城市轨道交通车辆牵引与供电系统概述
浅谈城市轨道交通牵引供电系统的继电保护配置
浅谈城市轨道交通牵引供电系统的继电保护配置1. 引言1.1 背景介绍城市轨道交通是现代城市生活中不可或缺的交通方式,其牵引供电系统作为城市轨道交通的关键部分,承担着为列车提供动力能源的重要任务。
随着城市轨道交通线网的不断扩张和技术的不断更新,牵引供电系统的稳定性和可靠性要求也越来越高。
在城市轨道交通牵引供电系统中,继电保护系统扮演着至关重要的角色。
继电保护系统是保障牵引供电系统正常运行的关键环节,它能够及时发现和隔离故障,保护设备和人员安全。
对城市轨道交通牵引供电系统进行继电保护配置是十分必要的。
合理的继电保护配置不仅可以提高系统的可靠性和安全性,还能够减少系统的停电次数和维护成本,保障城市轨道交通的正常运行。
深入研究城市轨道交通牵引供电系统的继电保护配置方案具有重要的理论和实际意义。
在本论文中,将对城市轨道交通牵引供电系统的继电保护配置进行探讨,以期为相关领域的研究提供参考和借鉴。
1.2 问题概述城市轨道交通的快速发展,使得牵引供电系统在城市轨道交通中起着至关重要的作用。
随着城市轨道交通系统规模的不断扩大和复杂性的增加,牵引供电系统也面临着越来越多的问题和挑战。
继电保护系统的配置是一个至关重要的问题。
继电保护系统是城市轨道交通牵引供电系统中的关键部分,其功能是在系统受到外部故障或异常情况时,及时切断电源,有效防止故障扩大,保障设备和乘客的安全。
继电保护系统的配置是否合理,直接关系到城市轨道交通系统运行的安全和稳定性。
在日常运行中,继电保护配置的不合理性可能导致误动作或漏动作,影响到城市轨道交通系统的正常运行。
针对城市轨道交通系统的特点和需求,合理配置继电保护系统,是一项极其重要的工作。
这也是本文所要探讨的问题,同时也是实际工程中亟待解决的难题。
1.3 研究意义城市轨道交通牵引供电系统作为城市轨道交通系统中至关重要的组成部分,其稳定运行对城市交通运输的安全和顺畅具有重要意义。
而继电保护系统作为保障轨道交通供电系统运行安全的关键技术之一,其合理配置和优化对于减少故障发生、提高系统可靠性和稳定性具有重要意义。
城市轨道交通牵引供电系统
城市轨道交通牵引供电系统简介城市轨道交通牵引供电系统是城市轨道交通运行的重要组成局部,负责向轨道交通车辆提供电力供给。
它不仅直接影响着轨道交通的运营效率和电力消耗情况,还与乘客的乘坐舒适度和平安性息息相关。
本文将介绍城市轨道交通牵引供电系统的根本原理、组成结构以及未来开展趋势。
根本原理城市轨道交通牵引供电系统的根本原理是将电源通过接触网供给给轨道交通车辆。
具体来说,电源会通过接触网上的触网集电装置传送给牵引系统。
牵引系统由主变压器、牵引变流器和牵引电动机组成,负责将电能转换为机械能,驱动轨道交通车辆运行。
组成结构城市轨道交通牵引供电系统由多个组成局部构成,包括接触网、辅助设备和车辆终端设备。
接触网接触网是城市轨道交通牵引供电系统的核心局部,通常安装在轨道上方。
它由导线、吊杆、挂装件等组成,用于提供电力给牵引系统。
接触网一般采用带电架空式供电,即以高架的方式悬挂在轨道上方,通过接触网上的触网集电装置与车辆终端设备连接。
辅助设备城市轨道交通牵引供电系统还包括一系列辅助设备,用于确保供电系统的正常运行。
辅助设备主要包括配电变压器、开关设备、保护和监控装置等。
配电变压器用于将高压电源转换为适合牵引系统使用的低压电源;开关设备用于控制电能的分配和传输;保护和监控装置那么用于监测供电系统的运行状态,及时处理故障和异常情况。
车辆终端设备车辆终端设备是城市轨道交通车辆上的设备,用于接收来自接触网的电能,并将其转换为机械能,驱动车辆行驶。
未来开展趋势随着城市轨道交通的不断开展,牵引供电系统也在不断创新和改良。
以下是一些未来开展趋势:高效能源利用未来的城市轨道交通牵引供电系统将更加注重能源的高效利用。
通过采用先进的能量回收技术,如再生制动系统、能量储存装置等,将能源回收再利用,减少能源的浪费。
无线供电技术无线供电技术有望成为未来城市轨道交通牵引供电系统的重要开展方向。
通过利用无线传输技术,可以不再依赖接触网,实现轨道交通车辆的无线供电,提高供电系统的稳定性和可靠性。
城市轨道交通牵引供电系统电能损耗分析
城市轨道交通牵引供电系统电能损耗分析城市轨道交通牵引供电系统是确保城市轨道交通车辆正常运行的关键部分,其电能损耗分析对于提高能源利用效率、降低运营成本具有重要意义。
本文将从城市轨道交通牵引供电系统的组成、电能损耗的主要因素、电能损耗的计算方法以及降低电能损耗的策略等方面进行探讨。
一、城市轨道交通牵引供电系统的组成城市轨道交通牵引供电系统主要由变电所、接触网(或第三轨)、牵引变流器、牵引电动机等组成。
变电所负责将高压交流电转换为适合轨道交通车辆使用的低压直流电或交流电。
接触网或第三轨则是将电能传输到车辆的媒介。
牵引变流器将变电所提供的电能转换为适合牵引电动机使用的电能形式,而牵引电动机则是将电能转换为机械能,驱动车辆运行。
二、电能损耗的主要因素在城市轨道交通牵引供电系统中,电能损耗主要发生在以下几个方面:1. 变电所的转换损耗:在高压交流电转换为低压直流电或交流电的过程中,由于变压器、整流器等设备的损耗,会产生一定的电能损失。
2. 接触网或第三轨的传输损耗:电能在通过接触网或第三轨传输到车辆的过程中,由于电阻、电感等因素的影响,也会产生电能损失。
3. 牵引变流器的转换损耗:牵引变流器在将电能转换为适合牵引电动机使用的电能形式时,由于器件的损耗,同样会产生电能损失。
4. 牵引电动机的损耗:牵引电动机在将电能转换为机械能的过程中,由于铜损、铁损等因素的影响,也会产生电能损失。
5. 车辆运行中的损耗:车辆在运行过程中,由于空气阻力、摩擦力等因素的影响,也会消耗一部分电能。
三、电能损耗的计算方法电能损耗的计算方法通常包括理论计算和实测两种方式。
理论计算主要是根据牵引供电系统的组成和各部分的损耗特性,通过数学模型进行计算。
实测则是通过在实际运行中测量各部分的电能损耗,然后进行分析。
具体计算方法如下:1. 变电所损耗计算:可以通过测量变压器的输入功率和输出功率,计算出变压器的损耗功率。
2. 接触网或第三轨损耗计算:可以通过测量接触网或第三轨的电流和电压,计算出线路的损耗功率。
城市轨道交通SCADA系统概述
求极高,以确保行车安全和检修人员的人身安全。
3. 通信媒介
从通信媒介上看,电力系统中的SCADA系统多采用电力线载波作为信
76%
道,而城市轨道交通SCADA系统多采用音频实回线、载波电缆或光纤作
为信道。这是因为城市轨道交通的电力线(接触网)存在大量的谐波,这些
谐波的存在严重影响到用电力线作为传输通道的通信质量,从而影响
1. 拓扑结构
而在电力系统中,各变电站、发电厂(站)的地理布局大多 为辐射状的分散布局,因此,其相应的SCADA系统的通道结构 也多为星形辐射状结构。在牵引供电系统中,各变电站、分区亭 、开闭所则是沿铁路线分布的,其通信线路呈相应的分布。因此 ,城市轨道交通信道为适应这种特点,大多采用链形结构、环形 结构、总线型结构,有时也采用星形结构。对于链形结构和环形 结构,必须考虑信号的中继转发、实时性及误码累积等问题,这 在星形结构中是不需特别考虑的。
SCADA系统的可靠性。此外,城市轨道交通SCADA系统的管辖范围常包
括多个变电站、分区亭等,电力线是分段不同相供电的。在不同相的交会
处,电力线是不连通的。如何有效地在交会处进行载波传输,也是一个问
题。因此,城市轨道交通SCADA系统都不采用电力线载波的方式。
4. 可靠性和实时性
由于城市轨道交通牵引供电系统的负荷——电动车组,是一个移
SCADA系统概述
随着生产过程自动化程度的日益提高,人们不断谋求对生产过程,特别是 对于分散状态的生产过程的集中监视、控制和统计管理。为达到上述目的, SCADA系统在综合自动控制理论、计算机技术和现代通信技术的基础上迅速 发展起来。
SCADA系统可能是一个很简单的单一控制对象,也可能是一个很大的综合系统。例如, 供电系统设有电力调度所,统一指挥供电系统在正常及事故情况下的运行工作,并集中管理 沿城市轨道交通线分布的许多牵引变电所、分区亭和开闭所中的电力设备。为了保证供电系 统运行的可靠性和经济性,电力调度所必须及时地掌握系统的实际运行情况。从电力调度工 作出发,一方面需要收集信息,要求变电站能将断路器的位置信号、事故信号及主要运行参 数等迅速、正确、可靠地反映给调度所;另一方面,调度所了解到系统的运行情况并进行判 断处理后,应对变电站(包括分区亭、开闭所等)下达命令,去直接操作某些设备或调整某 些参量,或完成实时控制任务。
绘制城市轨道交通牵引供电系统示意图
牵引供电系统的组成
牵引变电所
城
牵引供电系统
市
轨
牵引网
道
交压变电所
统
动力照明系统
动力照明配电系统
供电系统组成
电动车辆
车站内的动力、照明。 通信、信号、防灾装 置等用电负荷及区间 内的用电负荷
操作过程
第一步,画出钢轨、接触轨及列车;(列车运行在钢轨上,通 过受电弓从接触网受电) 第二部,牵引变电所、馈电所的绘制。城市轨道交通正线采用 双边供电,在列车的前方和后方面两个牵引变电所,牵引变电 所通过馈电将电流引入接触网。 第三部,绘制回流线。电流要形成封闭的回路方能使电流流通, 在钢轨上引一条线至牵引变电所,将轨道及牵引变电所连接起 来,以供牵引电流返回牵引变电所。
绘制轨道交通系统 供电系统示意图
牵引供电系统
牵引供电系统工作原理 牵引供电系统组成
1.牵引供电系统工作原理
牵引供电,顾名思义,就是将电能直接或者经过输送、变换后提 供给车组的牵引电动机,由牵引电动机将电能转换成机械能,从而驱 动车辆运行。
2.牵引供电系统的组成
城市轨道交通供电系统大体可分为牵引供电系统和动力照明供电 系统两部分。牵引供电系统和照明供电系统又有各自的主要设备,牵 引供电系统的组成。
相关设备
城市轨道交通供电系统设备及其应用探析
城市轨道交通供电系统设备及其应用探析城市轨道交通作为现代城市的重要交通运输方式,其供电系统设备在维持运行和保障安全方面起着至关重要的作用。
本文将对城市轨道交通供电系统设备及其应用进行探析,以期能够更好地了解这一重要领域。
一、城市轨道交通供电系统概述城市轨道交通供电系统是指为城市地铁、轻轨、有轨电车等交通运输设备提供电力供应的系统。
其主要功能是将电能从电力供应系统传输到车辆上,以保证车辆的正常运行和乘客的安全出行。
城市轨道交通供电系统主要由接触网、牵引变电所、供电配电系统等部分组成,对于城市轨道交通的运行和安全至关重要。
1. 接触网城市轨道交通接触网是将电能从供电站传输至车辆的重要设备,主要由接触线、支柱、承力索等组成。
接触线是供电系统的主要组成部分,其材料通常选用钢铝合金,具有良好的导电性能和耐腐蚀性能。
支柱和承力索则用来支撑和固定接触线,保证其在列车行驶过程中稳定地提供电能。
2. 牵引变电所牵引变电所是城市轨道交通供电系统中的核心设备,其主要作用是将电网供电转换为适合轨道交通车辆使用的电能。
牵引变电所通常采用高压输电技术,将高压电能通过变压器变换为适合车辆牵引的中低压电能,以满足城市轨道交通车辆的运行需求。
3. 供电配电系统城市轨道交通供电系统设备在现代城市轨道交通中得到了广泛的应用,并在不断进行技术革新和设备升级以满足运输需求。
现代城市轨道交通供电系统设备应用的主要现状包括以下几个方面:1. 新能源供电技术随着环保理念的逐渐普及和新能源技术的不断进步,城市轨道交通供电系统设备也在向着新能源供电技术的方向发展。
目前,一些城市轨道交通系统已经开始尝试太阳能、风能等新能源技术对供电系统进行补充和支持,以减少对传统能源的依赖,并实现对环境的友好保护。
2. 智能化供电设备随着信息技术的发展,智能化供电设备在城市轨道交通中逐渐得到应用。
智能化供电设备可以通过互联网和传感器等技术实现对供电系统的远程监控和智能调控,以实现对供电系统运行状态的实时监测和优化,减少人为操作的可能失误,提高供电系统的稳定性和安全性。
城市轨道交通供电与牵引系统
城市轨道交通供电与牵引系统简介城市轨道交通供电与牵引系统是城市轨道交通运营的核心局部,为城市轨道交通车辆提供稳定可靠的电力供给,并通过牵引系统将电力转化为动力,驱动车辆运行。
本文将对城市轨道交通供电与牵引系统的关键组成局部进行详细介绍。
供电系统城市轨道交通的供电系统主要由供电设备、接触网和供电馈线组成。
供电设备供电设备是城市轨道交通供电系统的核心局部,它主要包括变电站、配电装置和电力传输线路等。
变电站负责将输入的电能进行变压、变流等处理,输出适合城市轨道交通使用的高电压电能。
配电装置用于将变电站输出的电能分配到不同的供电馈线上。
电力传输线路那么将电能从变电站输送到供电馈线。
接触网接触网是城市轨道交通供电系统的另一个重要组成局部,它负责将电能从供电设备传输到行车区域。
接触网通常采用悬挂在轨道上方的导线或导轨,通过接触网与车辆上的供电装置接触,将电能传输给车辆。
供电馈线供电馈线是连接接触网和供电设备的局部,它通过分布在轨道两侧或中央的电缆将电能传输给接触网。
供电馈线主要负责将变电站输出的高电压电能传输到接触网,以供行车区域的车辆使用。
城市轨道交通的牵引系统是将电能转化为动力,驱动车辆运行的关键局部,它主要包括牵引变流器、牵引电机和传动装置等。
牵引变流器牵引变流器是将供电系统提供的直流电转化为交流电,并根据车辆的运行需求控制输出功率和频率的设备。
牵引变流器通常由多个晶闸管或功率模块组成,通过调整晶闸管的导通和封锁,实现对电流和电压的控制,从而实现对车辆的驱动力和制动力的控制。
牵引电机牵引电机是城市轨道交通车辆中的动力装置,它根据牵引变流器输出的交流电能,将电能转化为机械能,驱动车辆运行。
常用的牵引电机包括直流电机和交流电机,其中交流电机又包括异步电机和同时电机等。
传动装置是将牵引电机输出的动力传递给车轮的局部,它主要通过减速器和传动轴等组件实现。
传动装置的设计对车辆的运行稳定性、效率和能耗等方面有着重要影响。
城市轨道交通供电系统概述ppt课件
二、城市轨道交通的类型
3、现代有轨电车(4.9%)
类型 单向客运能力(万人次/h)
运行速度(km/h) 投资(亿元/km) 最小转弯半径(m)
地铁 3~7 30-45 5~8 350-400
路权
专有路权
建设周期(年)
4.0-5.0
应用情况
普遍应用
轻轨 1~3 30-45 3~5 250-350 专有路权 3.0-4.0
、
两种。
普遍应用
有轨电车 0.8~1.5 20-30 0.8~1.8
25 部分或专有路
权 1.5-2.0
国外普遍,国 内正在兴起
二、城市轨道交通的类型
4、市郊铁路(市域快轨,10%)
市郊铁路是指把城市市区与郊区、尤其是远郊区联系起来的 长距离城市轨道交通系统。
二、城市轨道交通的类型
5、独轨(单轨,2%)
一、城市轨道交通的定义和特点
1、城市轨道交通定义: 通常以电能为动力,采取轮轨运转方式的快速大 运量公共交通之总称。
一、城市轨道交通的定义和特点
2、城市轨道交通的特点:
(1)安全 (2)快捷 (3)准时 (4)舒适 (5)运量大 (6)无污染(或少污染) (7)占地少, 不破坏地面景观
一、城市轨道交通的定义和特点
8.如何理解城轨供电系统的电磁兼容功能?
9.电力机车的取电方式有:
、
两种。
10.牵引网包含:
、
、
、
。
单元练习
11.福州地铁1号线电力机车采用供电制式为
。
12.城轨牵引供电系统由
和
组成。
13.混合变电所指:
。
14.福州地铁正线有 个电分段。
简谈城市轨道交通交流牵引供电系统及其关键技术
简谈城市轨道交通交流牵引供电系统及其关键技术摘要:城市轨道交通牵引供电系统是城市轨道交通的主要供电设备,直接影响着城市轨道交通的行车组织、运营安全、投资效益。
城市轨道交通交流牵引供电系统具有供电质量好、可靠性高、运行维护简单等优点,在国内外得到了广泛应用,特别是在我国经济发达地区的城市轨道交通中应用更为广泛。
关键词:城市轨道交通;交流牵引;供电系统与交流牵引供电系统配套的是交流牵引变电所,是城市轨道交通的重要组成部分。
在我国,城市轨道交通中交流牵引变电所的设计及施工多由电力公司承担。
在城市轨道交通系统中,供电安全可靠是地铁车辆行车组织和运营安全的关键。
为此,有必要对城市轨道交通交流牵引供电系统及其关键技术进行探讨,以期为我国城市轨道交通交流牵引供电系统的发展提供参考。
1.系统主要设备城市轨道交通交流牵引供电系统由主所、变电所和车载牵引辅助变电所三部分组成。
主所位于列车行驶方向的上方,一般位于车站正线附近;变电所一般设置在车站附近,作为交流牵引供电系统的直接负荷中心,为列车提供可靠的直流电源;车载牵引辅助变电所是列车的直接供电电源,在车辆运行时通过车载电源向车载辅助变电所供电。
主所通常由牵引变电所和综合监控装置组成,其中牵引变电所包括主变压器、整流机组、牵引电流互感器和低压配电屏等。
综合监控装置主要由信号系统、视频系统、通信系统和控制系统等组成,主要实现对列车的实时监测、故障报警和自动控制等功能。
变电所由主变压器、辅助变压器(高压)、低压配电屏等组成。
主变压器是主所的核心设备,其主要作用是将交流电转换为直流电。
此外,还需要设置供电单元(牵引单元)、接触轨接地单元等设备。
各设备在变电所内按各自的功能独立设置。
2.牵引供电系统的主要保护措施为了保证城市轨道交通牵引供电系统安全、可靠运行,有必要对牵引供电系统中的主要保护措施进行探讨。
(1)绝缘监测装置:主要用于监测牵引变电所内设备绝缘状况,当发现绝缘水平下降时,应及时通知检修人员处理。
城市轨道交通供电系统—供电系统概述
2.供电系统的构成
外部高压供电系统是城市电网对城市轨道交通系统内部的主变电 所供电的系统,有三种供电方式:
(1)集中式 (2)分散式 (3)混合式
2.供电系统的构成
2.1外部高压供电系统
2.1.1分散式供电 在城市轨道交通线路沿线直接从城市电网引入多路电源,电源电压等
级一般为10 kV,供给各牵引变电所。 分散式供电应保证每座牵引变电所和降压变电所皆能获得双路电源。
),输送至牵引变电所和降压变电所。
主变电所具有
的AC 110 kV电源。
2.供电系统的构成
2.1外部高压供电系统
2.1.1 混合式供电 前两种供电方式的结合,以集中式供电为主,个别地段引入城市电
网电源作为集中式供电的补充。
2.供电系统的构成
2.2 牵引供电系统
牵引供电系统供给电动列车运行的电能。 电能
2.供电系统的构成
2.3 动力照明供电系统
(2)配电所(室):仅起到电能分配作用,将来自降压变电所的380 V或220 V交流电 分别供给动力设备或照明设备;各配电所(室)对本车站及两侧区间动力和照明等设备 配电。
2.供电系统的构成
2.3 动力照明供电系统
(3)配电线路:配电所(室)与用电设备之间的连接线路。
(1)列车运行;
(2)运营辅助服务(为运营服务的辅助设施包括照明、通风、空 调、排水、通信、信号、防灾报警、自动扶梯等)。
两方面的供电。
1.供电系统的供电过程
1.供电系统的供电过程
城市电网电源 主变电所
牵引变电所
降压变电所
牵引供电系统
动力照明供电系统
地铁列车牵引供电 地铁机电设备、照明设备供电
.降压及动力配电
浅谈城市轨道交通牵引供电系统
浅谈城市轨道交通牵引供电系统城市轨道交通牵引供电系统主要由牵引变电所和接触网组成,牵引变电所将电力系统通过高压输电线送来的电能加以降压和整流后输送给接触网,以供电给沿线路行驶的电力机车。
接触网作为传输电能的最后一环,它和电力机车受电弓、集电靴等取流设备的滑动接触将牵引变电所送来的电流送给电力机车。
接触网主要有柔性接触网(如图一所示)、刚性接触网(如图二所示)和接触轨(如图三所示)三种形式,柔性和刚性接触网都是以架空形式安装,与机车的受电弓接触送电。
接触轨则在地面安装,受制于轨道、土建等其他问题制约,在个别单渡线、交叉渡线及连续道岔处存在断口,当受车辆、线路、信号等多个系统共同作用下产生机车无法取流的"失电区",直接影响运营安全。
如何解决"失电区"问题是接触轨工程面对的一个技术难题,也是确保运营安全的关键。
本文重点分析接触轨工程产生机车无法取流"失电区"的原因,并以广州地铁六号线一期(以下简称6号线)接触轨工程为例,说明如何利用其他接触网安装方式,提出不同线路环境下接触轨工程"失电区"的解决方案。
1、接触轨"失电区"形成的原因分析接触轨"失电区"形成不是由接触轨这单一系统原因造成的,而是由车辆、线路、接触轨这三个系统相互制约,共同作用下产生的。
1.1车辆的电气构造以6号线为例,正线采用DC1500V接触轨受流制式,车辆采用L型车四辆编组形式,共布置了四组集电靴、两组受电弓,低压电气(辅助电气)连通,分别形成了集电靴取流系统和受电弓取流系統,如图四、图五所示。
四组集电靴分散布置在车辆前中后三个位置,集电靴之间存在一定的间距。
1.2接触轨"失电区"形成原因分析接触轨受线路原因主要是道岔影响形成断口,在9号道岔或者12号道岔单渡线、交叉渡线、带存车线的交叉渡线及连续道岔处形成连续断口,如图六所示,不同情况下,断口长度以及间距各不一样。
城市轨道交通机电设备系统概要介绍
城市轨道交通机电设备系统概要介绍城市轨道交通机电设备系统是城市轨道交通运行的核心设备系统,主要包括车辆、供电系统、信号与通信系统、车辆牵引与制动系统、车辆辅助系统和车站设备系统等。
这些设备系统互相依存、相互配合,共同保障城市轨道交通的安全、高效运行。
首先,车辆是城市轨道交通的核心部件,负责运送乘客。
城市轨道交通车辆主要分为地铁列车和轻轨车辆两种类型。
地铁列车是大容量、高速运行的车辆,一般采用电力牵引和制动系统,具有良好的动力系统和车体结构设计,以提供舒适、安全的乘坐环境。
而轻轨车辆则适用于中小规模的城市轨道交通,结构相对简单,但同样具备高度的安全性和运行稳定性。
供电系统是城市轨道交通的能源供应系统,主要包括接触网、供电设备和供电网等。
接触网是将电能传输到轨道交通车辆上的主要设备,一般采用钢丝,通过接触网与车辆的集电装置进行接触。
供电设备包括变电所和配电装置等,负责将电能从电网传输到接触网上。
供电网则是将变电所的电能进行输送和分配的网络。
信号与通信系统是城市轨道交通的控制系统,主要负责确保轨道交通列车的安全运行。
信号系统通过信号机、轨道电路和车载信号设备等,将指令传递给列车驾驶员,保证列车按照规定的速度和间隔行驶。
通信系统则是通过无线电通信设备,实现车辆与调度中心、车辆与车辆之间的远程通信和信息传递。
车辆牵引与制动系统是城市轨道交通的动力系统,主要包括牵引装置和制动装置。
牵引装置通过电机和齿轮箱等,将电能转换为机械能,提供车辆行驶所需的动力。
制动装置则通过制动盘、制动鞋和管路系统等,将车辆的动能转化为热能,实现车辆的制动和停车。
车辆辅助系统是城市轨道交通的辅助设备,主要包括车辆空调系统、照明系统、客室设施和安全设备等。
车辆空调系统可以调节车内温度和湿度,提供舒适的乘坐环境。
照明系统则提供车内和车外的照明,确保乘客和工作人员的安全。
客室设施包括座椅、扶手和车门等,提供方便的乘坐和上下车条件。
安全设备包括火灾报警和灭火系统等,保障乘客安全。
城市轨道交通车辆电气牵引系统基础课件
1 城市轨道交通车辆电气牵引系统概述
车辆电气牵引系统按其功能及电压的不同,可分为牵引
高压电路(主电路)、辅助供电电路和控制电路3部分;
设计时,又可根据功能的不同细分为主电路、牵引/制动
电路、辅助电路、监控信息电路、照明电路、空调电路、
附属设备电路、车门控制电路和车钩电路等。
电气牵引系统是列车各系统中的关键部分,在该系统中,
4
2 城市轨道交通车辆电气部件与设备
车辆采用 DC 750 V 受流器供电方式,每列车分为 2 个动力单元,每个单元由1个动车和1个拖车构成。 如
图1-2所示,对于每个单元,在中间的动车(M车)上
设置4个受流器,在Tc车上设置2个受流器,将电 网
提供的额定 DC 750 V 高压电源提供给车辆高压设备
7
2 城市轨道交通车辆电气部件与设备
8
2 城市轨道交通车辆电气部件与设备
如图1-4所示,BQS有“运行”“车间”“切除”三 个位置。当BQS处于“运行”位时,通过第三轨受流 器受流的 750 V 电源接入牵引主电路及辅助高压电路。 当 BQS 处于 “ 车间 ” 位时,车间电源输入的 750 V 电 源由BQS的“车间”位接入;“运行”位无高压输入, 牵引主电路被隔离,此时辅助电源由车间电源供电。 BQS带有低压辅助触点,该辅助触点将被引出作为联 锁信号。当BQS处于“切除”位时,牵引主电路及辅 助电源电路都被隔离。 高压牵引母线电路说明:BHB、BF作为单元内两个动 车之间牵引母线的短路或接地保护。牵引母线电路的 BLB、BHB、BF将车辆(Tc车、M车、M车、Tc车) 间的所有高压输入贯通连接,以保证牵引系统在过无 电区时,可通过大的无电区且没有动力损失。
牵引逆变器作为整个交流传动系统的重要组成部分, 其基本功能是把从直流电源中获得的直流电压变换成 频率和幅值都可调的三相交流电,并给牵引电动机供 电。根据中间储能元件的不同来分类,牵引逆变器可 分为电压型逆变器和电流型逆变器。
城市轨道交通供电系统概述
供电安全可靠。城市轨道交通是城市 交通的骨干,一旦牵引网发生故障,造成 列车停运,就会影响市民出行,引起城市 交通混乱。因此,安全可靠是选择供电制 式最重要的条件。
2. 供电制式的选择原则
3
4
牵引网使用寿命长,维修
3
便于安装和事故抢修。
选用的牵引网应便于施工安
工作量小,是降低轨道交通 运营成本的重要条件。
1城市轨道交通供电系统的供电制式
电力牵引用于轨道交通系统已有100多年的历史,随着经济 和科学技术的不断发展,用于轨道交通的电力牵引方式有许多不 同的制式出现。这里所说的制式,是指供电系统向电动车辆或电 力机车供电所采用的电流和电压制式,如直流制或交流制、电压 等级、交流制中的频率(工频或低频)及交流制中是单相或三相 等。
城市轨道交通供电 系统概述
城市轨道交通供电系统是城市轨道交通的动力源泉,在为线路上运行的机车提供所需 要的牵引负荷的同时,为车站、区间、车辆段、控制中心(operating control center, OCC)等其他建筑物提供其所需要的动力照明电能。在城市轨道交通运营过程中,供电一 旦中断,不仅会造成城市轨道交通运输系统的瘫痪,而且会危及乘客的生命安全,造成财 产损失。因此,城市轨道交通供电系统的有效运行是城市轨道交通系统安全可靠运行的重 要保障。
电气化铁路应用较普遍的牵引供电制式。我国干线电气化铁路即采用这种制
式,其供电电压为25 kV。
1. 供电制式的发展
(4) 三相交流制。三相交流制式的供电网比较复杂,必须有两根架空接触线和走行轨道 构成三相交流电路,两根架空接触线之间又要高压绝缘,造成的困难和投资更大,因此已经被 淘汰。
2. 供电制式的选择原则
直流串励电动机的机械特性(转矩与转速的关系特性)正符合重载时速度
城市轨道交通车辆—牵引系统
定子外壳
该型号是交流异步旋转鼠笼电动机, 用于驱动每个动车转向架的轮对。
通过调频才能调节感应电机的转速;
通过调压才能使感应电机具有恒力矩或恒功率的牵引特性。
牵引系统ห้องสมุดไป่ตู้示意图
SA 避雷器 HVB 高压箱 HSCB 高速断路器 KS 闸刀开关 BR 制动电阻 TC1 VVVF逆变器1 TC2 VVVF逆变器2 M 牵引电机
3、牵引系统组成 整个系统由受流装置、高速断路器(HSCB)、VVVF牵引逆变器、牵引控制单元
高速断路器(HSCB)位于高压箱 (HVB)内,接于牵引回路前端, 当牵引电路发生过流、短路或者逆变 器故障时,HSCB会安全地将牵引设 备和1500V高压电源隔断,迅速切断 故障电流,防止事故扩大,保证系统 的安全运行。
★牵引3逆、变器牵引系统组成 VVVF逆变器将1500V恒定电压转换为用于牵引电机的三相电流输出(针 对不同的速度和力矩,频率和振幅可变)。
将直流逆变 成三相交流 给异步电机 供电
牵引逆变器组成及功能
逆变器控制单元 (DCU) 主要通过对主电路进行 检测、检查电压、电流 传感器信号、速度传感 器等信号来实现对逆变 器单元进行检测和保护。
3、牵引系统组成
★牵引电机
城轨车辆交流牵引电机有旋转电机和直线电机两种,旋转牵引电机用于 驱动每个动车转向架的动车轮对,而直线电机用于驱动安装电机的转向架。 (1)旋转电机
➢ 城轨车辆动车转向架每根车轴有一个牵引电机,一般采用架悬式安装,能 有效地减轻了簧下质量。
➢ 电机一般为鼠笼式三相异步交流电机,功率为200KW左右,车辆牵引逆 变单元输出的变频变压交流电,直接控制电机转速和扭矩。
➢ 与直流电机相比,交流电机具有维护简单、故障率低、调速方便等优点。
城市轨道交通车辆牵引与供电系统概述
封闭式三相笼型异步电动机结构
定子
铁心:由内周有槽 的硅钢片叠成。
A ----X 三相绕组 B ----Y
C---- Z
机座:铸钢或铸铁
鼠笼转子
转子
铁心:由外周有槽的 硅钢片叠成。 (1) 鼠笼式转子 铁芯槽内放铜条,端 部用短路环形成一体; 或铸铝形成转子绕组。 (2) 绕线式转子 同定子绕组一样,也 分为三相,并且接成 星形。
气隙:定子和转子之间
必须有一个气隙
交流电动机的特点
交流电动机没有转向器,构造简单,运行可靠,效 率较高,维护很少,价格低廉;转子坚固,定子绕 组沿圆周均匀分布,电动机体积小,能够获得较大 的单位质量功率;其机械特性较硬,具有较好的防 空转性能,使黏着利用提高;且微电子技术的发展 使异步电动机的调压变频调速得以顺利实现。
效率高 由于无中间传动环节,消除了机械摩擦时的能量 损耗。
列车控制系统工作原理
城市轨道交通车辆的控制电路,是低电压小功率电 路,分为有接点的直流电路和无接点的电子电路。 有接点的直流电路由主控制器、继电器、电气控制 的低压部分、联锁接点组成;无接点的电子电路由 微机及各种电子单元组成,如列车牵引系统控制单 元、制动控制单元、空调控制单元等。
包括下部支杆5、下部导杆6、上部支杆7和上 部导杆8;
采用高强度冷拔无缝管制作。
• 高度止挡2:
安装在下部导杆侧下方的基础框架上; 用以限制受电弓的最大升弓高度。
• 弓头:
是弓与网相接触的部分; 由集流头9、接触带10、转轴、端角11和弹簧 盒组成。
• 升降弓装置12:
城市轨道交通供电系统概述
源(如110kV、),经主变电站进行电压转换,将外部电源降压(如35kV
或10kV)后,由主变电站集中向牵引变电所和降压变电所供电的外部
电源引入模式。
(2)分散式供电
是相对于集中式供电而言的,是指轨道交通不
设主变电站,由沿线城市变电站直接向牵引变电所和降压变电所提供
中压(35kV或10kV)电源的供电模式。
一、电力牵引制式种类
1.牵引制式概述
电力牵引制式是指牵引供电系统向电动车组或电力机车供电所提
供的电流和电压的制式。目前电力牵引制式按电流分,有直流制
式和交流制式;按相数分,有单相和三相。
第2页/共19页
一、电力牵引制式种类
2.馈电方式、牵引制式与受流方式
架空式适合所有不同的牵引制式。
(1)架空式
(2)第三轨
输电线路是向用户传输电能的通道,一般来说其电压较高,即
采用高压传输,其特点是线路较长,覆盖区域广。配电线路是
向用户分配电能的通道,其电压相对较低,也就是通常说的低
压配电线路,其特点是线路较短。由此可见,不同的电网,其
电压等级也不一样。
第6页/共19页
一、城市轨道交通供电系统概况
(1)集中式供电
指轨道交通从城市电网引入较高电压等级的电
第9页/共19页
二、城市轨道交通供电系统结构
1.根据变电所供电接线方式划分
(1)环网供电 主变电所向沿线的所有牵引变电所和降压变电
所供电。
图1-3
双环网供电接线示意图
第10页/共19页
二、城市轨道交通供电系统结构
(2)单边供电 当轨道线路沿线附近只有一侧有电源时,常采
用单边供电。
图1- 4
单边供电接线示意图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转子部分是用来产生感应电势和电磁转矩从
而实现机电能量转换的主要部件
转子通过轴承与定子保持相对位置,使两者
之间有一个空气隙
拓展
直流电动机工作原理:
友情提示:本知识点涉及高 中物理知识个,感兴趣的同 学可以上网搜索更加详细的 直流电动机系统知识
直流电动机的调速方式
直流牵引电动机的调速有两种基本形式:变阻控制 和斩波调压控制
城市轨道交通车辆牵引传动系统的 构成
接触网(第三轨) 受流器 变流装置 牵引电机 齿轮传动箱 轮对 列车运行
牵引传动装置
介绍
城市轨道交通车辆牵引与供电系统是城市轨道交 通系统的重要组成部分,其电力牵引系统是以城市 电网的电力为动力源,将电能转为机械能,牵引列 车运行的一种城市轨道交通牵引动力形式。城市轨 道交通车辆供电系统是由电力系统经高压输电网、 主变电所降压、配电网络和牵引变电所降压等环节, 向城市轨道交通列车输送电力的全部供电系统。
牵引电动机分为旋转电动机和线性电动机两大类。 旋转电动机有直流电动机和交流电动机。线性电动 机即直线牵引电动机,是异步感应电动机的简称
直流电动机
直流电动机由定子转子两部分构成。
极掌
极心
N ···
励磁绕组
···SΒιβλιοθήκη S机座转子
N
直流电动机的磁极和磁路
直流电动机各部分的作用
定子的作用是用来产生磁场,提供磁路和作
包括下部支杆5、下部导杆6、上部支杆7和上 部导杆8;
采用高强度冷拔无缝管制作。
• 高度止挡2:
安装在下部导杆侧下方的基础框架上; 用以限制受电弓的最大升弓高度。
• 弓头:
是弓与网相接触的部分; 由集流头9、接触带10、转轴、端角11和弹簧 盒组成。
• 升降弓装置12:
由传动风缸、拉伸弹簧及气路电磁阀组成。
直线电动机的构成及工作原理
事件管理
器(EV)
驱动
牵引逆
直线
SVPWM信
电路
变器
电动
号
机
MVBC01
USB接口
512KBRAM 512KBFLASH
TMS320F2 812内核
A/D电流检 测
故障检测 控制电路
E²PROM
I/O 控制 电路
直线电机的结构
直线电机的结构可以看作是将一台旋转电机沿径向剖开,并 将电机的圆周展开成直线而形成的。其中电机内部的定子相 当于现在直线步进电机的初级,而其转子则相当于其直线步 进电机的次级,每当其初级进行通入电流之后,则就会在其 直线电机的初次级之间的气隙当中产生行波式磁场,在行波 式的磁场与次级永磁体的相互作用之下产生了电机驱动力, 从而实现了其运动部件的直线运动能力。
直线电机的工作原理
设想把一台旋转运动的感应电动机沿着半径的方向剖开,并 且展平,这就形成了一台直线型的感应图步进电机。
初级做得很长,延伸到运动所需要达到的理想位置,也可以 把次级做得很长;既可以初级固定、次级移动,也可以次级 固定、初 级移动.
通入交流电后在定子中产生的磁通,根据楞次定律,在动体 的金属板上感应出涡流。设引起涡流的感应电压为E,金属 板上有电感L和电阻R,涡流电流和磁通密度将按费来明法则 产生连续的推力F。
斩波调阻
斩波调压
U RL
U ton T
U
直流斩波电路原理
直流斩波电压波形
交流电动机
1 轴承 2 前端盖 3 转轴 4 接线盒 5 吊环 6 定子铁心 7 转子 8 定子绕组 9 机座 10 后端盖 11 风罩 12 风扇
封闭式三相笼型异步电动机结构
定子
铁心:由内周有槽 的硅钢片叠成。
从接触网受取电流,通过车顶母线传送 到车辆内部。
• 类型: 气动弓和电动弓
母线:用高导电率的铜、铝质材料制成, 用以传输电能,具有汇集和分配电力能
力的产品。
图1-6 单臂受电弓的结构组成
受电弓的结构组成
• 基础框架1:
通过绝缘子3固定安装在车顶; 作为框架4、轴承、下部导杆等支承和安装。
• 框架4:
集电靴
集电靴部件的主要作用
集电靴的设置要求
1.集电靴的设置要使机车在通过三轨电区时不发生瞬 间断电现象,即两电气连通的集电靴间的最小距离 要大于三轨断电区的长度。
2.由于三轨在道岔和车站站台换边布置,因此要求车 辆的两侧都要设置集电靴。
牵引电动机
牵引电动机是城市轨道交通车辆得以实现牵引机 点及电制动的动力机械。牵引电动机悬挂在车辆转 向架或车轴上,并借助传动装置驱动车辆前进。
A ----X 三相绕组 B ----Y
C---- Z
机座:铸钢或铸铁
鼠笼转子
转子
铁心:由外周有槽的 硅钢片叠成。 (1) 鼠笼式转子 铁芯槽内放铜条,端 部用短路环形成一体; 或铸铝形成转子绕组。 (2) 绕线式转子 同定子绕组一样,也 分为三相,并且接成 星形。
气隙:定子和转子之间
必须有一个气隙
1.变阻控制:通过调节串入电动机回路以改变直流牵 引电动机端电压来达到调速目的
2.斩波调压控制:通过接在电网与牵引电动机之间斩 波器的导通与关断来改变牵引电动机端电压,实现 调速
变阻控制
调节电阻的方法 又可分为两类, 即采用有触点 组合式凸轮开 关调阻和无触 点斩波调阻。
图 5.11 有有触触点点式开开关关调阻调原阻理图
交流电动机的特点
交流电动机没有转向器,构造简单,运行可靠,效 率较高,维护很少,价格低廉;转子坚固,定子绕 组沿圆周均匀分布,电动机体积小,能够获得较大 的单位质量功率;其机械特性较硬,具有较好的防 空转性能,使黏着利用提高;且微电子技术的发展 使异步电动机的调压变频调速得以顺利实现。
前方高能
电力牵引系统工作原理及能量传递 过程
27.5KV单相 接触网
车上 受电弓
交流
牵引 变压器
牵引 整流器
直流
牵引电机
电能
转向架
机械能
机车车辆
城市轨道交通车辆电气传动及控制 方式
牵引电动机
旋转电动机
线性电动机
直流电动机
交流电动机
凸轮变阻
斩波调阻
变阻控制
斩波调压控制
变压变频控制
受流设备
(一)受流器的形式
1.受电弓形式 直流1500V供电采用架空线接触网式,车辆采用受电弓受
流
2.集电靴形式 集电靴是安装在车辆转向架上,为列车从刚性供电进行
动态取流,满足列车电力需求的一套动态受流设备。
受电弓
1.受电弓结构
• 安装位置:
车体几何中心点最近的车顶上部。
• 工作方式:
当受电弓升起时,弓与网接触滑行,