电力牵引供电系统
牵引供电系统
牵引供电系统第一章牵引变电一次设备一、概述1、什么叫牵引供电系统?牵引供电系统由哪几部分组成?铁路从地方引入110kv电源,通过牵引变电所降压至27.5kv送至电力机车的整个系统叫牵引供电系统。
牵引供电系统由以下几部分组成:地方变电站、110kv输电线、牵引变电所、27.5kv馈电线、接触网、电力机车、轨回流线、地回流线。
2、牵引供电系统的供电方式有哪几种?有以下三种: 直供方式---以钢轨与大地为回流;BT方式---电流通过吸流变压器与回流线再返回变电所,限制对通信线路的干扰;AT方式---利用自耦变压器对接触网供电,以减少对通信线路的干扰。
3、什么叫牵引网?通常将接触网、钢轨回路(包括大地)、馈电线和回流线组成的供电网称为牵引网。
4、牵引变电所的作用是什么?牵引变电所从地方引入110kv高压,通过牵引变压器降至适合电力机车运行的27.5kv 电压,送至接触网,供给电力机车运行。
其作用是接受、分配、输送电能。
5、牵引变电一次设备包括什么?牵引变电一次设备由以下几部分组成:牵引变压器、断路器、隔离开关、电压互感器、电流互感器、母线、避雷器、电抗器、电容器、接地装置等。
6、牵引变电所有哪几个电压等级?交流:110kv, 27.5kv, 10kv ,380v ,220v ,110v直流:220v(110v)7、牵引变电所对接触网的供电方式有哪几种?牵引变电所对接触网的供电有两种方式:单边供电和双边供电。
接触网通常在相邻两牵引变电所的中央断开,将两牵引变电所间两个供电臂的接触网分为两个供电分区。
每以供电分区的接触网只能从一端的牵引变电所获得电能,称为单边供电。
如果在中央断开处设开关设备时可将两供电分区连通,此处称为分区亭。
将分区亭的断路器闭合,则相邻牵引变电所间的两个接触网供电分区可同时从两变电所获得电能,此方式称为双边供电。
8、牵引变电所一次接线方式有哪几种?牵引变电所一次接线主要有桥式接线和双T型接线两种。
牵引供电系统的组成
牵引供电系统的组成
牵引供电系统的组成
牵引供电系统是由若干主要部件组成的,其主要部件包括:
①轨道电源:轨道电源是牵引供电系统的核心,主要包括牵引变压器、小阳极、大阴极和电缆等。
牵引变压器是根据轨道电源的所需电压自动调节牵引电流的装置。
小阳极和大阴极是牵引电源的重要组成部分,它们用于将原有的低压电源转换成高压电源。
电缆则用于将牵引电源供应给牵引设备。
②牵引控制系统:牵引控制系统是指控制牵引电源提供的电力供应的装置,主要包括控制器和变频器等。
控制器是控制牵引电源供电的装置,控制电源的输入和输出,并对牵引电源提供的电压进行反馈。
变频器是将电源的输入频率调节为适合牵引设备运行的频率的装置。
③牵引电动机:牵引电动机是牵引设备的核心部件,可以将电能转换为机械能,从而实现牵引设备的运动。
④供电分系统:供电分系统是由多个电源器组成的,用于将牵引电源供应给牵引电动机,它可以分散牵引电源的输出,有效地分配电力,使牵引设备的安全运行。
⑤控制设备:控制设备是指控制牵引电源的供电、控制牵引电动机的转速和牵引设备的运行方向等装置,主要包括变压器、控制器和变频器等。
⑥其他配件:牵引供电系统的其他主要部件还包括避雷器、轨道
线路保护器、接地装置、红外探测器、安全保护装置等。
牵引供电系统名词解释
牵引供电系统名词解释
牵引供电系统是指为城市轨道交通、铁路、有轨电车等交通运输工具提供动力能源的电气系统。
它的主要功能是向行驶中的车辆提供电力,使其具有牵引和制动能力,同时也为车辆提供辅助电源。
在牵引供电系统中,电源为交流或直流电源,通过接触网、第三轨等设备向车辆传输电能。
牵引供电系统通常包括以下主要组成部分:
1.接触网:接触网是铁路牵引供电系统的主要组成部分,它用于提供电力给行驶中的列车。
接触网一般由钢轨、导线和支架组成,通过支架固定在正常的高度和位置。
2.集电装置:集电装置是车辆与接触网之间传递电能的设备,它通过对接触网的接触,将电能传输到车辆上。
3.变电所:变电所是牵引供电系统的电源设备,它将电网输送的高压电流转换为适合运输工具使用的低压电流,并将其输送到接触网上。
4.牵引变流器:牵引变流器是一种用于控制电力输出的电气设备,它将接收到的电能转换为适合电动车辆使用的电流和电压。
5.辅助电源:辅助电源是为车辆提供照明、空调、信号等设备供电的电源,也可以为车辆的启动和停车提供电能。
在牵引供电系统中,各个组成部分之间的协调和运行非常重要,它们共同保证了交通运输工具的牵引和制动能力,保障了交通运输的安全和稳定。
牵引供电系统简介
牵引供电系统简介:将电能从电力系统传送给电力机车的电力装置的总称叫电气化铁路的供电系统,又称牵引供电系统,主要由牵引变电所和接触网两大部分组成。
牵引变电所将电力系统输电线路电压从110kV(或220kV)降到27.5kV,经馈电线将电能送至接触网;接触网沿铁路上空架设,电力机车升弓后便可从其取得电能,用以牵引列车。
牵引变电所所在地的接触网设有分相绝缘装置,两相邻牵引变电所之间设有分区亭,接触网在此也相应设有分相绝缘装置。
牵引变电所至分区亭之间的接触网(含馈电线)称供电臂。
牵引供电回路是由牵引变电所——馈电线——接触网——电力机车——钢轨——回流联接——(牵引变电所)接地网组成的闭合回路,其中流通的电流称牵引电流,闭合或断开牵引供电回路会产生强烈的电弧,处理不当会造成严重的后果。
通常将接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。
牵引供电设备的检修运行由供电段负责,牵引供电系统的运行调度则由供电调度负责。
供电调度通常设在铁路局调度所。
牵引供电系统供电示意图如下所示:二、牵引变电所、分区所、开闭所牵引变电所:牵引变电所的任务是将电力系统三相电压降低,同时以单相方式馈出。
降低电压是由牵引变压器来实现的,将三相变为单相是通过变电所的电气接线来达到的。
牵引变压器(主变)是一种特殊电压等级的电力变压器,应满足牵引负荷变化剧烈、外部短路频繁的要求,是牵引变电所的“心脏”。
我国牵引变压器采用三相、三相——二相和单相三种类型,因而牵引变电所也分为三相、三相——二相和单相三类。
随着技术水平的提高,我国干线电气化铁路已推广使用集中监视及控制的远动系统,牵引变电所将逐步实现无人值班,直接由供电调度实行遥控运行。
分区所:分区所设置在两个变电所中间,作用有三:提高供电质量、供电分段、越区供电。
•开闭所:一般设置在大型站场附近,进线由变电所或接触网引入,由开关馈出多个供电线路向多个供电设备供电。
作用是增强供电的灵活性,便于供电设备的运行及检修,便于行车组织,缩小供电事故及故障范围。
牵引供电系统介绍
一、牵引供电系统组成:
满足牵引供电系统基本要求所采取措施:
(1)牵引变电所进线采用两路电源供电(两路电源引自不 同的电力变电所或同一变电所的两个不同母线),进线 系统采用带跨条的供电方式,主变采用一主一备, 27.5KV(55KV)采用母线分段,馈线采用主备供电 方式(50%或100%备用)等。
(2)采用补偿装置(固定或动态补偿),采用AT供电方 式等。高铁对供电电压的要求:接触网的标称电压为 25KV、长期最高电压为27.5KV、瞬时(5分钟)最高 电压为29KV,设计最低电压为20KV。普速对供电电压 的要求:最高工作电压为27.5KV、瞬时最大值为 29KV, 最低工作电压为20KV、非正常情况下,不得低 于19KV。
二、牵引供电回流方式
以上供电方式的回流线均不直接接钢轨,全部通过扼流 变压器接钢轨。回流线N与保护线PW的区别。
1.直接供电方式回流:所内接地。
二、牵引供电回流方式
AT供电方式(55KV):通过放电器接地。
二、牵引供电回流方式
AT供电方式(2X27.5KV),可转换为直供电方式 (TRNF):所内、接触网端均接地。
二、牵引变电设备-断路器
主要介绍断路器结构形式:单相、二相、三相、 单相:一台操作机构控制一台高压单极 二相:分机械联动(55KV及220KV等级需求较少)和电
气联动。机构联动:一台操作机构通过传动连杆带动二 极同时动作。电气联动:每个单极配备一台操作机构, 通过一套电气控制回路带动二极同时动作。电气联动断 路器:二极间同步问题、分合闸时间问题、与保护装置 间的接口问题 三相:同二相
满足牵引供电系统基本要求所采取措施:
(3)采用补偿装置(固定式或动态补偿方式),提高 机车功率因数(如动车、各谐机车)。 (4)采用Scott、平衡变压器等。 (5)采用直供加回流、AT供电方式等(目前通信方式 基本采用光纤通信,对通信信号的干扰相对减少)
牵引供电系统简介
牵引供电系统简介一、系统功能牵引供电系统的主要功能是:将地方电力系统的电源(交流电气化铁路:AC110 kV或AC220kV,城市轨道交通:中心变电所AC220kV或AC110kV→AC35 kV环网)引入牵引供电系统的牵引变电所,通过牵引变压器变压为适合电力机车运行的电压制式(交流电气化铁路:AC25kV或AC2×25kV,城市轨道交通:DC750V、DC1500V或DC3000V),向电力机车提供连续电能。
电力牵引负荷为一级负荷,引入牵引变电所的外部电源应为两回独力可靠的电源,并互为热备用,能够实现自动切换。
交流电气化铁路及城市轨道交通牵引供电系统简图分别如图1.1和图1.2所示。
图1.1 交流电气化铁路牵引供电系统图1.2 城市轨道交通牵引供电系统二、牵引网供电方式1.交流电气化铁路交流电气化铁路牵引网供电方式大体上可分为三种:直接供电方式(包括带回流线的直接供电方式)、BT供电方式和AT供电方式。
(1)直接供电方式直接供电方式又可分为不带回流线直接供电方式(图 2.1)和带回流线的直接供电方式(图2.2)两种。
图2.1 不带回流线的直接供电方式图2.2 带回流线的直接供电方式不带回流线的直接供电方式在我国早期的电气化铁路中采用,机车电流完全通过钢轨和大地流回牵引变电所,牵引网本身不具备防干扰功能。
在接地方面,每根支柱需单独接地(设接地极或通过火花间隙),或者通过架空地线实现集中接地(架空地线不与信号扼流圈中性点连接)。
带回流线的直接供电方式,机车电流一部分通过钢轨和大地流回牵引变电所(约70%),其余通过回流线流回牵引变电所(约30%)。
由于流经接触网的电流和流经回流线的电流虽然大小不等,单方向相反,且安装高度比较接近,两者对铁路沿线通讯设施的电磁干扰影响趋于抵消,因此牵引网本身具备防干扰功能。
在接地方面,接触网支柱通过回流线实现集中接地,回流线每隔一个闭塞分区通过吸上线(铝芯或铜芯电缆,常用VLV-70和2xVLV-150)与信号扼流圈中性点连接(吸上线间距3~4km)。
电力牵引供电系统
多,继电保护复杂,会使成本增加。
• 双侧供电 电源来自电力系统的两个地区变 电所,给铁路供电的输电线是联络这两个 地区变电所的道路。根据可靠性的要求及 实际情况,双侧供电可分为图3的双路输电 线和单路输电线两种类型。但不论哪种类 型,各路输电线的容量应不小于相关牵引 变电所容量之和。单路输电线方式一次侧 进出开关少,投资也少,供电可靠性不及 双路方式,但一输电线或一电源分别故障 仍不会导致牵引变电所失电。
牵引变电所
接触网
• 接触网是一种悬挂在电气化铁道钢轨上方 并和轨顶保持一定距离的链型或单导线的 输电网。电力机车的受电弓和接触网滑动 接触取得电能。
馈电线
• 馈电线是联接牵引变电所和接触网的导线。 它把牵引变电所变换完备的牵引用电能输 送给接触网。馈电线大都采用大截面的钢 芯铝绞线。
轨道
复线环状供电方式
• 牵引变电所同侧的上、下行牵引网由同相 牵引母线供电,在供电臂末端将上、下行 牵引网联通,可构成环状供电方式
• 复线牵引网环状供电方式
复线全并联供电方式
• 每隔数百米将上、下行接触网进行死连接, 便于充分利用接触网导线截面的供电方式
• 这种方式的网内电压降和电能损失较小, 但上、下行牵引网在电气上无法分开,发 生短路事故时的影响范围较大。
• 习惯上将馈电线、接触网、钢轨、回流线 统称为牵引网。
分区亭(SP)
• 分区亭设于两个牵引变电所的中间,可使相邻的 接触网供电区段(同一供电臂的上、下行或两相邻 变电所的两供电臂)
•
简述电力牵引系统的组成
简述电力牵引系统的组成电力牵引系统是指利用电能驱动车辆行驶的系统,电力牵引系统主要由电源系统、变流器系统、牵引电机系统和控制系统组成。
1. 电源系统:电力牵引系统的电源系统主要是提供电能给牵引电机系统,一般采用锂电池组、混合动力系统或接触网供电。
锂电池组是目前广泛应用于电动车的一种电源系统,其具有体积小、重量轻、能量密度高、无记忆效应等优点。
混合动力系统综合了高效的内燃机和清洁的电力系统,通过内燃机和发电机来供电。
接触网供电是指通过高压电缆连接到铁路接触网,将电能供给给牵引电机系统。
2. 变流器系统:变流器系统是将电源提供的直流电转换为交流电,并且能够调节电流和电压的系统。
变流器通常由电源逆变器、牵引逆变器和充电机组成。
电源逆变器将电源提供的直流电转换成交流电供给牵引逆变器和充电机。
牵引逆变器将交流电转换为牵引电机所需要的电能,同时可以根据需要调节电流和电压,以实现对牵引电机的驱动控制。
充电机则负责对电池组进行充电。
3. 牵引电机系统:牵引电机系统是电力牵引系统的核心部分,负责将电能转换为机械能,驱动车辆行驶。
牵引电机通常采用交流异步电机或永磁同步电机。
交流异步电机具有结构简单、可靠性高等特点,适用于牵引车辆的起步和低速行驶;永磁同步电机具有高效、体积小等特点,适用于高速行驶和大功率需求的车辆。
另外,牵引电机系统还包括传动装置,将电机输出的转矩传递给车轮,通常采用传统的机械传动装置,如齿轮传动、链传动等。
4. 控制系统:控制系统是对电力牵引系统的各个部分协调、控制和保护的核心部分。
控制系统主要包括控制器、传感器、控制算法和通信系统。
控制器是对整个牵引系统的控制中心,利用传感器采集到的电流、电压、转速等参数信息,通过控制算法完成对牵引电机的驱动控制,并实现对整个系统的保护功能。
传感器主要用于采集牵引电机和其他关键部件的运行状态,如电流传感器、温度传感器等。
控制算法主要是对电机的控制策略进行优化,使得系统能够更加稳定、高效地工作。
牵引供电系统外部电源与供电方式
高速铁路牵引供电系统的实际应用中,需要关注供电能力、电能质量和环 境保护等方面的问题。
磁悬浮列车牵引供电系统
磁悬浮列车牵引供电系统通常采用直流供电方式,通过磁悬浮变电所将来自电网的高压交流电转换为 直流电,为磁悬浮列车提供动力。
牵引供电系统外部电 源与供电方式
目录
• 牵引供电系统概述 • 牵引供电系统外部电源 • 牵引供电系统供电方式 • 牵引供电系统外部电源与供电方式的
优化 • 牵引供电系统外部电源与供电方式的
实际应用案例
01
牵引供电系统概述
牵引供电系统的定义与功能
定义
牵引供电系统是为电气化铁路或 城市轨道交通提供电能的系统, 通过接触网向电力机车或电动汽 车提供所需直流或交流电能。
容量
牵引供电系统外部电源的容量应根据 牵引负荷的大小和运行方式进行选择 ,以确保供电的可靠性和稳定性。
稳定性
外部电源的稳定性对牵引供电系统的 正常运行至关重要,应采取措施确保 电源的电压、频率和波形等参数的稳 定。
03
牵引供电系统供电方式
直接供电方式
01
直接供电方式是一种简单的牵引 供电方式,通过牵引网直接向电 力机车供电。
02
该方式结构简单,投资少,但会 对沿线通信线路产生干扰。
串联电容补偿供电方式
串联电容补偿供电方式是在牵引网中 串联电容,补偿感性负载的无功功率, 提高功率因数。
该方式可以减少对通信线路的干扰, 但需要增加补偿装置和滤波装置。
吸流变压器供电方式
吸流变压器供电方式是通过吸流变压 器将牵引电流从接触网引至回流线, 减少对通信线路的干扰。
牵引供电系统保护基本原理全
➢动作时限
t' 0s
没有人为延时,只考虑继电 保护固有动作时间
16
❖保护范围校验
最大运行方式下三相短路时保护范围最大,最小运行 方式下两相短路时保护范围最小。
最小运行方式下两相 短路时的保护范围
Lb%L Lm AiB n100%(15%~20% )
线路全长
ห้องสมุดไป่ตู้17
❖ 电流速断保护的评价
➢ 优点:简单可靠,动作迅速 ➢ 缺点:
jX
Zset
ZK
k
R
jX
1 2 Z set
o
Zset
1 Z K 2 Z set
ZK R
全阻抗继电器
方向阻抗继电器
34
方向阻抗继电器的死区及消除死区的方法
当在保护安装地点正方向出口处发生相间短路时,故 障环路的故障电压将降低为零,此时任何具有方向性 的阻抗继电器将因加入的电压为零而不动作,从而出 现保护装置的死区。 为减少和消除死区,可采用以下方法: ➢ 记忆回路 ➢ 装设辅助保护(主要为电流速断保护)
◆相控整流电力机车负荷电流中含有丰富的奇次谐波 分量(三次谐波为最多),而牵引网短路电流接近于 正弦波,因此可利用三次谐波的含量区分正常工作与 故障状态; ◆电力机车通过电分相或空载投入AT,牵引网产生 的励磁涌流接近故障电流,但其中含有较高的二次谐 波分量,因此可利用二次谐波区分励磁涌流和故障电 流。
保护2 电流速断
保护1 电流速断
A
B
C
D
2
1
t
t' 2
t '' 2
t '' 1
t
t ' t
1
l
牵引供电系统
- U b +
•
• I b •
•
I a I c
U a
•
U c
UC
*
3、供电臂电流与绕组电流关系
(A )
(B ) (C )
(1)当只有Ib流通时,
bc绕组中的电流为
,
而ca23 与I ba13 bI绕b 组电流为
*
Ia
2* Ia
3
(a)
1* Ia
3
1* Ib
3
1
*
Ib
3
(b )
1
*
Ia
2* Ib
33
定向。
规格化定向的具体含义:
(1)原边绕组电压、电流采用电动机惯例定向,即牵引变压器从 电力系统吸收电能。
(2)次边绕组电压、电流采用发电机惯例定向,即牵引变压器是 次边负荷的电源。
(3)负荷吸收正功率。
简单讲就是: 对于原边:电压U首端为正尾端为负;电流I首端流入,尾端流出。 对于次边:电压U首端为正尾端为负;电流I首端流出,尾端流入。
绕组(cz)为自由相绕组
接供电臂
b. 展开图
(A)
为分析的直观与方便,
更常见使用YN,d11接线
(B)
牵引变压器的展开图。 画展开图有如下约定:
(1)为施工和运行安全起见,
(C) *
(a)
(b)
统一规定次边绕组的(c)端子接钢轨和地;
*
(c)
(2)原、次边对应绕组相互平行;
(3)原、次边每相绕组的同名端放在同一侧;
或者表示为:
电力 地铁
G
电力系统(发电厂)
输电线
主(降压)变电站
回流线
电力牵引供电系统资料
23
新温州牵 引变电所
2021/2/21
24
2021/2/21
25
接触网
❖ 接触网是一种悬挂在轨道上方沿轨道敷设的、和铁 路轨顶保持一定距离的输电网。
❖ 接触网分为架空式接触网和接触轨式接触网。 ❖ 接触网电分段:电气连接分离 ❖ 接触网机械分段:机械结构分离 ❖ 受电方式:
受电弓受电 三轨受电 四轨受电
范围为1 000 V~1 800 V)。
❖ 牵引网由馈电线、接触网、轨道和回流线组成。
2021/2/21
12
接触网:经过受电器向电动列车供给电能的导电网。 回流线:用以供牵引电流返回牵引变电所的导线 馈电线:从牵引变电所向接触网输送牵引电能的导线 轨道(电路):利用走行轨作为牵引电流回流的电路
2021/2/21
2021/2/21
26
架空接触网
❖
接触网是沿铁路线上空架设的向车辆供电的特殊形式的输电线路。
其由接触悬挂、支持装置、定位装置、支柱与基础几部分组成。
❖
接触悬挂包括接触线、吊弦、承力索以及连接零件。接触悬挂通过
支持装置架设在支柱上,其功用是将从牵引变电所获得的电能输送给电动
❖
支持装置用以支持接触悬挂,并将其负荷传给支柱或其它建筑物。根
2021/2/21
8
❖ 目前全世界已有40多个国家的130多个城市, 共修建了7 000 km的城市轨道交通(包括地 铁、轻轨)线路。城市轨道交通电力牵引主 要由牵引供电系统和电动车组构成(图1)。
2021/2/21
9
2021/2/21
10
图1 城市轨道交通电力牵引系统 1—牵引变电所;2—馈电线;3—接触网;4—电动车组; 5—钢轨;6—回流线;7—电分段。
牵引供电系统的组成
牵引供电系统的组成
牵引供电系统是铁路运输中不可或缺的一部分,它主要负责为铁路牵引机车和列车提供电力。
牵引供电系统由多个组成部分组成,这些部分共同协作,确保铁路运输的安全和顺畅。
第一个组成部分是接触网。
接触网是牵引供电系统的核心部分,它负责将电能传输到牵引机车和列车上。
接触网通常由一组悬挂在铁路轨道上的导线构成,这些导线与牵引机车和列车上的接触装置相连。
当牵引机车和列车行驶在铁路轨道上时,它们的接触装置会与接触网上的导线接触,从而获得电能。
第二个组成部分是变电所。
变电所是将高压电能转换为适合牵引机车和列车使用的低压电能的设备。
变电所通常位于铁路线路沿线,它们通过接触网将电能传输到牵引机车和列车上。
变电所还负责监控牵引供电系统的电压和电流,以确保系统的稳定运行。
第三个组成部分是牵引变流器。
牵引变流器是将接收到的电能转换为适合牵引机车和列车使用的电能的设备。
牵引变流器通常安装在牵引机车上,它们将接收到的电能转换为直流电能,以供机车和列车使用。
第四个组成部分是牵引电机。
牵引电机是将电能转换为机械能的设备,它们通常安装在牵引机车上。
当牵引机车接收到电能时,牵引电机会将电能转换为机械能,从而驱动机车和列车行驶在铁路轨道
上。
以上是牵引供电系统的主要组成部分。
这些部分共同协作,确保铁路运输的安全和顺畅。
在未来,随着科技的不断发展,牵引供电系统也将不断升级和改进,以适应铁路运输的不断发展和变化。
高速铁路电力牵引供电系统及接触网分析论文
目录摘要: .................................................................................................................................. 错误!未定义书签。
1.电力牵引供电系统概述 (2)2.接触网概述概述 (3)3.接触网支柱及基础 (7)4.第三方物流企业内部环境结构分析 (8)5.第三方物流企业的核心竞争力分析............................................................................... 错误!未定义书签。
6.第三方物流企业的战略选择........................................................................................... 错误!未定义书签。
7.结论 ................................................................................................................................ 错误!未定义书签。
参考文献 .............................................................................................................................. 错误!未定义书签。
摘要高速铁路电力牵引供电系统及接触网分析摘要:本论文介绍了电气化铁路供变电技术,以交流电气化铁路为重点,加强对牵引供电系统的认识,牵引供电系统有以牵引变电为重点,介绍了供电系统一次设备和二次电器设备,牵引供电系统可能对临近线路的影响,并通过对铁路接触网的供电方式、特点及应用分类,对铁路接触网进行了系统的分析。
牵引供电系统
牵引供电系统牵引供电系统是指为电气牵引车辆在运行过程中提供电力的系统。
牵引供电系统的设计和运行是交通运输的重要组成部分,特别是电气化铁路、电气胶轮车和电气地铁等交通工具的运营。
本文将讨论牵引供电系统的基本结构、工作原理和常见故障及解决方案。
基本结构牵引供电系统的基本结构包括两部分:接触网和接触网配电系统。
接触网是通过架空线路将电力输送到电气牵引车辆的触点上,而配电系统则负责将电能分配到接触网上的各个部分。
接触网通常由钢制上行线及钢制下行线组成,在两条线路之间悬挂的弹性线圈保持钢制上行线的张力,同时具有压在下行线上的力。
接触网配电系统由变电站、分段开关、隔离开关、牵引变压器和组合开关等组成。
变电站是牵引供电系统的核心设备,它将输送电压由高压变成适合电气牵引车辆的低电压。
分段开关用于分段,以便进行检修和维护工作。
隔离开关用于断开接触网和电气牵引车辆之间的电气连接。
牵引变压器是通过变压器将高压电能逐步变成电气牵引车辆所需的低电压。
组合开关用于控制配电系统的操作。
工作原理接触网通过上行线将高压电力输送到牵引变压器,在牵引变压器中将高压电能变成低电压电能,然后牵引变压器通过下行线将低电压电能输送到电气牵引车辆的触点上。
电气牵引车辆的牵引系统和辅助供电系统通过触点连接到接触网上,从而获取所需的电力。
在牵引供电系统的工作过程中,接触网将高压交流电输送到牵引变压器,通过牵引变压器将高压转换为低电压,供电给电气牵引车辆。
通过运用继电保护及其他电气保护设备,来保证接触网和牵引车辆之间的安全和稳定的电气连接。
常见故障及解决方案牵引供电系统因为工作原理的复杂性,有时候会出现不同的故障。
以下是常见的故障及解决方案:接触网脱落接触网脱落通常经常发生在高速运行中。
接触网脱落会导致接触网配电系统的保护装置动作,并给地面人员造成威胁。
对于接触网脱落的处理,一般有两种解决方案:第一种是通过调整钢制上行线张力来修复接触网的位置,第二种是通过使用特殊挂钩来吊起接触网,从而重新修复接触网的位置。
城市轨道交通牵引供电系统复习资料
城市轨道交通牵引供电系统复习资料第一章电力牵引供电系统概述1、电力牵引的制式概念:供电系统向电动车辆或电力机车供电所采用的电流或电压制式,包括直流/交流制、电压等级、交流电频率、交流制中单相/三相等问题。
2、电力牵引系统性能要求:①启动加速性能:启动力矩大,加速平稳;②动力设备容量利用充分:轻载时,运行速度高;重载时,运行速度可以低一些。
功率容量P=FV近似于常数;③调速性能:速度调节容易实现,能量损耗小。
满足上述条件:直流串激(串励)电动机。
3、直流串励电动机优缺点:通过串联电阻调速,原理简单,调速范围宽,供电系统电压损失和能量消耗较大,而且需要换向。
4、城市轨道交通牵引制式:直流供电制式。
城市轨道机车功率不大,供电半径小,城市之间运营供电电压不能太高,以确保安全。
我国国标规定采用750V 和1500V直流供电两种制式,不推荐600V。
5、城市轨道交通电力牵引供电系统组成:发电厂(站)、升压变压器、电力网(110-220KV)、主降压变电站(110~220KV→10~35KV)、直流牵引变电所(10~35KV→1500、750V)、馈电线、接触网、走行轨道、回流线。
6、组成统一的电力供电系统的优点:①充分利用动力资源;②减少燃料运输;③提高供电可靠性;④提高发电效率。
7、环形供电接线:由两个或两个以上主降压变电站和所有的牵引变电所用输电线联成一个环行。
8、环形供电接线的优缺点:环行供电是很可靠的供电线路,因为在这种情况下,一路输电线和一个主降压变电站同时停止工作时,只要其母线仍保持通电,就不致中断任何一个牵引变电所的正常供电。
但其投资较大。
9、双边供电接线:由两个主降压变电站向沿线牵引变电所供电,通往牵引变电所的输电线都经过其母线联接,为了增加供电的可靠性.用双路输电线供电,而每路按输送功率计算。
这种接线可靠性稍低于环行供电。
当引入线数目较多时,开关设备多,投资增加。
10、电网向牵引变电所供电形式:环形供电接线、双边供电接线、单边供电接线、辐射形供电接线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电力牵引交流传动及其控制系统》报告—电力牵引供电系统电力牵引供电系统是向电力机车供给牵引用电能的系统。
主要由牵引变电所和接触网组成。
牵引变电所将电力系统通过高压输电线送来的电能加以降压和变流后输送给接触网,以供给沿线路行驶的电力机车。
有些国家电气化铁路有时由专用发电厂供电。
电力牵引供电系统按照向电力机车提供的电流性质分为直流制和交流制,交流制又分工频单相交流制和低频单相交流制。
工频指工业标准频率,即50赫或60赫;低频指低于工业标准频率的频率,应用最多的是[92-01]赫,即50赫的三分之一。
各种电流制的电力牵引供电系统的设备有很大的差别。
电流制的发展直流制应用最早,19世纪末电力牵引开始用于铁路干线时,应用的就是直流制。
目前在英、法、日、苏等国直流制仍然大量存在。
直流制是将电力系统的三相交流电降压并变换为直流电供应接触网。
接触网电压有1200伏、1500伏、3000伏等多种。
由于电力机车电压受直流牵引电动机换向条件的限制,接触网电压很难大幅度提高,所以直流制须沿接触网输送大量电流,在接触网上一般须用两根铜接触导线,并应用铜承力索,另加一些平行的铝加强导线来分流,耗费有色金属量较大。
另外,为了保持接触网的电压水平,沿线路每隔10~30公里须设置一个牵引变电所。
直流制的这些弱点,推动了交流制的研究。
交流牵引供电系统20世纪初,工频三相交流制和低频单相交流制相继出现。
工频三相交流制曾在意大利应用,由接触网输送三相中的两相,另一相接地。
后因两相接触网结构复杂、维护困难被淘汰。
低频单相交流制则在德国、瑞典、瑞士等国得到发展。
这种电流制接触网电压一般为 15000伏,在电力机车上降压,使用单相整流子牵引电动机。
交流制的接触网比直流制的简单得多,牵引变电所的设置间距也加长。
采用低频的主要原因是整流子牵引电动机换向困难,不适宜于在工频运转。
低频制需要低频电源,所以低频制电气化铁路必须建设专用低频发电厂,或者在牵引变电所将电力系统送来的工频电流降压并变换成低频电流。
早年采用电动发电机组来变换频率,后来改用静止式变频器,设备比直流制复杂。
单相整流子牵引电动机也不如直流牵引电动机构造简单和容易维护。
1933年匈牙利曾建成一条工频单相交流制电气化铁路,接触网电压为 16000伏,电力机车上采用旋转式变相频机和三相异步电动机。
这种电力机车由于构造复杂,没有得到推广。
1955年,法国在电力机车上采用静止式整流器和直流牵引电动机获得成功,工频单相交流制才在各国推行开来。
原来采用直流制的日本、苏联、英国、印度等国也相继采用工频单相交流制。
这种交流制接触网电压一般为25000伏,接触网构造进一步简化,牵引变电所的设置间距扩大为30~70公里。
电力机车上静止式整流器最初应用引燃管,后来普遍采用硅半导体整流器。
整流技术的进步,是工频单相交流制获得广泛应用的一个重要因素。
中国铁路采用工频单相交流制,定25000伏为接触网标准电压。
应用硅半导体整流器的“韶山”型电力机车运行经验证明,这种电力机车维护简易,运行可靠。
牵引变电所直流制牵引变电所用主变压器降压并把三相交流电变换为6相或12相,然后用整流器整流。
工频单相交流制在牵引变电所只进行降压,主要设备是降压变压器,称为主变压器。
牵引变电所按主变压器绕组接线方式,分为三相、单相和三相-二相牵引变电所。
三相牵引变电所它的主变压器结构与一般三相电力变压器相同,只是次边额定电压为27500伏。
绕组通常采用 Y/△接线。
用两台主变压器并联运行。
原边Y形绕组接连电力系统的高压母线,次边△线绕组一端接地,另两端分别向两边的接触网供电。
三相牵引变电所的优点是主变压器价格低廉,配电设备简单,可在27500伏侧用电力变压器降压至 10000伏向邻近地区和铁路的三相负荷供电。
缺点是主变压器容量利用率较低,三相绕组中有一相达不到额定负荷。
另外,牵引变电所对电力系统形成不对称负荷,通常须将各个牵引变电所的两个重负电荷相轮换接入电力系统中的三相。
中国和苏联的工频单相交流制电气化铁路大都采用三相牵引变电所。
单相牵引变电所采用单相双绕组主变压器。
有两种接线方式:简单单相接线和V/V接线。
V/V接线是将两台主变压器的原边接在高压母线不同的两相间,次边分别以不同的相电压向两边接触网供电。
简单单相接线设备简单、经济,主变压器容量利用率高。
但是由于牵引变电所对电力系统构成单相负荷,即使将各个牵引变电所轮换接入电力系统中的三相,在局部系统中仍将产生大量负序电流,所以只适宜于在电力系统容量较大的地区采用单相V/V接线在电力系统中产生的负序电流和三相牵引变电所产生的相同,比简单单相接线产生的要小。
这种接线也可在 27500伏侧应用降压变压器供应地区三相负荷。
但是两台主变压器不是并联,操作手续和设备比较复杂。
法国、英国、印度的工频单相交流制电气化铁路普遍采用单相牵引变电所,而且多采用简单单相接线。
中国只在个别线路上采用单相V/V接线。
三相-二相牵引变电所主变压器一般采用斯科特接线。
其原边有两个绕组,匝数比为1:3,短绕组(称为高绕组)接于长绕组(称为底绕组)的中点,三个出线端接高压母线的三相,形成“T”形接线。
次边两个绕组输出对称二相电压,分别向两边接触网供电。
斯科特接线的优点是,当两边接触网负荷相等时,主变压器从电力系统取用对称三相电流。
缺点是要求特制的主变压器。
另外,和简单单相接线一样,在27500伏侧不能供应地区三相负荷。
三相-二相牵引变电所在日本应用最为广泛。
接触网接触网是沿电气化铁路架空敷设的输电网,它和电力机车受电弓的滑动接触将牵引变电所送来的电流送给电力机车。
结构接触网主要由接触悬挂及其支柱组成。
常用的有简单弹性悬挂和单链形悬挂。
简单弹性悬挂只有一根接触导线,用弹性吊弦挂在支柱上。
弹性吊弦可以缓和受电弓对悬挂点的冲击。
这种悬挂可适应70~90公里/小时运行速度。
接触导线弹性较好的,可适应100公里/小时以上的速度。
接触导线材料具有耐磨、耐腐蚀、抗拉强度高和导电性能好等特点。
多数国家主要采用铜导线和镉铜导线。
中国广泛应用钢铝双金属导线。
为了使接触导线有必要的张力,接触网每隔一定长度设置一个锚段,将接触导线一端下锚,另端吊挂一个载重体,称为补偿器。
补偿器在季节变化引起接触导线冷缩热胀时自动上下移动,使接触导线张力保持不变。
单链形悬挂加用一根承力索,将接触导线用吊弦均匀地吊挂在承力索上。
对承力索采取补偿措施的称为全补偿单链形悬挂。
这种结构的优点是接触导线平直,接触悬挂弹性均匀,因此受电弓和导线有较好的接触,受流较好,适用于运行频繁、运行速度较高的线路。
直流制电气化铁路接触网普遍采用两根接触导线和单链形悬挂。
交流制接触网采用一根接触导线和单链形悬挂或简单弹性悬挂。
中国主要采用单链形悬挂,但也开始采用简单弹性悬挂。
还有一种复链形(双链形、三链形)悬挂,是在单链形悬挂的承力索和接触导线之间加设一条辅助承力索,用吊弦挂在承力索上,再把接触导线挂在辅助承力索上。
这种结构使接触悬挂弹性更加均匀,适应更高的运行速度。
日本东海道新干线采用弹性双链形悬挂。
早期的接触网大都使用金属支柱,后来改用钢筋混凝土支柱。
这种支柱省钢材,耐腐蚀,造价较低。
接触悬挂挂在支柱的金属腕臂上,用定位器来固定接触导线的水平位置,使接触导线沿线路成“之”字形走向,以免运行中的电力机车受电弓集中在一点被接触导线擦伤。
供电方式直流制电气化铁路接触网普遍采用两边供电方式,在相邻的两个牵引变电所供电的接触网中间设置分区亭,将接触网连通。
运行中的电力机车由两边的牵引变电所同时供电。
这种供电方式可降低接触网中的电能损失,减小接触网的电压降,一个牵引变电所停电时,电力机车运行不致中断。
交流制电气化铁路则常采用一边供电方式,接触网在分区亭处断开,分区亭只在一边牵引变电所停电时接通,由另一边牵引变电所越区供电。
防干扰设施为了减少接触网电流的电磁感应对沿线通信电路的干扰,在交流制电气化铁路邻近城镇的区段将接触网每2~4公里划成一个吸流分段,设置回流线和吸流变压器。
这时,电力机车的电流沿回流线流回牵引变电所,从而沿轨道和大地流回的电流很少。
回流线和接触网的电流近似相等,方向相反,这就大大减轻了电气化铁路对沿线通信电路的干扰。
这种方式的缺点是吸流变压器串接在电路中,加大了接触网阻抗。
日本新建设的工频单相交流制电气化铁路采用了自耦变压器方式,沿铁路每10公里左右设置一台自耦变压器。
自耦变压器中性点接地,一端接接触网,另一端接回流线,称为正馈(电)线。
正馈线和接触网电流大小相等,方向相反,同样起着减小对通信电路干扰的作用。
另一方面,由于接触网和正馈线之间电压为二倍接触网电压,沿接触网电压降便大大减小。
直流牵引供电系统要完成一个简单地铁馈线保护系统,首先要做的就是了解地铁供电系统的组成和供电方式,熟悉地铁直流牵引供电系统保护的原理和实现方式。
这是后面内容的前提和基础。
2.1 城市轨道交通供电系统的组成地铁作为城市轨道交通系统的一部分,在经济日益发展的今天,成为解决交通拥挤的重要方案。
城市轨道交通采用直流供电,其供电系统一般为列车及辅助设施如照明、通风、空调、排水、通信、信号、防灾报警、自动扶梯等提供电能。
城市轨道交通供电系统包括高压电源系统(即城市电网,主要给城市轨道交通提供外部电源)、牵引供电系统(为列车提供电力,由牵引变电所和接触网组成)和动力照明系统(由降压变电所和动力照明配电线路组成)。
给地铁、轻轨电动列车提供电能的变电所是牵引变电所,此外,城市轨道交通供电系统的变电所还有电源变电所(或称高压变电所)、降压变电所和牵引降压(混合)变电所。
外部电源系统或一次系统是从发电厂经升压、高压输电、区域变电所到主降压变电所的部分,而牵引供电系统是从主降压变电所及其以后的部分。
城市轨道交通供电系统如图2.1所示。
2.2 直流牵引供电系统电气化铁道的牵引供电系统是完成对电力机车供电的属于铁路部门管辖的装置。
直流牵引供电系统包括牵引整流机组、直流牵引变电所、牵引网和电力客车组成,每一个部分可以构成一个保护单元,形成一个包含主保护、后备保护、辅助保护的体系,其中,直流牵引变电所是直流牵引供电系统的核心。
牵引供电系统的构成如图2.2所示。
(1) 牵引变电所直流牵引变电所从双电源受电,整流机组变压器降压、分相,然后按一定的整流接线方式由大功率硅整流器把三相交流电变为直流电向电力列车供电。
(2) 牵引网牵引网是沿线路铺设的为电力机车提供电能的装置,简单的牵引网包含了轨道和大地、馈电线、接触网、回流线。
牵引电流从牵引变电所主变压器流出,经由馈电线、接触网供给电力机车,然后沿轨道和大地、回流线流回牵引变电所主变压器。
轨道——非电力牵引情况下只作为列车导轨;电力牵引时还需完成导通回流任务,是电路的一部分。