城市轨道交通牵引供电系统研究
城市轨道交通牵引供电系统
城市轨道交通牵引供电系统简介城市轨道交通牵引供电系统是城市轨道交通运行的重要组成局部,负责向轨道交通车辆提供电力供给。
它不仅直接影响着轨道交通的运营效率和电力消耗情况,还与乘客的乘坐舒适度和平安性息息相关。
本文将介绍城市轨道交通牵引供电系统的根本原理、组成结构以及未来开展趋势。
根本原理城市轨道交通牵引供电系统的根本原理是将电源通过接触网供给给轨道交通车辆。
具体来说,电源会通过接触网上的触网集电装置传送给牵引系统。
牵引系统由主变压器、牵引变流器和牵引电动机组成,负责将电能转换为机械能,驱动轨道交通车辆运行。
组成结构城市轨道交通牵引供电系统由多个组成局部构成,包括接触网、辅助设备和车辆终端设备。
接触网接触网是城市轨道交通牵引供电系统的核心局部,通常安装在轨道上方。
它由导线、吊杆、挂装件等组成,用于提供电力给牵引系统。
接触网一般采用带电架空式供电,即以高架的方式悬挂在轨道上方,通过接触网上的触网集电装置与车辆终端设备连接。
辅助设备城市轨道交通牵引供电系统还包括一系列辅助设备,用于确保供电系统的正常运行。
辅助设备主要包括配电变压器、开关设备、保护和监控装置等。
配电变压器用于将高压电源转换为适合牵引系统使用的低压电源;开关设备用于控制电能的分配和传输;保护和监控装置那么用于监测供电系统的运行状态,及时处理故障和异常情况。
车辆终端设备车辆终端设备是城市轨道交通车辆上的设备,用于接收来自接触网的电能,并将其转换为机械能,驱动车辆行驶。
未来开展趋势随着城市轨道交通的不断开展,牵引供电系统也在不断创新和改良。
以下是一些未来开展趋势:高效能源利用未来的城市轨道交通牵引供电系统将更加注重能源的高效利用。
通过采用先进的能量回收技术,如再生制动系统、能量储存装置等,将能源回收再利用,减少能源的浪费。
无线供电技术无线供电技术有望成为未来城市轨道交通牵引供电系统的重要开展方向。
通过利用无线传输技术,可以不再依赖接触网,实现轨道交通车辆的无线供电,提高供电系统的稳定性和可靠性。
城市轨道交通牵引供电系统电能损耗分析
城市轨道交通牵引供电系统电能损耗分析城市轨道交通牵引供电系统是确保城市轨道交通车辆正常运行的关键部分,其电能损耗分析对于提高能源利用效率、降低运营成本具有重要意义。
本文将从城市轨道交通牵引供电系统的组成、电能损耗的主要因素、电能损耗的计算方法以及降低电能损耗的策略等方面进行探讨。
一、城市轨道交通牵引供电系统的组成城市轨道交通牵引供电系统主要由变电所、接触网(或第三轨)、牵引变流器、牵引电动机等组成。
变电所负责将高压交流电转换为适合轨道交通车辆使用的低压直流电或交流电。
接触网或第三轨则是将电能传输到车辆的媒介。
牵引变流器将变电所提供的电能转换为适合牵引电动机使用的电能形式,而牵引电动机则是将电能转换为机械能,驱动车辆运行。
二、电能损耗的主要因素在城市轨道交通牵引供电系统中,电能损耗主要发生在以下几个方面:1. 变电所的转换损耗:在高压交流电转换为低压直流电或交流电的过程中,由于变压器、整流器等设备的损耗,会产生一定的电能损失。
2. 接触网或第三轨的传输损耗:电能在通过接触网或第三轨传输到车辆的过程中,由于电阻、电感等因素的影响,也会产生电能损失。
3. 牵引变流器的转换损耗:牵引变流器在将电能转换为适合牵引电动机使用的电能形式时,由于器件的损耗,同样会产生电能损失。
4. 牵引电动机的损耗:牵引电动机在将电能转换为机械能的过程中,由于铜损、铁损等因素的影响,也会产生电能损失。
5. 车辆运行中的损耗:车辆在运行过程中,由于空气阻力、摩擦力等因素的影响,也会消耗一部分电能。
三、电能损耗的计算方法电能损耗的计算方法通常包括理论计算和实测两种方式。
理论计算主要是根据牵引供电系统的组成和各部分的损耗特性,通过数学模型进行计算。
实测则是通过在实际运行中测量各部分的电能损耗,然后进行分析。
具体计算方法如下:1. 变电所损耗计算:可以通过测量变压器的输入功率和输出功率,计算出变压器的损耗功率。
2. 接触网或第三轨损耗计算:可以通过测量接触网或第三轨的电流和电压,计算出线路的损耗功率。
城市轨道交通牵引供电系统谐波分析
城市轨道交通牵引供电系统谐波分析随着城市轨道交通的不断发展,城市轨道交通牵引供电系统也逐步得到完善。
牵引供电系统是城市轨道交通的重要组成部分,其主要作用是为列车提供电力,使其运行平稳快捷,并保证乘客的安全。
然而,在实际运行过程中,牵引供电系统中存在着谐波问题,会对系统造成一定的影响,本文主要对城市轨道交通牵引供电系统的谐波进行分析。
首先,介绍一下谐波的概念。
谐波是指在周期性电路中,频率是原有基波频率整数倍的周期性电信号,其波形呈正弦曲线。
在城市轨道交通系统中,由于列车电机的采样控制、无感自持续电机等因素的影响,会在系统中引入谐波电流和电压。
这些谐波电流和电压会造成牵引变流器、牵引逆变器、隔离变压器等设备的磁、电、温等方面的问题,对设备的寿命产生影响。
其次,谐波的来源很多,主要包括列车电机、牵引变流器、牵引逆变器、隔离变压器、线路等。
其中列车电机是主要的谐波源,由于各个相之间的差异性,会产生不对称的电流波形,引入谐波电流。
当谐波电流通过交流电源、线路和变压器时,会产生谐波电压。
此外,牵引变流器和牵引逆变器中的开关器件会产生大量高频电压、电流,进一步导致各种电磁干扰。
同时,隔离变压器中的漏电感值也会受到谐波电流的影响而发生变化。
最后,对城市轨道交通牵引供电系统谐波的分析结果进行总结。
谐波问题会影响到城市轨道交通供电系统和列车的可靠性和安全性,需要进行有效的控制。
一方面,可以通过在设计阶段加入滤波器、降低变压比等方式来减少谐波电流和谐波电压。
另一方面,可以通过进行谐波电流监测、降低变流器和逆变器的开关频率等措施来减少谐波的影响。
因此,城市轨道交通牵引供电系统的谐波分析具有重要的理论和实际意义,对保证城市轨道交通的运行安全和提高设备的寿命具有积极的作用。
城市轨道交通牵引供电系统分析
城市轨道交通牵引供电系统分析摘要:近年来,轨道交通的运输规模不断增加,给人们的出行带来更加便捷体验的同时,也引起了很多人的担忧。
因为交通运输规模的增加必然会导致车辆流动量的增加,这也给城市轨道交通牵引供电系统带来了全新的挑战。
这需要不断引进新的技术,不断消化吸收,努力进行创新和再创新,同时对轨道交通建设的标准与质量的认识也不断提高,所以对于其关键技术进行研究是有必要的。
关键词:城市;轨道交通;牵引供电系统1地铁车辆供电系统构成为了保证地铁的顺利运营,我们必须做好地铁供电系统的运行工作。
其关键作用是为地铁及其电气设备供电。
在地铁供电系统中,关键可分为高压电源供电和地铁内部结构供电。
高压电源可以立即应用于市政工程的用电。
在供电的情况下,一般采用混合供电方式、分散供电方式和集中供电方式。
地铁内部结构的供电分为照明供电和牵引供电。
牵引供电的目的是将高压交流电源转换为地铁运营所需的直流稳压电源。
然后根据同轴电缆将其发送到地铁-轨道交通接触网,地铁在用电过程中会立即从轨道交通接触网获得必要的用电。
在地铁照明灯具供电系统中,不仅需要给照明灯具供电,还需要给离心泵和离心风机供电。
该供电系统主要由电源线及其降压配电设备组成。
2牵引供电系统的关键技术2.1 双向变流装置双向变流装置通常由交流开关柜、变压器柜、双向变流器柜、直流开关柜和负极柜组成,整体接线方案与现有二极管整流机组的相一致。
其交流侧通过35kV开关柜被接于牵引变电所内的35 kV母线段;直流侧正极通过1500V直流开关柜被接于牵引变电所内的直流母线段正极,负极仍保留直流控制柜内的隔离开关,且被接于牵引变电所内的直流母线段负极。
传统二极管整流机组牵引供电方式中直流侧短路保护主要依赖直流进线柜和直流馈线柜的保护设施。
直流进线柜保护包含大电流脱扣保护和逆流保护;直流馈线柜保护包含大电流脱扣保护、ΔI保护、di/dt保护、过电流保护和双边联跳保护,各种保护相互配合,从而实现牵引网近、中、远端短路的全范围保护。
城市轨道交通供电与牵引系统
城市轨道交通供电与牵引系统简介城市轨道交通供电与牵引系统是城市轨道交通运营的核心局部,为城市轨道交通车辆提供稳定可靠的电力供给,并通过牵引系统将电力转化为动力,驱动车辆运行。
本文将对城市轨道交通供电与牵引系统的关键组成局部进行详细介绍。
供电系统城市轨道交通的供电系统主要由供电设备、接触网和供电馈线组成。
供电设备供电设备是城市轨道交通供电系统的核心局部,它主要包括变电站、配电装置和电力传输线路等。
变电站负责将输入的电能进行变压、变流等处理,输出适合城市轨道交通使用的高电压电能。
配电装置用于将变电站输出的电能分配到不同的供电馈线上。
电力传输线路那么将电能从变电站输送到供电馈线。
接触网接触网是城市轨道交通供电系统的另一个重要组成局部,它负责将电能从供电设备传输到行车区域。
接触网通常采用悬挂在轨道上方的导线或导轨,通过接触网与车辆上的供电装置接触,将电能传输给车辆。
供电馈线供电馈线是连接接触网和供电设备的局部,它通过分布在轨道两侧或中央的电缆将电能传输给接触网。
供电馈线主要负责将变电站输出的高电压电能传输到接触网,以供行车区域的车辆使用。
城市轨道交通的牵引系统是将电能转化为动力,驱动车辆运行的关键局部,它主要包括牵引变流器、牵引电机和传动装置等。
牵引变流器牵引变流器是将供电系统提供的直流电转化为交流电,并根据车辆的运行需求控制输出功率和频率的设备。
牵引变流器通常由多个晶闸管或功率模块组成,通过调整晶闸管的导通和封锁,实现对电流和电压的控制,从而实现对车辆的驱动力和制动力的控制。
牵引电机牵引电机是城市轨道交通车辆中的动力装置,它根据牵引变流器输出的交流电能,将电能转化为机械能,驱动车辆运行。
常用的牵引电机包括直流电机和交流电机,其中交流电机又包括异步电机和同时电机等。
传动装置是将牵引电机输出的动力传递给车轮的局部,它主要通过减速器和传动轴等组件实现。
传动装置的设计对车辆的运行稳定性、效率和能耗等方面有着重要影响。
城市轨道交通供电系统及电力技术分析
城市轨道交通供电系统及电力技术分析1. 引言1.1 城市轨道交通的发展重要性城市轨道交通的发展对城市的经济、环境和社会发展具有重要意义。
随着城市化进程的加快,城市人口不断增长,交通拥堵、环境污染等问题日益突出。
轨道交通作为城市主要的公共交通方式,具有快速、方便、环保等优势,能够有效缓解城市交通拥堵问题,减少道路交通对环境的影响,提高居民出行品质。
发展城市轨道交通也能够促进城市之间的互联互通,推动区域经济发展,增强城市的竞争力和吸引力。
城市轨道交通的发展是城市可持续发展的重要组成部分,对城市交通运输体系的完善和城市发展的提升具有重要意义。
通过对城市轨道交通供电系统及电力技术的深入研究和分析,可以为提升城市轨道交通运营效率、加强系统安全稳定性、推动技术创新与进步等方面提供重要参考依据。
1.2 本文研究的目的本文的研究目的是深入探讨城市轨道交通供电系统及电力技术的相关理论和实践,分析其在城市交通运输中的重要性和作用。
通过对城市轨道交通供电系统概述、电力技术分析、供电系统设计与优化、电力技术在城市轨道交通中的应用以及城市轨道交通电力技术发展趋势的研究与探讨,探讨相关技术在未来城市轨道交通建设中的发展方向和应用前景。
通过本文的研究,旨在为城市轨道交通供电系统及电力技术的发展提供参考和启示,为未来城市轨道交通的可持续发展和演进提供理论支持和技术支持。
希望通过本文的研究,能够深入了解城市轨道交通供电系统及电力技术的现状和未来发展趋势,为相关领域的研究和实践提供有益的借鉴和参考。
2. 正文2.1 城市轨道交通供电系统概述城市轨道交通供电系统是城市轨道交通运行的重要支撑,其作用是为城市轨道交通的电力化机车、列车及相关设备提供稳定、可靠、安全的电力。
供电系统一般包括接触网、牵引变电站、配电设备等组成部分。
接触网是城市轨道交通供电系统的核心部分,通过接触网将电能传输到运行车辆上,为其提供动力。
接触网一般由导线、支柱等组成,其设计要考虑供电负载、线路走向、环境条件等因素。
轨道交通双向变流式牵引供电系统研究
1.3
系统网络结构及监控平台
工业计算机监控平台所发出的控制命令由以太
网传输到每个 PWM 整流器单元,同时通过以太网向
计算机传输每个 PWM 整流器单元所采集的数字信
号与模拟量,采用计算机监控平台内的对应软件及
时处理与呈现 [22-24] ,系统的网络结构如图 4 所示。
的有效降低,并且电流谐波含量降低的效果会随着
[16]
此技术中并联单元数量的增多而提升 。
2)降低谐波机理
以并联两个 PWM 整流器单元为例,降低 C 相电
图2
错时矢量调制技术原理图
参考电网电压过零点,以特定时间 Ts/M 分别错
开 M 个整流器单元采样点,每个单元依旧以传统两
电 平 PWM 整 流 器 矢 量 调 制 方 式 为 依 据 实 行 控 制 。
矢量调制技术是 ISVM 技术的根本,ISVM 技术通过
图4
数个单元彼此间的配合实现系统整体电流谐波含量
摘要:针对不同运行情况下电流谐波效果不显著、电压与电流不稳定,且双向流动浪费能源的问
题,提出一种轨道交通双向变流式牵引供电系统。设计包含数个三相电压型 PWM 整流器单元并
联的双边供电系统主电路结构,单 PWM 整流器单元控制策略引入电流前馈解耦控制算法,去除三
相电流彼此间的耦合,实现对整流器单元各相电流的单独控制。多 PWM 整流器单元并联控制策
关键词:轨道交通;双向变流;牵引供电;错时矢量调制;谐波含量
中图分类号:TM464
文献标识码:A
DOI:10.14022/j.issn1674-6236.2021.09.017
文章编号:1674-6236(2021)09-0080-05
城市轨道交通牵引供电系统接触网和回流安全研究
城市轨道交通牵引供电系统接触网和回流安全研究摘要:为解决牵引电源系统在运行过程中常见的安全问题,针对杂散电流产生机制、接触网残压现象原理进行分析,通过调节电缆连接方式抑制泄漏电流的产生,针对单向导通装置改造后消除轨电位压差,并采取回流轨牵引供电优化、接触网双重绝缘设计等措施,为维护接触网及回流安全提供技术支持。
关键词:轨道交通;接触网;残余电压;杂散电流;回流安全引言:在城市轨道交通运行过程中,常因接触网存在残压影响其正常供电效果,或受杂散电流影响导致轨电位限制装置异常动作,将对地铁土建结构、列车及设备安全运行构成威胁,研究上述问题的改进设计方案,对于保障轨道交通顺利运行具有现实意义。
1牵引供电系统接触网残压分析1.1杂散电流当前城市地铁普遍采用走行轨回流牵引供电系统,在长期运营过程中易在粉尘、潮湿、摩擦等多重作用下削弱走行轨的对地绝缘性能,导致泄漏出的杂散电流持续增大,并介于走行轨、地面之间形成较大电位差,造成系统短路等故障。
同时,当轨道交通系统在运行过程中存在较高等电位,将导致金属管线、设施设备之间发生打火、放电现象,连同泄漏的杂散电流共同作用于轨限位装置,造成装置异常动作或长时间接地等问题,影响地铁列车安全可靠运行[1]。
1.2残余电压现阶段轨道交通常选用1500V直流电源供电,在接触网运行状态下测得残余电压在70~700V区间内,造成不同类型的残压事故。
其中在针对直流馈线开关柜进行线路测试时,测得残压值为300V,随即通电后再次测试,倘若测得接触网残压值>300V,则开关柜无法执行正常分、合闸操作,制约接触网正常供电;在接触网故障维修与维护环节,通过测量剩余电压值、对比验电器的起动电压,当实测值超出预警值后将切断电源,此外将接触网接挂地线易出现打火现象,导致设备及线缆被烧毁[2]。
2接触网系统优化及回流安全设计2.1调整电缆连接方式由于杂散电流多出现在车辆段配线处,为避免杂散电流威胁牵引供电系统的正常运行,针对出入段线、试车线处的走行轨以200m为间隔进行电缆并联设计,通过电缆转接箱焊接固定在走行轨上,借此降低轨电位与电位差,抑制泄漏电流的产生。
城市轨道交通供电系统—牵引系统
学习目标
要求学生通过学习,掌握轨道 交通机车牵引引优势
01
直流电力牵引特点
02
直流电力牵引优势
直流电力牵引特点
1.电动车辆应用直流牵引电机调速方便且易于 实现,借助传统的电阻调节控制,改变牵引电机 端压或调节励磁即可调节速度。 2.直流串激电机具有适合于列车牵引性能的转 矩-速度特性。 3.直流供电相对交流供电的牵引网电压损失和 功率损失要小得多,有利于保持网压稳定,确 保列车频繁启动下的电压质量,从而有利于保 证列车的运行速度。
02
01
直流电力牵引优势
随着机车控制技术和电力电子技术的发展,出现了斩波 调压控制的直流牵引电机驱动方式,直流牵引制的上述 优势依然明显。
即便是目前采用变频调压(VVVF)控制的交流牵引电机 传动系统,直流牵引制对于保证网压质量和交流传动控 制系统的稳定工作,以及简化电动车辆逆变器的器件与 设备都是有利的。
城市轨道交通三相交流牵引供电系统可靠性研究
模拟分析与评价
柯 瑞 黄小萍 (安徽省城建设计研究总院股份有限公司,安徽 合肥 230051)
摘 要 :为研究内风廊在高层办公建筑自然通风中的作用,本文利用 CFD 软件对合肥地区某高层办公建筑在有
无内风廊工况下室内通风情况进行数值模拟分析。通过研究室内气流速度和空气龄来分析高层办公建筑内各功能
DL5,LH5,GS8 DL6,LH6,GS9 DL7,LH7,GS10 DL8,LH8,GS11 DL9,LH9,GS12 DL10,LH10,GS13
3.3.2 牵引变电所可靠性分析
3.3.2.1 可靠性分析过程
本文采用故障树的贝叶斯网络方法,对牵引变电所故障 的可靠性进行分析。根据牵引变电所接线化简图,可以看出 在正常运行状态下有 4 条对称馈线。
- 72 -
工业技术
2024 NO.2(下) 中国新技术新产品
图 4 单锚段可靠性框图
单锚段可靠性框图如图 4 所示。 通过接触网设备可靠性参数和串联计算公式,可以得到 单锚段的可靠性指标 :正常工作概率为 0.99993,故障率为 0.237 次 / 年。
3.3 牵引变电所可靠性分析
3.3.1 可靠性模型
以某城市轨道交通供电系统为例,牵引变电所采用的是 单相变压器。该变电所的原边直接从 35kV 的电缆取电,而 副边通过降压转换后与接触网进行连接。1# 和 2# 进线互为 备用。对牵引变电所接线图的串联部分进行等效化简,如图 5 所示。
GZ1
GZ2
I1
GZ3、GS1串联
I2
E1
E2
I3
GS6、GS7串联
利用公式(1),可以计算当牵引变电所的两个供电臂同
S
sα
sβ
I3
城市轨道交通直流牵引供电系统杂散电流研究
城市轨道交通直流牵引供电系统杂散电流研究城市轨道交通直流牵引供电系统杂散电流研究近年来,随着城市发展和人口增长的需求,城市轨道交通日益成为一种重要的交通方式。
而轨道交通的牵引供电系统则是其核心技术之一。
然而,由于线路的复杂性和电气设备运行中的因素,城市轨道交通直流牵引供电系统中存在着许多杂散电流现象,给系统运行稳定性和安全性带来了一定的挑战。
首先,我们需要了解什么是杂散电流。
杂散电流是指在直流牵引供电系统中流动的无害电流,它通常是由于系统中存在的电气设备散流部分或者泄漏部分引起的。
这些电流可能会导致牵引系统的运行异常或者损坏其他设备,因此对杂散电流进行深入的研究和分析是非常重要的。
城市轨道交通作为一种重要的公共交通工具,运营期间需要保持高可靠性和安全性。
然而,由于线路和车辆的复杂性,以及城市环境的复杂性,轨道交通系统中的杂散电流问题较为突出。
这些杂散电流主要来源于系统中的载流导线以及地面电缆之间的漏电和谐波电流。
对杂散电流的研究旨在找出其产生原因,并采取相应的措施保证系统的正常运行。
首先,我们需要对轨道交通系统中可能产生杂散电流的因素进行详细的分析。
这些因素包括但不限于牵引变压器的设计和制造质量、接触网的接地情况、地下导体和设备的绝缘性能等。
对这些因素进行全面的检测和分析,可以帮助我们找出杂散电流产生的根本原因。
其次,为了解决杂散电流问题,我们需要对系统进行有效的监测和控制。
系统监测可以通过安装杂散电流传感器和监测设备来实现。
一旦杂散电流超出正常范围,监测设备将立即发出警报并采取相应的措施,以避免系统发生故障。
此外,对系统进行有效的控制也是解决杂散电流问题的关键。
通过合理设计和优化供电系统的结构,可以降低杂散电流的产生并提高系统的稳定性和安全性。
最后,需要注意的是,杂散电流问题不仅仅是技术问题,还涉及到管理和维护。
在城市轨道交通系统的日常运营中,需要建立完善的管理机制和维护制度,定期对供电系统进行检修和维护,及时处理可能引发杂散电流的问题。
城市轨道交通牵引供电系统关键技术分析
城市轨道交通牵引供电系统关键技术分析摘要:随着我国经济的发展,城市轨道交通建设的规模也在不断增加,给人们的出行带来了更加便捷的体验。
然而,随着城市轨道交通的发展,规模不断扩大,也给供电系统带来了极大的挑战,针对此情况,应当积极研究城市轨道交通直流牵引供电系统的关键技术,并且对其进行优化,及时调整和改进在供电系统运行中存在的问题,确保供电系统的稳定,进而保障城市轨道交通的顺利稳定运行,为人们出行提供便捷的同时,也能够有力的保障人们的出行安全。
关键词:城市轨道;交通牵引;供电系统;关键技术;分析1研究背景与城市供电系统有比较大的区别,城市轨道交通的供电设施所处的位置一般都比较特殊,一旦在其中的某个环节出现问题,导致电力无法正常供应,会直接影响到城市轨道交通的正常运行,严重的情况下,还可能会导致城市轨道交通系统出现崩溃,给人们的出行带来不便。
轨道交通供电工程特点为施工作业面点位多、线路长、覆盖面广;施工特点为专业多、接口复杂、环境复杂、过程动态变化多。
本研究围绕BIM技术的信息集合整理,实现信息化的施工管理;虚拟与现实技术进行可视化协同,加大便携式移动端的开发;创建施工管理系统,确保项目安全、质量、效益目标为基础进行。
2牵引供电系统的关键技术2.1牵引供电系统优化人防门区间方向过渡支架,施工蓝图中不会体现此处的具体做法,此处的电缆不仅有供电专业的,也有机电专业的线缆,经常在此处位置形成线缆的交叉重叠,严重的影响观感质量。
根据现场实际情况制作出一种适用于此处的过渡爬架,使用前后两层设置,将环网高压电缆与控制电缆分开,都有对应的层面,将过渡的爬架改为斜面,可以不用在承接处进行专门的防护处理。
环网电缆在过轨通道下引位置应满足弯曲半径,为了避免环网电缆与支架的棱角相碰触,将过轨通道下引位置的支架使用绝缘垫加热缩护套的方式进行保护,对环网电缆长期运营提供有效保障。
变电所设备内进行定制防火封堵外框,统一高度,对于防火封堵的方式及成品可以做到每站每种设备的统一性,制作铝制专用模具,在模具框体填充防火泥。
简谈城市轨道交通交流牵引供电系统及其关键技术
简谈城市轨道交通交流牵引供电系统及其关键技术摘要:城市轨道交通牵引供电系统是城市轨道交通的主要供电设备,直接影响着城市轨道交通的行车组织、运营安全、投资效益。
城市轨道交通交流牵引供电系统具有供电质量好、可靠性高、运行维护简单等优点,在国内外得到了广泛应用,特别是在我国经济发达地区的城市轨道交通中应用更为广泛。
关键词:城市轨道交通;交流牵引;供电系统与交流牵引供电系统配套的是交流牵引变电所,是城市轨道交通的重要组成部分。
在我国,城市轨道交通中交流牵引变电所的设计及施工多由电力公司承担。
在城市轨道交通系统中,供电安全可靠是地铁车辆行车组织和运营安全的关键。
为此,有必要对城市轨道交通交流牵引供电系统及其关键技术进行探讨,以期为我国城市轨道交通交流牵引供电系统的发展提供参考。
1.系统主要设备城市轨道交通交流牵引供电系统由主所、变电所和车载牵引辅助变电所三部分组成。
主所位于列车行驶方向的上方,一般位于车站正线附近;变电所一般设置在车站附近,作为交流牵引供电系统的直接负荷中心,为列车提供可靠的直流电源;车载牵引辅助变电所是列车的直接供电电源,在车辆运行时通过车载电源向车载辅助变电所供电。
主所通常由牵引变电所和综合监控装置组成,其中牵引变电所包括主变压器、整流机组、牵引电流互感器和低压配电屏等。
综合监控装置主要由信号系统、视频系统、通信系统和控制系统等组成,主要实现对列车的实时监测、故障报警和自动控制等功能。
变电所由主变压器、辅助变压器(高压)、低压配电屏等组成。
主变压器是主所的核心设备,其主要作用是将交流电转换为直流电。
此外,还需要设置供电单元(牵引单元)、接触轨接地单元等设备。
各设备在变电所内按各自的功能独立设置。
2.牵引供电系统的主要保护措施为了保证城市轨道交通牵引供电系统安全、可靠运行,有必要对牵引供电系统中的主要保护措施进行探讨。
(1)绝缘监测装置:主要用于监测牵引变电所内设备绝缘状况,当发现绝缘水平下降时,应及时通知检修人员处理。
城市轨道交通柔性直流牵引供电技术应用研究
城市轨道交通柔性直流牵引供电技术应用研究摘要:既有城市轨道交通牵引供电系统基于二极管整流机组向牵引网供电,其输出满足固定下垂特性,输出功率受机车位置、取流状态、线路阻抗影响自然分配,不受控制;直流输出电压不可控,牵引网电压受列车负荷影响较大,通常波动范围为-15%~20%。
此外,二极管的单向导电性导致其能量只能单向流动,无法回收列车电制动能量;为防止制动能量堆积导致牵引网电压超出安全范围损坏车载设备,供电系统中配置了再生能量利用装置。
可见,既有牵引供电系统因为缺少对系统潮流的主动调控,存在牵引网电压波动较大、再生制动能量无法充分利用、供电系统内部节能困难等问题。
关键词:轨道交通;柔性直流;牵引供电技术;应用1柔性直流牵引供电方案节能效果评估研究结合深圳地铁直流牵引供电系统方案及其参数,利用西南交通大学开发的轨道交通直流牵引供电仿真平台,开展大容量柔性直流牵引供电方案拓扑及控制策略研究、输出外特性协同控制及参数选取方法、直流稳压及钢轨电位控制效果等多个研究,建立了大容量柔性直流牵引供电方案的计算模型。
通过高精度实时仿真平台,研究大容量柔性直流牵引供电方案的运行特性,评估不同条件下的供电能力和节能优化水平,最终确定柔性直流牵引供电装置的最优容量匹配及装置最优配置方案;进而完成大容量柔性直流牵引供电关键技术的系统设计方案,确定城市轨道交通供电系统节能效果评估办法等。
开展城市轨道交通牵引供电系统节能效果评估研究,建立节能指标评估体系。
通过建立城市轨道交通的交直流供电系统日反馈能量、再生制动能量反馈率、牵引供电系统节能率等装置级、系统级的节能指标,初步实现节能指标体系的构建。
通过整体仿真,研究柔性供电装置的理论整体节能效率;开展装置实际运行数据检测,分析长时间段内列车受流、牵引站和主变站的电能信息,完成柔性供电装置在新的节能指标体系下的实际节能效果评估。
2柔性直流变电所20世纪80年代中期,美国电力科学研究院N.G.Hingorani博士首次提出了柔性交流输电系统的概念,即通过应用大功率、高性能的电力电子器件制成可控的有功或无功电源以及电网一次设备等,实现对输电系统的电压、阻抗、相位角、潮流等的灵活控制,将原本不可控的电网潮流变得可以全面控制,从而大大提高电力系统的灵活性和稳定性,使得现有输电线路的输送能力大大提高。
城市轨道交通牵引供电系统谐波分析
城市轨道交通牵引供电系统谐波分析1. 引言1.1 城市轨道交通背景城市轨道交通作为城市公共交通系统的重要组成部分,其功能不仅在于缓解城市交通拥堵,提高出行效率,更重要的是对城市的发展起到了重要推动作用。
随着城市化进程的加速,城市人口快速增长,城市道路交通压力不断加大,城市轨道交通成为了疏解交通压力的重要方式。
城市轨道交通涉及地铁、轻轨、有轨电车等多种运输方式,覆盖了城市不同区域和不同出行需求。
这些轨道交通系统在运行过程中需要高效可靠的供电系统来为列车提供动力,确保运行的正常开展。
牵引供电系统作为城市轨道交通中不可或缺的一部分,直接关系到列车的牵引动力和运行效率。
在城市轨道交通发展过程中,牵引供电系统的质量和稳定性对于确保列车运行安全、提高运行效率至关重要。
对于牵引供电系统的研究和分析显得尤为重要。
通过谐波分析,可以更好地了解牵引供电系统中谐波的特性、来源以及对系统的影响,为提升供电系统的性能和稳定性提供重要参考。
【字数: 240】1.2 轨道交通牵引供电系统简介轨道交通牵引供电系统是城市轨道交通系统中的重要组成部分,其主要功能是为牵引车辆提供电力供应。
这种系统通常由接触网、配电装置、牵引变流器和牵引电机等组成。
接触网是将电能传输到牵引车辆的主要设备,配电装置则用于控制电能的分配和保护,而牵引变流器则是将接触网提供的交流电转换为适合牵引电机使用的直流电。
牵引电机则是将电能转化为机械能,从而驱动列车运行。
牵引供电系统的运行状态对城市轨道交通的安全和运行效率具有重要影响。
对该系统进行谐波分析是至关重要的。
谐波是指在电力系统中引起电压或电流非正弦波形的一种电磁现象。
当牵引供电系统中存在谐波时,会导致设备过热、电能浪费、电磁干扰等问题,甚至影响列车的正常运行。
对牵引供电系统中的谐波进行深入分析和研究,有助于提高系统的稳定性和可靠性,减少能耗和电磁干扰,保障城市轨道交通系统的安全运行。
1.3 谐波分析的重要性在城市轨道交通运行中,牵引供电系统是一个至关重要的部分,它直接影响着轨道交通的安全、稳定和高效运行。
城市轨道交通交流牵引供电系统及其关键技术
城市轨道交通交流牵引供电系统及其关键技术摘要:随着经济和科技发展,交通运输领域也表现出快速发展趋势,很多一二线城市纷纷建设轻轨、地铁等,其中,城轨供电问题成为一个难题。
城轨系统电源来自于城轨交流牵引供电系统。
为了缓解城轨供电压力,本文对供电系统进行分析,希望可以供应更多电力。
关键词:城市轨道交通;交流牵引供电;关键技术1传统城市轨道交通直流牵引供电系统城市轨道交通牵引供电系统一般由城市电网电源和城市轨道交通内部供电系统两部分组成,一般采用设置专门的主变电所为牵引变电所及降压变电所集中提供电源。
主变电所高压侧进线电压一般取自110kV三相城市电源,经主变降压后变成35kV或者10kV。
牵引变电所、降压变电所均为一级负荷需保证有两路独立的电源。
城市轨道交通中机车所需的功率一般不大,线路长度一般为几十公里,供电距离相对干线铁路较小,牵引网所需的电压等级不是很高,故而城市轨道交通普遍都使用了直流的供电制式。
而且直流制相较于交流制没有电抗压降,所以在同样的电压等级下条件,直流制的电压损失更低。
因为城市轨道交通设置在城市之内,其敷设的各电力线路布置在市区各建筑群之间,为了保证安全,系统的电压等级不宜过高。
而且直流供电没有了接触网电分相的问题,使得列车的运行效率提高。
主牵引变电所的降压变压器将取自城市电网的三相高压交流电压降至35kV,再通过中压网络将该电压送至牵引变电所。
牵引变电所的作用就体现在整流变压器将交流电再次降压,或者利用整流器将交流电转化为适合电力机车的低压直流电。
然后通过馈线将牵引变电所馈出的直流电送到牵引网上,列车通过其受流器与接触网的滑动接触从而获得电能。
然而作为电流返回至牵引变电所的流通路径的钢轨,它和大地之间并非完全绝缘,所以当电流途径钢轨回流至牵引变电所的时候。
将会有部分电流泄漏至大地中,从大地回流至牵引变电所。
这种泄漏到道床及其周围土壤介质中的电流分布广泛,称为"迷流"或"杂散电流"。
城市轨道交通供电系统及电力技术分析
城市轨道交通供电系统及电力技术分析【摘要】城市轨道交通作为快速、便捷的城市交通工具,供电系统的良好运行至关重要。
本文首先介绍了城市轨道交通的发展背景,随后展示了城市轨道交通供电系统的重要性。
在详细解析了城市轨道交通供电系统的构成及主要设备,以及其中涉及的电力技术。
同时探讨了供电系统的优化设计与运行维护。
最后在展望了城市轨道交通供电系统的发展趋势,强调了电力技术在城市轨道交通中的重要性,同时对城市轨道交通供电系统进行展望。
通过本文的深入分析,读者能够更加全面了解和认识城市轨道交通供电系统的重要性及发展前景。
【关键词】城市轨道交通、供电系统、电力技术、构成、设备、优化设计、运行、维护、发展趋势、重要性、展望。
1. 引言1.1 城市轨道交通的发展背景从19世纪末的地铁系统开始,城市轨道交通逐渐成为现代城市交通的重要组成部分。
随着城市化进程的加速推进,城市轨道交通的发展也日益迅猛。
现代城市轨道交通系统已经成为连接城市各个角落的重要枢纽,为城市居民的出行提供了便利。
城市轨道交通的建设不仅改善了城市的交通拥堵问题,还促进了城市经济的发展和城市环境的改善。
城市轨道交通已经成为现代城市不可或缺的重要交通方式。
在未来,随着城市规模的不断扩大和人口的增加,城市轨道交通的发展前景将更加广阔。
1.2 城市轨道交通供电系统的重要性城市轨道交通供电系统是城市轨道交通运行中至关重要的一环,它直接影响着轨道交通线路的正常运行和乘客的出行安全。
供电系统的稳定性和高效性直接关系到城市轨道交通的正常运行和运输能力。
由于城市轨道交通的运行时间长、负载大、安全要求高,因此供电系统的可靠性和稳定性要求也更高。
供电系统的设计、建设和运行不仅要满足轨道交通线路的电力需求,还要考虑到市场需求、环保要求和城市发展规划。
城市轨道交通供电系统的重要性体现在以下几个方面:供电系统是城市轨道交通线路的“生命线”,它直接影响着线路的正常运行和乘客的出行安全;供电系统的稳定性和高效性会影响到线路的运行效率和运输能力,直接关系到城市轨道交通的运行质量和服务水平;供电系统的优化设计和合理运行能够降低运营成本,提高运输效率,减少能源消耗,符合可持续发展的要求;随着城市轨道交通的不断发展和扩建,供电系统的重要性将会进一步凸显,电力技术的创新和应用将成为城市轨道交通发展的重要支撑。
城市轨道交通DC1500V供电系统研究
城市轨道交通DC1500V供电系统研究城市轨道交通DC1500V供电系统研究随着城市人口的不断增长和交通需求的不断增加,城市交通系统的可持续发展已成为摆在我们面前的重要问题。
轨道交通作为城市交通的重要组成部分,对于城市运输承担了重要的角色。
而城市轨道交通的稳定供电系统是保证整个交通系统正常运行的基础。
本文将对城市轨道交通DC1500V供电系统进行研究。
城市轨道交通DC1500V供电系统的研究旨在探讨如何实现可靠、高效、环保的供电方式,以满足日益增长的交通需求。
目前,城市轨道交通供电系统主要采用的是直流供电方式,其中DC1500V供电系统是较为常见的供电方式之一。
首先,城市轨道交通DC1500V供电系统需要确保供电设备的可靠性。
供电设备是轨道交通系统正常运行的关键组成部分,所以必须保证其稳定性和可靠性。
对于配电变电所和牵引供电系统来说,必须进行定期的维护和检修,及时发现和排除问题,确保供电设备的正常运行。
其次,城市轨道交通DC1500V供电系统需要提高供电效率。
供电效率直接关系到能源的消耗和运输成本的控制。
为了提高供电系统的效率,可以采取降低线损、优化变电站设计、选择高效配电设备等措施。
此外,还可以通过利用再生能源,如太阳能、风能等,实现对城市轨道交通的供电,减少对传统能源的依赖。
再次,城市轨道交通DC1500V供电系统需要兼顾环境保护。
城市轨道交通的大规模运行对环境产生了一定的影响,包括噪音、污染等。
为了减少对环境的影响,供电系统需要选择低噪音、低污染的设备,并采取相应的隔音、净化措施,以保护周边环境和居民的生活品质。
最后,城市轨道交通DC1500V供电系统需要考虑未来的发展需求。
随着城市交通的不断发展,对供电系统的需求也会不断增加。
因此,供电系统的设计和布局需要具备一定的灵活性和可扩展性,能够适应未来交通需求的变化,避免因为扩建和改造而带来的不必要的成本和困扰。
总之,城市轨道交通DC1500V供电系统的研究是为了实现城市交通系统的可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 电力牵引供电系统概述
• 电力牵引的制式 • 电力牵引供电系统的组成 • 向牵引变电所供电的接线图 • 直流牵引变电所的整流装置 • 电力牵引轨道沿线的迷流腐蚀与保护
第一章 电力牵引供电系统概述
直流牵引变电所功能:将交流进线电压通过整
流变压器,然后经整流器将交流电变成直流电供 电动车辆直流牵引电动机使用。
采用低频的主要原因是整流子牵引电动机换向困难, 不适宜于在工频运转。
单相整流子牵引电动机不如直流牵引电动机构造简单 和容易维护。
第一章 电力牵引供电系统概述
• 工频单相交流制式:
既保留交流制可以升高供屯电压的长处,又仍旧采用 直流串激电动机作为牵引电动机的优点,在电力机车上装 设降压变压器和大功率整流设备,它们将高压电源降压, 再整流成适合直流牵引电功机应用的低压寅流电.电动机 的调压调速可以通过改变降压受压器的抽头或可控制整流 装置电压来达到。
第一章 电力牵引供电系统概述
• 电力牵引的制式 • 电力牵引供电系统的组成 • 向牵引变电所供电的接线图 • 直流牵引变电所的整流装置 • 电力牵引轨道沿线的迷流腐蚀与保护
第一章 电力牵引供电系统概述
电网向牵引变电所供电形式:
环形供电接线
由两个或两个以上主降压变电站和所有的牵引变电所用输电线联成一个环 行。环行供电是很可靠的供电线路,因为在这种情况下,一路输电线和一个 主降压变电站同时停止工作时,只要其母线仍保持通电,就不致中断任何一 个牵引变电所的正常供电。但其投资较大。
电网向牵引变电所供电形式:
单边供电接线
第一章 电力牵引供电系统概述
电网向牵引变电所供电形式:
辐射形供电接线
每个牵引变电所用两路独立输电线与主降压变电站联接。这种接线方式适 合于轨道线路成弧形的情况。这种接线简单,但当主降压变电所停电时, 将全线停电。
第一章 电力牵引供电系统概述
上海地铁一号线供电系统实例:
间内其他四个二极管均承受反向电压而截止,
O 1234 567 89
ωt
因D4导通,B相电压最低,且加到D2、D6的阳 极,故D2、D6截止;,因D1导通,A相电压最
时间段2:此时间段A相电位最高,C相 高,且加到D3、D5的阴极,故D3、D5截止
电位最低,因此跨接在A相C相间的二
极管D1、D6导电
第一章 电力牵引供电系统概述
第一章 电力牵引供电系统概述
• 阳极发生腐蚀反应 • Fe-2e→Fe2+ • 阴极,根据介质的酸碱性发生析氢或吸氧
当今世界电气化铁路应用较晋遍的牵引供电制式
第一章 电力牵引供电系统概述
• 城市轨道交通牵引制式:直流供电制式
城市轨道机车功率不大,供电半径小,城市之间运营 供电电压不能太高,以确保安全。
我国国标规定采用750V 和1500V直流供电两种制式 一般大运量的轨道交通系统,采用DC1500V电压和架 空接触网馈电,中运量的系统采用DC750V和接触轨馈电 方式。
• 电力牵引的制式 • 电力牵引供电系统的组成 • 向牵引变电所供电的接线图 • 直流牵引变电所的整流装置 • 电力牵引轨道沿线的迷流腐蚀与保护
第一章 电力牵引供电系统概述
• 谜流腐蚀
牵引机车由第三轨作为通电回牵引变电所的路,由于钢轨 与大地之间不是绝缘的,因此由钢轨回流电流必有部分经 大地流回牵引变电所。
D1 D3 D5 A
B
uO RL
C
Hale Waihona Puke D2 D4 D6M
uO
1133 55 11 33 5 5 466224 46 622 4
时间段1:此时间段A相电位最高,B相电位最 低,因此跨接在A相B相间的二极管D1、D4导 导电二极管编号 电。电流从A相流出,经D1,负载电阻,D4, 回到B相,见图中红色箭头指示的路径。此段时
• 工频单相交流电
50Hz的单相交流电,电压220V ,周期是0.02
• 单相交流电和三相交流电
第一章 电力牵引供电系统概述
• 电力牵引系统性能要求:
启动加速性能:启动力矩大,加速平稳 动力设备容量利用充分 调速性能:速度调节容易实现,能量损耗小
• 满足上述条件:直流串激(串励)电动机
最简单单相半波整流
第一章 电力牵引供电系统概述
单相半波整流:
第一章 电力牵引供电系统概述
单相全波整流:
第一章 电力牵引供电系统概述
三相半波整流:
120
三个二极管轮流导通,导通角均为 180°,脉动性减小
第一章 电力牵引供电系统概述
三相全波整流:
u2
ABC
O
ωt
T uA u2 uB uC
N
P iO
第一章 电力牵引供电系统概述
• 电力牵引的制式 • 电力牵引供电系统的组成 • 向牵引变电所供电的接线图 • 直流牵引变电所的整流装置 • 电力牵引轨道沿线的迷流腐蚀与保护
第一章 电力牵引供电系统概述
• 城市轨道交通电力牵引供电系统组成
第一章 电力牵引供电系统概述
• 组成统一的电力系统的优点
充分利用动力资源 减少燃料运输 提高供电可靠性 提高发电效率
直流电动机工作原理与结构
励磁绕组和电枢绕组的联接方式
第一章 电力牵引供电系统概述
• 直流串励电动机缺点:
通过串联电阻调速,原理简单,供电系统电压损失和能 量消耗较大
• 低频单相交流制式:
低频单相交流制在德国、瑞典、瑞士等国得到发展, 这种电流制接触网电压一般为 15000伏,在电力机车上降 压,使用单相整流子牵引电动机。
城市轨道交通牵引供电系统研究
第一章 电力牵引供电系统概述
• 电力牵引的制式 • 电力牵引供电系统的组成 • 向牵引变电所供电的接线图 • 直流牵引变电所的整流装置 • 电力牵引轨道沿线的迷流腐蚀与保护
第一章 电力牵引供电系统概述
• 电力牵引的制式概念:
供电系统向电动车辆或电力机车供电所采用的电流或电压 制式,包括直流/交流制、电压等级、交流电频率、交流 制中单相/三相等问题。
第一章 电力牵引供电系统概述
电网向牵引变电所供电形式:
双边供电接线
由两个主降压变电站向沿线牵引变电所供电,通往牵引变电所的输电线都 经过其母线联接,为了增加供电的可靠性.用双路输电线供电,而每路按 输送功率计算。这种接线可靠性稍低于环行供电。当引入线数目较多时, 开关设备多,投资增加。
第一章 电力牵引供电系统概述