定理的应用【解析】【分析】由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.【解答】如右图,连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,∴AB=2AE=8,故选C.【点评】本题考查了垂径定理、勾股定理,解题的关键是利用勾股定理先求出AE4.【答案】B【考点】垂径定理的应用【解析】【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2 ,即r2=0.42+(r﹣0.2)2 ,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.5.【答案】B【考点】垂径定理的应用【解析】【分析】连接OA,即可证得△OAM是直角三角形,根据垂径定理即可求得AM,根据勾股定理即可求得OA的长.【解答】连接OA,∵M是AB的中点,∴OM⊥AB,且AM=4在直角△OAM中,OA==5故选B.【点评】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,证明△OAM是直角三角形是解题的关键.6.【答案】C【考点】勾股定理,垂径定理的应用【解析】【解答】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO= =3(cm),∴水的最大深度CD为:2cm.故选:C.【分析】根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.7.【答案】C【考点】勾股定理,垂径定理的应用【解析】【分析】此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有两个公共点,即相交,此时AB>8;又因为大圆最长的弦是直径10,则8<AB≤10.【解答】当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∵大圆的弦AB与小圆有两个公共点,即相交,∴8<AB≤10.故选C.【点评】本题综合运用了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析相交时的弦长.8.【答案】B【考点】垂径定理的应用,圆周角定理【解析】【分析】已知OE是⊙O的半径,D是弦AB的中点,可根据垂径定理的推论来判断所给出的结论是否正确.【解答】∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,弧AE=弧BE=弧AEB;(故①⑤正确)∴AE=BE;(故②正确)由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;故选B.9.【答案】D【考点】垂径定理的应用,圆周角定理【解析】【分析】首先连接BD,易得△ABD是等腰直角三角形,然后由特殊角的三角函数值,求得AD的长.【解答】连接BD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠ACB=45°,∴∠ABD=∠ACD=45°,∴AD=BD,∵AB=10,∴AD=AB•sin45°=.故选D.【点评】此题考查了圆周角定理、等腰直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用二、填空题10.【答案】10【考点】勾股定理,垂径定理的应用【解析】【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16﹣x,MF=8,在直角三角形OMF中,OM2+MF2=OF2即:(16﹣x)2+82=x2解得:x=10故答案为:10.【分析】首先找到EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是16﹣x,MF=8,然后在直角三角形MOF中利用勾股定理求得OF的长即可.11.【答案】3≤OP≤5【考点】垂径定理的应用【解析】【解答】解:过点O作OE⊥AB,垂足为E,连结OA.则可得当点P与点E重合时,线段OP为最短距离.∵点O为圆心,OE⊥AB,AB为圆的一条弦,∴AE=BE.∵AB=8,∴AE=BE=4.∵OE⊥AB,AE=4,OA=5,∴OE=3.当点P落在点A或点B处时,OP的长度最长,等于圆的半径,即为5.故OP的取值范围是3≤OP≤5.12.【答案】26【考点】垂径定理的应用【解析】【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE= AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2 ,即r2=52+(r﹣1)2 ,解得:r=13,所以CD=2r=26,即圆的直径为26.【分析】根据垂径定理和勾股定理求解.三、解答题13.【答案】解:如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知,E是AB的中点,F是的中点,从而EF是弓形的高.∵AB=4,∴AE= AB=2 m,EF=2 m.设半径为Rm,则OE=(R-2)m.在Rt△AOE中,∴R2=(R-2)2+(2 )2.∴R=4.在Rt△AEO中,∵AO=2OE,∴∠OAE=30°,∠AOE=60°,∴∠AOB=120°.∴的长为=(m).∴覆盖棚顶的帆布的面积为×60=160π(m2).【考点】含30度角的直角三角形,勾股定理,垂径定理的应用,弧长的计算【解析】【分析】如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知:E是AB的中点,F是AB⌢的中点,从而EF是弓形的高;设半径为Rm,则OE=(R-2)m.在Rt△AOE中,根据勾股定理计算出半径R,再由在直角三角形中,30度所对的直角边等于斜边的一半,从而得出∠AOB的度数,根据弧长公式即可求出弧AB的长度,最后得出覆盖棚顶的帆布的面积.14.【答案】解:在直线CD上取圆心O ,连接OA ,设半径为r cm.∵弦AB的垂直平分线交弧AB于点C ,交弦AB于点D .在Rt△ADO中,OA2=AD2+OD2 ,∴r2=42+(r-2)2 ,∴r=5答:破残的圆形残片的半径为5 cm.【考点】勾股定理,垂径定理的应用【解析】【分析】设圆的半径为r cm,根据AB CD和已知条件求出AD=AB,在Rt △ADO中,利用勾股定理为等量关系列方程,求出半径即可.15.【答案】解:延长CD到O,使得OC=OA,则O为圆心,∵拱桥的跨度AB=24cm,拱高CD=8cm,∴AD=12cm,∴AD2=OA2﹣(OC﹣CD)2 ,即122=AO2﹣(AO﹣8)2 ,解得AO=13cm.即圆弧半径为13米.答:石拱桥拱的半径为13m.【考点】勾股定理,垂径定理的应用【解析】【分析】将拱形图进行补充,构造直角三角形,利用勾股定理和垂径定理解答四、综合题16.【答案】(1)解:连接BD.∵AB为直径,∴∠ADB=90°,在Rt△ADB中,BD= ==4 ,∵S△ADB= AD•BD= AB•DE∴AD•BD=AB•DE,∴DE= = =4 ,即DE=4 ;(2)解:证明:连接OD,作OF⊥AC于点F.∵OF⊥AC,∴AC=2AF,∵AD平分∠BAC,∴∠BAC=2∠BAD.又∵∠BOD=2∠BAD,∴∠BAC=∠BOD,Rt△OED和Rt△AFO中,∵∴△AFO≌△OED(AAS),∴AF=OE,∵AC=2AF,∴AC=2OE.【考点】全等三角形的判定与性质,垂径定理的应用【解析】【分析】(1)出现直径时,连接直径的端点和圆周上的一点,构成90度圆周角,利用勾股定理和面积法可以解决;(2)过圆心向弦引垂线,由垂径定理,得平分,构造出AC的一半,再证△AFO≌△OED,可证出结论.17.【答案】(1)解:如图所示,四边形OA′B′C′即为所求作的图形(2);π【考点】垂径定理的应用,弧长的计算,旋转的性质,作图-旋转变换【解析】【解答】解:(2)根据勾股定理,OC= = ,C经过的路线长= = π.【分析】(1)根据网格结构找出点A、B、C的对应点A′、B′、C′的位置,然后顺次连接即可;(2)先利用勾股定理求出OC的长度,再根据弧长的计算公式列式进行计算即可得解.。

北京市第四中学中考数学冲刺复习专题训练圆第2讲垂径定理(无答案)

北京市第四中学中考数学冲刺复习专题训练圆第2讲垂径定理(无答案)

第二讲:垂径定理知识精解垂径定理及其推论:垂径定理:垂直于弦的______平分这条弦,并且平分弦所对的______.推论:平分弦(不是______)的________垂直于弦,并且平分弦所对的___________.注意:垂径定理是等腰三角形性质在圆中的应用,也是“圆是轴对称图形”这个性质的具体体现。

对于一个圆和一条直线,如果具备下列五个条件中的任何两个,那么一般也具备其他三个:(1)__________;(2)_________; (3)_ _____; (4)________;(5)__________________________。

自主学习例1已知:P是⊙O内一点,求作:弦AB,使得弦A B是过点P中最短的弦。

例2。

已知:如图,割线AC与圆O交于点B、C,割线AD过圆心O.若圆O的半径是5,且30∠=,AD=13。

求弦BC的长.DAC︒练习:如图,AB 为⊙O 的弦,M 是AB 上一点,若AB =20cm ,MB =8cm ,OM =10c m ,求⊙O 的半径.例3. 已知:⊙O 的半径为10cm,弦AB ∥CD ,AB=12cm,CD=16cm,求AB 、CD 间的距离。

例4. 如图,点E 、F 是以线段BC 为公共弦的两条圆弧的中点,6BC =。

点A 、D 分别为线段EF 、BC 上的动点. 连接AB 、AD ,设BD x =,22AB AD y -=,下列图象中,能表示y 与x 的函数 关系的图象是( )小结一下:与垂径定理相关的常见辅助线例5.如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm,求圆心O 到弦CD 距离。

例6。

如图,点M ,N 分别是弧AB 和弧AC 的中点,且MN 交AB 于D,交AC 于E ,求证:△ADE 是等腰三角形。

例7。

如图,AB 是⊙O 的直径, ,且CD ⊥ AC CFAB于D,AF交CD于E,求证:(1)AE=CE;(2)AF=2CD.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

中考试题北京市第四中学总复习:《圆》全章复习与巩固—巩固练习(提高)

中考试题北京市第四中学总复习:《圆》全章复习与巩固—巩固练习(提高)

《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC =78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为( ).A.54m B.63m C.93m D.183m第1题图第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ).A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸第5题图 第6题图 第8题图6.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有( ) A.1条 B.2条 C.3条 D.4条7.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ). A .80° B .100° C .80°或100° D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( ).A .65°B .115°C .65°或115°D .130°或50°二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__ ________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________. 11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是 __ __ .12.已知圆的直径为13 cm ,圆心到直线的距离为6cm ,那么直线和这个圆的公共点的个数是______.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________.14.已知正方形ABCD 外接圆的直径为2a ,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n 边形,分别以它们的各顶点为圆心,以l 为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4 m的蒙古包,至少要____ ____m2的毛毡.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】C.【解析】本题借助图形来解答比较直观.要判断两圆公切线的条数,则必须先确定两圆的位置关系,因此必须求出两圆的圆心距,根据题中条件,在Rt△AOB中,OA=4,OB=3,所以AB=5,而两圆半径为和,且,即两圆的圆心距等于两圆的半径之和,所以两圆相外切,共有3条公切线.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时, 圆周角为413608092⨯⨯=°°.注意分情况讨论. 8.【答案】C ;【解析】连接OC 、OB ,则∠BOC =360°-90°-90°-50°=130°.点P 在优弧上时,∠BPC =12∠BOC =65°;点P 在劣弧上时,∠BPC =180°-65°=115°. 主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交; 【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】2个;【解析】直线与圆的位置关系:相离、相切、相交.判定方法有两种:一是看它们的公共点的个数;二是比较圆心到直线的距离与圆的半径的大小.实际上这两种方法是等价的,由题意可知,圆的半径为6.5cm ,而圆心到直线的距离6cm<6.5cm ,所以直线与圆相交,有2个公共点.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】(21)a -; 2(222)a -;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =22x ,∴ 222x x a ⨯+=,(21)x a =-,即正八边形的边长为(21)a -.222224[(21)](222)AEL S S S a x a a a =-=-=--=-△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为(2)1801(2)3602n n -=-个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为121(2)(2)2n n ππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,n α, 则12(2)180n n ααα+++=-…°, ∴ n 条弧长的和为1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-.16.【答案】720π;【解析】∵ S =πr 2,∴ 9π=πr 2,∴ r =3.∴ h 1=4,∴ 2215l h r =+=,∴ 223523 3.5152136S S S rl rh πππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720S ππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC ,∴OF 垂直平分BC∴BF FC = ∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】(1)在BF 上取点P ,连AP 交⊙O 于点D ,过D 作⊙O 切线,交OF 于E ,如图即为所求. (2)∠EDP=∠DPE ,或ED=EP 或△PDE 是等腰三角形. (3)根据题意,得△PDE 是等腰三角形, ∴ ∠EDP=∠DPE , ∴,在Rt △OAP 中,,∴,自变量x 的取值范围是且.19.【答案与解析】解:∵公共弦AB =120 ∴==a R 46120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=∠====O a R AB o1446012022602,, ()∴=-⎛⎝ ⎫⎭⎪=-==r R a O o 442422222602606090,∠S S S R a r AmB AO B AO B弓形扇形=-=-=-229036012180036004244∆ππS S S R a r AnB AO B AO B弓形扇形=-=-=-1160360122400360036266∆ππ()∴=+=-+S S S AmB AnB 阴影弓形弓形4200360013πH()[]∴-+两圆相交弧间阴影部分的面积为42003600132πcm .20. 【答案与解析】 (1)如选命题①. 证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵ ∠BON =90°,∴ ∠1+∠2=90°. ∵ ∠3+∠2=90°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =90°, ∴ △BCM ≌△CDN ,∴ BM =CN . 如选命题③.证明:在图(3)中,∵ ∠BON =108°,∴ ∠1+∠2=108°. ∵ ∠2+∠3=108°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =108°, ∴ △BCM ≌△CDN ,∴ BM =CN . (2)①答:当∠BON =(2)180n n-°时结论BM =CN 成立.②答:当∠BON =108°时.BM =CN 还成立. 证明:如图(4),连接BD 、CE 在△BCD 和△CDE 中,∵ BC =CD ,∠BCD =∠CDE =108°,CD =DE , ∴ △BCD ≌△CDE .∴ BD =CE ,∠BDC =∠CED ,∠DBC =∠ECD . ∵ ∠CDE =∠DEN =108°, ∴ ∠BDM =∠CEM .∵ ∠OBC+∠OCB =108°,∠OCB+∠OCD =108°. ∴ ∠MBC =∠NCD .又∵ ∠DBC =∠ECD =36°, ∴ ∠DBM =∠ECM . ∴ △BDM ≌△CEN , ∴ BM =CN .灿若寒星制作。

北京市第四中学下册圆周运动中考真题汇编[解析版]

北京市第四中学下册圆周运动中考真题汇编[解析版]

一、第六章 圆周运动易错题培优(难)1.如图所示,可视为质点的、质量为m 的小球,在半径为R 的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是( )A .小球能够到达最高点时的最小速度为0B gRC 5gR 为6mgD .如果小球在最高点时的速度大小为gR ,则此时小球对管道的外壁的作用力为3mg 【答案】ACD 【解析】 【分析】 【详解】A .圆形管道内壁能支撑小球,小球能够通过最高点时的最小速度为0,选项A 正确,B 错误;C .设最低点时管道对小球的弹力大小为F ,方向竖直向上。

由牛顿第二定律得2v F mg m R-=将5v gR =代入解得60F mg =>,方向竖直向上根据牛顿第三定律得知小球对管道的弹力方向竖直向下,即小球对管道的外壁有作用力为6mg ,选项C 正确;D .小球在最高点时,重力和支持力的合力提供向心力,根据牛顿第二定律有2v F mg m R'+=将2v gR =30F mg '=>,方向竖直向下根据牛顿第三定律知球对管道的外壁的作用力为3mg ,选项D 正确。

故选ACD 。

2.如图所示,两个啮合的齿轮,其中小齿轮半径为10cm ,大齿轮半径为20cm ,大齿轮中C 点离圆心O 2的距离为10cm ,A 、B 两点分别为两个齿轮边缘上的点,则A 、B 、C 三点的( )A .线速度之比是1:1:2B .角速度之比是1:2:2C .向心加速度之比是4:2:1D .转动周期之比是1:2:2 【答案】CD 【解析】 【分析】 【详解】A .同缘传动时,边缘点的线速度相等v A =v B ①同轴转动时,各点的角速度相等ωB =ωC ②根据v =ωr ③由②③联立代入数据,可得B C 2v v =④由①④联立可得v A :v B :v C =2:2:1A 错误;B .由①③联立代入数据,可得A B :2:1ωω=⑤再由②⑤联立可得A B C ::2:1:1ωωω=⑥B 错误; D .由于2T πω=⑦由⑥⑦联立可得A B C ::1:2:2T T T =D 正确; C .根据2a r ω= ⑧由⑥⑧联立代入数据得A B C ::4:2:1a a a =C 正确。

2020年中考数学(全国通用版)考前冲刺分类提分练: 《圆》(含答案)

2020年中考数学(全国通用版)考前冲刺分类提分练: 《圆》(含答案)

考前冲刺分类提分练习:《圆》一.选择题1.(2020•陕西模拟)如图,在△ABC中,点D为△ABC的内心,∠A=60°,BD:CD=2:1,BD=4,则△DBC的面积为()A.3 B.2 C.2D.3 2.(2020•历下区校级模拟)如图,⊙O中,AB=AC,∠ACB=75°,BC=1,则阴影部分的面积是()A.1+πB.+πC.+πD.1+π3.(2020•绍兴一模)如图,直线PA,PB,MN分别与⊙O相切于点A,B,D,PA=PB=8cm,则△PMN的周长为()A.8cm B.8cm C.16cm D.16cm 4.(2020•山西模拟)如图,正方形ABCD的边长为4,分别以正方形的三边为直径在正方形内部作半圆,则阴影部分的面积之和是()A.8 B.4 C.16πD.4π5.(2020•绍兴一模)如图,AB是⊙O的直径,DB,DE分别切⊙O于点B、C,若∠ACE=20°,则∠D的度数是()A.40°B.50°C.60°D.70°6.(2020•石家庄模拟)在Rt△ABC中,∠ACB=90°,AC=3,BC=4.点O为边AB上一点(不与A重合)⊙O是以点O为圆心,AO为半径的圆.当⊙O与三角形边的交点个数为3时,则OA的范围()A.0<OA≤或2.5≤OA<5 B.0<OA或OA=2.5C.OA=2.5 D.OA=2.5或7.(2020•南岗区模拟)如图,⊙O的直径AB垂直于弦CD,垂足为点E,连接AC,∠CAB =22.5°,AB=12,则CD的长为()A.3B.6 C.6D.6 8.(2020•哈尔滨模拟)如图,△ABC内接于⊙O,D是优的中点,DE⊥直线AB于点E,若AB=3AE=3,则AC的长为()A.6 B.5 C.4 D.79.(2020•无锡模拟)如图,半径为5的⊙A经过点C和点O,点B是y轴右侧⊙A的优弧上一点,∠OBC=30°,则点C的坐标为()A.(0,5)B.(0,5)C.(0,)D.(0,)10.(2020•武汉模拟)如图,在⊙O中,AB是直径,且AB=10,点D是⊙O上一点,点C 是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,OP,CO.关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是△ACQ的外心;④点P是△AOC的内心;⑤若CB∥GD,则OP=.正确的个数有()A.2 B.3 C.4 D.0二.填空题11.(2020•烟台一模)如图,边长为2的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,连接B1C,边B1C1与CD交于点O,则图中阴影部分的面积为.12.(2020•绍兴一模)如图所示,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,若以点C 为圆心,r为半径的圆与边AB所在直线有公共点,则r的取值范围为.13.(2020•江岸区校级模拟)已知:等腰Rt△ABC中,∠ACB=90°,AC=BC=8,O是AB 上一点,以O为圆心的半圆与AC、BC均相切,P为半圆上一动点,连PC、PB,如图,则PC+PB的最小值是.14.(2020•南岗区校级一模)如图,△ABC是圆O的内接三角形,连接OA、OC,若∠AOC =∠ABC,弦AC=5,则圆O的半径为.15.(2020•河南模拟)如图,平行四边形ABCD中,∠A=60°,CD=4,以点A为圆心,AB 的长为半径画弧交AD边于点E,以点B为圆心,BE的长为半径画弧交BC边于点F,则阴影部分的面积为.16.(2020•凉山州一模)如图.在Rt△ABC中,∠ACB=90°,AC=BC,以A为圆心,AD 长为半径的弧DF交AC的延长线于F,若图中两个阴影部分的面积相等,则=.17.(2020•武汉模拟)如图,在⊙O中,弦AB=4,点C是上的动点(不为A,B),且∠ACB=120°,则CA+CB的最大值为.18.(2020•武汉模拟)如图,正六边形ABCDEF,连接AE,CF,则=.19.(2020•陆丰市模拟)如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=4,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的阴影面积为.20.(2020•涪城区模拟)在圆中,直径AB=6,C、D为圆上点,且CD∥AB,若如图分布的6个圆心在AB上且大小相等的小圆均与CD相切,则CD=.三.解答题21.(2020•烟台一模)如图,在△ABC中,AB为⊙O的直径,⊙O交AC边于点D,连接OD,过点D作⊙O的切线DE,且DE⊥BC于点E.(1)求证:BA=BC;(2)若DE=2,⊙O的直径为5,求tan C.22.(2020•顺德区模拟)如图,已知AB为⊙O的直径,AC为⊙O的切线,连结CO,过B 作BD∥OC交⊙O于D,连结AD交OC于G,延长AB、CD交于点E.(1)求证:CD是⊙O的切线;(2)若BE=2,DE=4,求CD的长;(3)在(2)的条件下,连结BC交AD于F,求的值.23.(2020•河南模拟)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线,交BC于点E,连接OD.(1)求证:CE=BE;(2)连接EO,并延长EO交⊙O于点F,AC=2.填空:①当DE=时,四边形AFOD是菱形;②当的长=时,四边形OCED是正方形.24.(2020•长春模拟)如图:△ABC是⊙O的内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O的切线交AB的延长线于点D.(1)求证:CD=CB;(2)如果⊙O的半径为2,求AC的长.25.(2020•河南模拟)如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=.26.(2020•陕西模拟)问题探究(1)如图1.在△ABC中,BC=8,D为BC上一点,AD=6.则△ABC面积的最大值是.(2)如图2,在△ABC中,∠BAC=60°,AG为BC边上的高,⊙O为△ABC的外接圆,若AG=3,试判断BC是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD,AB=6+12,BC=6+6,现在他想利用这块地建一个四边形鱼塘AMFN,且满足点E在CD上,AD=DE,点F在BC上,且CF=6,点M 在AE上,点N在AB上,∠MFN=90°,这个四边形AMFN的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.27.(2020•道里区模拟)四边形ABCD是⊙O的内接四边形,AB=AC,BD⊥AC,垂足为E.(1)如图1,求证:∠BAC=2∠DAC;(2)如图2,点F在BD的延长线上,且DF=DC,连接AF、CF,求证:CF=CB;(3)如图3,在(2)的条件下,若AF=10,BC=4,求sin∠BAD的值.28.(2020•江西模拟)如图①,在△ABC中,以AB为直径的⊙O交AC于点D,点E在BC 上,连接BD,DE,∠CDE=∠ABD.(1)求证:DE是⊙O的切线.(2)如图②,当∠ABC=90°时,线段DE与BC有什么数量关系?请说明理由.(3)如图③,若AB=AC=10,sin∠CDE=,求BC的长.29.(2020•石家庄模拟)如图,在矩形ABCD中,AB=4,BC=3.点M是AB边上一点,且∠CMB=45°.点Q是直线AB上一点且在点B的右侧,BQ=4,点P从点Q出发,沿射线QA方向以每秒2个单位长度的速度运动,设运动时间为t秒.以P为圆心,PC长为半径作半圆P,交直线AB分别于点G,H(点G在点H的左侧).(1)当t=1秒时,PC的长为,t=秒时,半圆P与AD相切;(2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;(3)若∠MCP=15°,请直接写出扇形HPC的弧长为.30.(2020•哈尔滨模拟)已知△ABP内接于⊙O,RB为⊙O的切线,RA交⊙O于点J.(1)如图1,求证:∠RBA=∠APB;(2)如图2,Q为⊙O,上一点,连接JQ交AP于点E,∠PEQ=∠AJQ+3∠AQJ,求证:∠ABP=2∠AQJ+2∠AJQ;(3)在(2)的条件下,若AP=2,JQ=2,求⊙O的半径.参考答案一.选择1.解:过点B作BH⊥CD于点H.∵点D为△ABC的内心,∠A=60°,∴∠BDC=90°+∠A=90°+=120°,则∠BDH=60°,∵BD=4,BD:CD=2:1∴DH=2,BH=2,CD=2,∴△DBC的面积为==2,故选:C.2.解:作OD⊥BC,则BD=CD,连接OA,OB,OC,∴OD是BC的垂直平分线∴,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=1,∵AD⊥BC,AB=AC,∴BD=CD,∴OD=OB=,∴AD=1+,∴S△ABC=BC•AD=,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=+﹣=,故选:B.3.解:∵直线PA,PB,MN分别与⊙O相切于点A,B,D,∴AM=MD,BN=DN,∵PA=PB=8cm,∴△PMN的周长=PM+MN+PN=PM+MD+ND+PN=PM+AM+BN+PN=PA+PB=8cm+8cm=16cm,故选:C.4.解:易知:两半圆的交点即为正方形的中心,设此点为O,连接AO,DO,则图中的四个小弓形的面积相等,∵两个小弓形面积=×π×22﹣S△AOD,∴两个小弓形面积=2π﹣4,∴S阴影=2×S半圆﹣4个小弓形面积=π•22﹣2(2π﹣4)=8,故选:A.5.解:连OC,如图,∵DB、DE分别切⊙O于点B、C,∴∠OBD=∠OCD=∠OCE=90°,∵∠ACE=20°,∴∠OCA=90°﹣20°=70°,∵OC=OA,∴∠OAC=∠OCA=70°,∴∠BOC=2×70°=140°,∴∠D=360°﹣90°﹣90°﹣140°=40°.故选:A.6.解:如右图所示,当圆心从O1到O3的过程中,⊙O与三角形边的交点个数为3,当恰好到达O3时则变为4个交点,作O3D⊥BC于点D,则∠O3BD=∠ABC,∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,设O3A=a,则O3B=5﹣a,∴,得a=,∴当0<OA时,⊙O与三角形边的交点个数为3,当点O为AB的中点时,⊙O与三角形边的交点个数为3,此时OA=2.5,由上可得,0<OA或OA=2.5时,⊙O与三角形边的交点个数为3,故选:B.7.解:连接OC,则OC=AB==6,∵OA=OC,∠CAB=22.5°,∴∠CAB=∠ACO=22.5°,∴∠COB=∠CAB+∠ACO=45°,∵AB⊥CD,AB过O,∴CD=2CE,∠CEO=90°,∴∠OCE=∠COB=45°,∴OE=OC,∵CE2+OE2=OC2,∴2CE2=62,解得:CE=3,即CD=2CE=6,故选:C.8.解:连接BD,CD,AD,过D作DM⊥AC于M,∵AB=3AE=3,∴AE=1,∵D是优的中点,∴=,∴∠DBC=∠DCB,∵∠EAD=∠DCB,∠DAM=∠DBC,∴∠EAD=∠MAD,∵DE⊥直线AB于点E,∴∠E=∠DMA=90°,∵AD=AD,∴△ADE≌△ADM(AAS),∴AM=AE=1,DE=DM,∵∠E=∠CMD=90°,∠DBE=∠DCM,∴△BDE≌△CDM(AAS),∴CM=BE=AB+AE=4,∴AC=AM+CM=5,故选:B.9.解:连接CA,OA,∵∠OBC=30°,∴∠CAO=60°,又∵CA=AO,∴△CAO是等边三角形,∴CO=AO=5,∴点C的坐标为:(0,5).故选:A.10.解:不妨设∠BAD=∠ABC,则=,∵=,∴==,这个显然不符合题意,故①错误,连接OD,∵GD是⊙O的切线,∴OD⊥DG,∴∠ODG=90°,∴∠GDP+∠ODA=90°,∵GE⊥AB,∴∠AEP=90°,∴∠PAE+∠APE=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,故②正确,∵AB是直径,∴∠ACB=90°,∵∠ACP+∠BCE=90°,∠BCE+∠ABC=90°,∴∠ACE=∠ABC,∵=,∴∠CAP=∠ABC,∴∠PAC=∠PCA,∴PC=PA,∵∠AQC+∠CAP=90°,∠ACP+∠PCQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴PA=PQ,∵∠ACQ=90°,∴点P是△ACQ的外接圆的圆心,故③正确,∵与不一定相等,∴∠CAP 与∠DAB 不一定相等,∴点P 不一定是△AOC 的内心,故④错误,∵DG ∥BC ,OD ⊥DG ,∴OD ⊥BC , ∴=, ∵=, ∴==,∴∠AOC =∠COD =∠DOB =60°,∠CAD =∠DAB =30°∵OA =OC ,∴△OAC 是等边三角形,∵CE ⊥OA ,∴∠ACE =∠OCE ,∴点P 是△AOC 的外心,∴OP =AP =PC ===,故⑤错误,故选:A .二.填空题(共10小题)11.解:连结DC 1,∵∠CAC 1=∠DCA =∠COB 1=∠DOC 1=45°,∴∠AC 1B 1=45°,∵∠ADC=90°,∴A,D,C1在一条直线上,∵四边形ABCD是正方形,∴AC==2,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB1=2﹣2,∴S△OB1C =•OB1•CB1=×(2﹣2)×=6﹣4,∵S△AB1C1=AB1•B1C1=×2×2=2,∴图中阴影部分的面积=S﹣S﹣S=﹣(6﹣4)﹣2=,故答案为:π﹣8+4.12.解:如图,作CH⊥AB于H.在Rt△ABC中,∵∠ACB=90°,BC=8,AC=6,∴AB===10,∵S△ABC=•AC•BC=•AB•CH,∴CH=,∵以点C为圆心,r为半径的圆与边AB所在直线有公共点,∴r≥,故答案为r≥.13.解:如图,设半圆与AC、BC的切点为D、E,连接OP、OC、OD、OE,则OE=OD,OD⊥AC,OE⊥BC,所以CO平分∠ACB,∵AC=BC=8,∠ACB=90°∴AB=8,∴OC=OA=OB=AB=4,∴OP=OD=OE=AC=BC=4,取OB的中点F,连接PF、CF,则OF=OB=2,∴==,==,在△OPF和△OBP中,=,∠POF=∠BOP,∴△OPF∽△OBP,∴==,∴PF=PB,∴PC+PB=PC+PF≥CF,当且仅当C、P、F三点共线时,PC+PB取得最小值CF==2.故答案为2.14.解:如图,作OD⊥AC于点D,根据垂径定理,得AD=AC=,∵∠AOC=∠ABC,∴圆心角AOC所对弧的度数等于圆周角ABC所对弧的度数的一半,∴的度数=×360°=120°∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,在Rt△ADO中,cos30°=,∴OA=×=.故答案为.15.解:如图连接BE,EF.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∵AE=AB,∴△ABE是等边三角形,∴∠ABE=∠EBF=60°,∵BE=BF,∴△EBF 是等边三角形,∵S 阴=S △BEF =×42=4,故答案为4. 16.解:∵图中两个阴影部分的面积相等∴S 扇形ADF =S △ABC∵∠ACB =90°,AC =BC∴△ABC 为等腰直角三角形∴∠A =∠B =45°∴AB 2=2AC 2∵S 扇形ADF =S △ABC ∴=AC ×BC ∴AD 2== ∴= ∴=∴AD =AB∴DB =AB ﹣AD =(1﹣)AB ∴== 故答案为:.17.解:取优弧AB 中点P ,连接PC ,PA ,PB ,延长CA 至M ,使MA =CB ,连接PM . ∵=,∴PA =PB ,∵∠APB +∠ACB =180°,∠ACB =120°,∴∠APB =60°,∴△APB 是等边三角形,∴∠ACP =∠ABP =60°,∵∠PAM+∠PAC=180°,∠PAC+∠PBC=180°,∴∠PAM=∠PBC,∵AM=BC,AP=BP,∴△MAP≌△CBP(SAS),∴PM=PC,∵∠PCM=60°∴△MPC为等边三角形,∴PC=CM.∴CA+CB=PC,过点P作PD⊥AB连接OB,∵△PAB是等边三角形,∴PD过圆心O,∠BPD=30°,∴BD=AB=2,在Rt△BDP中,DP=6,在Rt△BDO中,根据勾股定理得,(6﹣OB)2+(2)2=OB2∴OB=4,当PC为圆的直径时,CA+CB的最大值为8.故答案为8.18.解:连接BD交CF于K.∵六边形ABCDEF是正六边形,∴∠BAF=∠AFE=120°,FA=FE,∴∠FAE=30°,∴∠BAE=90°,同理可证∠AED=∠BDE=90°,设FG=CK=a,则AF=BC=AB=2a,∴CF=4a,AE=2AG=2a,∴==,故答案为:.19.解:∵∠BCA=90°,∠BAC=30°,∴AB=2BC=8,AC=BC=4,∵Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,∴∠CAE=∠BAD=90°,∴BC扫过的阴影面积=S扇形BAD ﹣S△CAE=﹣=4π.故答案为4π.20.解:设圆心为O,过O作OE⊥CD于E,连接OD,∵如图分布的6个圆心在AB上且大小相等的小圆均与CD相切,AB=6,∴这6个圆的半径为×6=,即OE=,OD==3,在Rt△OED中,由勾股定理得:DE===,∵OE⊥CD,OE过O,∴DE=CE=,即CD=,故答案为:.三.解答题(共10小题)21.(1)证明:∵DE 为⊙O 的切线,∴OD ⊥DE ,而DE ⊥BC ,∴OD ∥BC ,∴∠ODA =∠C ,∵OA =OD ,∴∠A =∠ODA ,∴∠A =∠C ,∴BA =BC ;(2)解:连接BD ,如图,设BE =x ,BC =BA =5,∵AB 为直径,∴∠ADB =∠BDC =90°,∵∠DBE =∠CBD ,∴△BDE ∽△BCD ,∴BD :BC =BE :BD ,∠BDE =∠C ,∴BD 2=BC •BE =5x ,在Rt △BDE 中,BD 2=DE 2+BE 2,即5x =22+x 2,解得x 1=1,x 2=4(舍去),∴BE =1,∴tan ∠BDE ==,即tan C =.22.证明:(1)如图,连接OD ,∵AC为⊙O的切线,AB为⊙O的直径,∴∠CAB=90°=∠ADB,∵OD=OB,∴∠DBO=∠BDO,∵CO∥BD,∴∠AOC=∠OBD,∠COD=∠ODB,∴∠AOC=∠COD,且AO=OD,CO=CO,∴△AOC≌△DOC(SAS)∴∠CAO=∠CDO=90°,∴OD⊥CD,且OD是半径,∴CD是⊙O的切线;(2)设⊙O半径为r,则OD=OB=r,在Rt△ODE中,∵OD2+DE2=OE2,∴r2+42=(r+2)2,解得r=3,∴OB=3,∵DB∥OC,∴即∴CD=6;(3)由(1)得△CDO≌△CAO,∴AC=CD=6,在Rt△AOC中,OC===3,∵∠AOG=∠COA,∴Rt△OAG∽△OCA,∴,即=,∴OG=,∴CG=OC﹣OG=3﹣=,∵OG∥BD,OA=OB,∴OG为△ABD的中位线,∴BD=2OG=,∵CG∥BD,∴∴=.23.解:连接CD,如图1,∵∠ACB=90°,AC为⊙O直径,∴EC为⊙O切线,且∠ADC=90°;∵ED切⊙O于点D,∴EC=ED,∴∠ECD=∠EDC;∵∠B+∠ECD=∠BDE+∠EDC=90°,∴∠B=∠BDE,∴BE=ED,∴BE=CE.(2)①如图2,当四边形AFOD为菱形时,AF=FO=OD=AD,∴AD=OD=AO,∴△AOD是等边三角形,∴∠DAC=60°,∴BC=AC==6.∴DE=CE==3.故答案为:3.②当四边形OCED是正方形时,如图3,∴∠EOC=45°,∴∠AOF=∠EOC=45°,∴的长==.故答案为:.24.(1)证明:连接OB,则∠AOB=2∠ACB=2×45°=90°,∵OA=OB,∴∠OAB=OBA=45°,∵∠AOC=150°,OA=OC,∴∠OCA=∠OAC=15°,∴∠OCB=∠OCA+∠ACB=60°,∴△OBC是等边三角形,∴∠BOC=∠OBC=60°,∴∠CBD=180°﹣∠OBA﹣∠OBC=75°,∵CD是⊙O的切线,∴OC⊥CD,∴∠D=360°﹣∠OBD﹣∠BOC﹣∠OCD=360°﹣(60°+75°)﹣60°﹣90°=75°,∴∠CBD=∠D,∴CB=CD;(2)在Rt△AOB中,AB=OA=2,∵CD是⊙O的切线,∴∠DCB=∠CAD,∵∠D是公共角,∴△DBC∽△DCA,∴=∴CD2=AD•BD=BD•(BD+AB),∵CD=BC=OC=2,∴4=BD•(2+BD),解得:BD=﹣,∴AC=AD=AB+BD=+.25.证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,∴S=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,△OBE由勾股定理得OP===9.故答案为:9.26.解:(1)当AD⊥BC时,△ABC面积的最大,则△ABC面积的最大值是BC•AD==24,故答案为:24;(2)如图2中,连接OA,OB,OC,作OE⊥BC于E.设OA=OC=2x,∵∠COB=2∠CAB=120°,OC=OB,OE⊥CB,∴CE=EB,∠COE=∠BOE=60°,∴OE=OB=x,BE=x,∵OC+OE≥AG,∴3x≥3,∴x≥1,∴x的最小值为1,∵BC=2x,∴BC的最小值为2;(3)如图3中,连接AF,EF,延长BC交AE的延长线于G,∵∠D=90°,AD=DE=6+6,∴∠DAE=∠AED=45°,∵CD=AB=6+12,∴CE=CF=6,∴∠CEF=∠CFE=45°,∴∠AEF=90°,∴EF=6=BF,将△EFM顺时针旋转得到△FBH,作△FHB的外接圆⊙O交BC于N,连接ON,∵∠AEF=∠ABF=90°,AF=AF,EF=BF,∴Rt△AEF≌Rt△ABF(HL),∴S△AEF =S△ABF,∵∠EFG=45°,∵∠FEG=90°,∠EFG=45°,∴EF=EG=6,∴FG=EF=12,由(2)可知,当△FHN的外接圆的圆心O在线段BF上时,△FNH的面积最小,此时四边形ANFE的面积最大,设OF=ON=r,则OB=BN=r,∴r+r=6,∴r=6(2﹣),∴NH=r=12(2﹣),∴四边形ANFM的面积的最大值=2××(12+6)×6﹣×12(2﹣)×6=144.27.(1)证明:由圆周角定理得:∠DAC=∠CBD,∵BD⊥AC,∴∠AEB=∠BEC=90°,∴∠ACB=90°﹣∠CBD,∵AB=AC,∴∠ABC=∠ACB=90°﹣∠CBD,∴∠BAC=180°﹣2∠ABC=2∠CBD,∴∠BAC=2∠DAC;(2)证明:∵DF=DC,∴∠FCD=∠CFD,∴∠BDC=∠FCD+∠CFD,∴∠BDC=2∠CFD,∵∠BDC=∠BAC,∠BAC=2∠CAD,∴∠CFD=∠CAD,∵∠CAD=∠CBD,∴∠CFD=∠CBD,∴CF=CB;(3)解:∵AC⊥BF,CF=CB,∴BE=EF,∴CA垂直平分BF,∴AB=AF=AC=10设AE=x,CE=10﹣x,在Rt△AEB中,AB2﹣AE2=BE2,在Rt△BEC中,BE2=BC2﹣CE2,∴AB2﹣AE2=BC2﹣CE2,∵BC=4,∴102﹣x2=(4)2﹣(10﹣x)2,解得x=6,∴AE=6,CE=4,∴BE===8,∵∠DAE=∠CBE,∴tan∠DAE=tan∠CBE,∴,即=,∴DE=3,在Rt△AED中,AD2=AE2+DE2∴AD==3,过点D作DH⊥AB,垂足为H,如图3所示:∴△ABD的面积=AB•DH=BD•AE,∵BD=BE+DE=11,∴DH===,在Rt△AHD中,sin∠BAD===.28.解:(1)证明:如图①,连接OD.∵AB为⊙O的直径,∴∠ADB=90°,∴∠CDE+∠BDE=∠BDC=90°.∵∠CDE=∠ABD,∴∠ABD+∠BDE=90°.∵OB=OD,∴∠ABD=∠ODB,∴∠ODB+∠BDE=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)DE=BC.理由如下:由(1)知∠ODE=90°,∴∠ODB+∠BDE=90°.∵∠ABC=90°,∴∠OBD+∠DBE=90°.∵OB=OD,∴∠OBD=∠ODB,∴∠DBE=∠BDE,∴BE=DE.∵∠ABC=90°,∴∠C+∠A=90°.∵∠ABD+∠A=90°,∴∠C=∠ABD.∵∠CDE=∠ABD,∴∠C=∠CDE,∴DE=CE,∴BE=DE=CE.∴DE=BC.(3)∵∠CDE=∠ABD,∴sin∠CDE=sin∠ABD=.在Rt△ABD中,∵sin∠ABD==,AB=10,∴AD=AB=×10=6,∴BD===8.在Rt△BDC中,∠BDC=90°,CD=10﹣6=4,∴BC===4.29.解:(1)当t=1秒时,PQ=2,∴BP=BQ﹣PQ=2,在Rt△BCP中,BP=2,BC=3,∴PC==,设当半圆P与AD相切时,BP=x,则PC=PA=4﹣x,∴x2+32=(4﹣x)2,解得:x=,∴PQ=4+=,∴当t=时,半圆P与AD相切;故答案为:;;(2)过点B作BE⊥AC于点E,如图2所示.∵AB=4,BC=3,∴AC==5,∴BE==.在Rt△BCE中,BC=3,BE=,∴CE==,∴半圆P被矩形ABCD的对角线AC所截得的弦长为×2=;(3)分两种情况考虑,如图3所示:①当点P在点M的右侧时,∵∠CMB=45°,∠MCP=15°,∴∠MCB=45°,∠PCB=30°,∴∠CPB=60°,CP===2,∴扇形HPC的弧长为=π;②当点P在点M的左侧时,∵∠MCB=45°,∠MCP=15°,∴∠PCB=∠MCB+∠MCP=60°,∴∠CPB=30°,CP===6,∴扇形HPC的弧长为=π,综上所述,若∠MCP=15°,扇形HPC的弧长为π或π,故答案为:π或π.30.(1)证明:如图1,连接BO并延长交⊙O于另一点M,连接AM,∵RB为⊙O的切线,∴RB⊥BM,∴∠RBO=90°,∴∠RBA+∠ABM=90°,∵BM为⊙O的直径,∴∠BAM=90°,∴∠ABM+∠AMB=90°,∴∠RBA=∠AMB,∵=,∴∠AMB=∠APB,∴∠RBA=∠APB;(2)证明:连接PQ,∵=,∴∠AJQ=∠APQ,∵∠JQP=180°﹣∠PEQ﹣∠APQ,∴∠JQP=180°﹣∠PEQ﹣∠AJQ,∵∠PEQ=∠AJQ+3∠AQJ,∴∠JQP=180°﹣(∠AJQ+3∠AQJ)﹣∠AJQ,∴∠JQP=180°﹣2∠AJQ﹣3∠AQJ,∴∠AQP=∠AQJ+∠JQP=∠AQJ+180°﹣2∠AJQ﹣3∠AQJ=180°﹣2∠AQJ﹣2∠AJQ,∵四边形ABPQ是⊙O的内接四边形,∴∠ABP+∠AQP=180°,∴180°﹣2∠AQJ﹣2∠AJQ+∠ABP=180°,∴∠ABP=2∠AQJ+2∠AJQ;(3)解:如图2,连接BQ,BJ,∵=,∴∠ABQ=∠AJQ,∵∠ABP=2∠AQJ+2∠AJQ,∴∠ABP=2∠AQJ+2∠ABQ=2(∠AQJ+∠ABQ)=2(∠ABJ+∠ABQ)=2∠JBQ,连接OJ,OQ,OP,过O作OK⊥AP于K,交⊙O于H,连接HP,∴∠POH=∠ABP=2∠JBQ,∵∠JOQ=2∠JBQ,∴∠JOQ=∠POH,∴JQ=PH=2,∵OK⊥AP,∴AK=KP=AP=,在Rt△PKH中,KH==5,设OK=a,则OH=OP=5+a,在Rt△OKP中,OK2+KP2=OP2,即a2+()2=(5+a)2,解得:a=1,∴OP=6,∴⊙O的半径为6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲:垂径定理
知识精解
垂径定理及其推论:
垂径定理:垂直于弦的______平分这条弦,并且平分弦所对的______. 推论:平分弦(不是______)的________垂直于弦,并且平分弦所
对的___________.
注意:垂径定理是等腰三角形性质在圆中的应用,也是“圆是轴对称 图形”这个性质的具体体现。

对于一个圆和一条直线,如果具备下列五个条件中的任何两个,那么 一般也具备其他三个:
(1) __________; (2)_________; (3)_ _____; (4)________;
(5)__________________________。

自主学习
例1已知:P 是⊙O 内一点,求作:弦AB ,使得弦A B 是过点P 中最短
的弦。

例2.已知:如图,割线AC 与圆O 交于点B 、C ,割线AD 过圆心O. 若圆O 的半径是5,且30DAC ︒
∠=,AD=13. 求弦BC 的长.
练习:
如图,AB 为⊙O 的弦,M 是AB 上一点,若AB =20cm ,MB =8cm , OM =10c m ,求⊙O 的半径.
例3. 已知:⊙O 的半径为10cm ,弦AB ∥CD ,AB=12cm ,CD=16cm ,求
AB 、CD 间的距离。

例4. 如图,点E 、F 是以线段BC 为公共弦的两条圆弧的中点, 6BC =. 点A 、D 分别为线段EF 、BC 上的动点. 连接AB 、AD ,
设BD x =,
22AB AD y -=,下列图象中,能表示y 与x 的函数
关系的图象是( )
小结一下:
与垂径定理相关的常见辅助线
例5.如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆 心O 到弦CD 距离。

例6.如图,点M ,N 分别是弧AB 和弧AC 的中点,且MN 交AB 于D ,交 AC 于E ,求证:△ADE 是等腰三角形。

例7.如图,AB 是⊙O 的直径,
,且CD ⊥AB 于D , AF 交CD 于E ,求证:(1)AE=CE ;(2)AF=2CD.
AC CF。

相关文档
最新文档