六年级下册数学试题-2019年“迎春杯”数学花园探秘决赛试卷(小高组c卷)(含答案解析)全国通用
六年级迎春杯试题及答案
六年级迎春杯试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是迎春花的特点?A. 花色鲜艳B. 花期在春季C. 叶子宽大D. 花朵小巧答案:C2. 迎春杯是以下哪个学科的竞赛?A. 数学B. 物理C. 化学D. 生物答案:A3. 下列哪个不是迎春杯的参赛条件?A. 必须是六年级学生B. 必须通过学校推荐C. 可以个人报名D. 必须有家长陪同答案:D4. 迎春杯的举办时间通常是在每年的:A. 春季B. 夏季C. 秋季D. 冬季答案:A5. 迎春杯的试题难度属于:A. 基础题B. 提高题C. 竞赛题D. 趣味题答案:C6. 迎春杯的试题通常包括哪些题型?A. 选择题B. 填空题C. 解答题D. 所有以上答案:D7. 迎春杯的考试时间一般为:A. 1小时B. 2小时C. 3小时D. 4小时答案:B8. 下列哪个不是迎春杯的奖项设置?A. 一等奖B. 二等奖C. 三等奖D. 优秀奖答案:D9. 迎春杯的参赛者需要准备哪些物品?A. 身份证B. 学生证C. 准考证D. 所有以上答案:D10. 迎春杯的试题通常由哪些人员出题?A. 教师B. 专家C. 学生D. 所有以上答案:B二、填空题(每题2分,共20分)1. 迎春杯的试题通常由______出题,以确保试题的科学性和严谨性。
答案:专家2. 迎春杯的试题内容通常包括______、______和______。
答案:数学、物理、化学3. 迎春杯的参赛者需要在______分钟内完成所有试题。
答案:1204. 迎春杯的试题答案需要写在______上。
答案:答题卡5. 迎春杯的试题答案需要用______笔填写。
答案:2B铅笔6. 迎春杯的试题答案需要按照______的顺序填写。
答案:试题7. 迎春杯的试题答案需要在______内填写。
答案:指定区域8. 迎春杯的试题答案需要用______的方式填写。
答案:涂黑9. 迎春杯的试题答案需要在______时间内完成。
六年级下册数学试题-2019年“迎春杯”数学花园探秘初赛试卷(六年级a卷)(含答案解析)全国通用
2019年“迎春杯”数学花园探秘初赛试卷(六年级A卷)一、填空题Ⅰ(每题10分,共40分)1.(10分)算式:2016×的计算结果是.2.(10分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有.3.(10分)如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是.4.(10分)每场篮球比赛都分为四节,在某场比赛中,加西亚在前两节中投篮20次,命中12次,在第三节中,他一共投篮10次,但命中率有所下降,只有前两节总体命中率的50%,在最后一节中,命中率有所回升,比第三节提高了,最后全场命中率为46%.那么加西亚在第四节一共投中次.二、填空题(共7小题,每小题15分,满分60分)5.(15分)如图,正方形边长为80厘米,O为正方形中心,A为OB中点,在正方形内以A点为圆心,OA为半径的圆,以B点为圆心,OB为半径的圆与正方形的一边围成了一个特殊的图形.将这个图形绕O点顺时针旋转三次能够得到一个风车的形状.那么这个风车(阴影部分)的面积是平方厘米.(π取3.14)6.(15分)对于自然数N,如果在1~9这九个自然数中至少有六个数可是N的因数,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.7.(15分)如图是由9块相同的长方体摆放而成的大长方体,已知大长方体的表面积是360平方厘米,那么一个小长方体的表面积是平方厘米.8.(15分)跑跑家族七人分别要通过图中7个门完成挑战;第一个人可以任选一个门激活,完成挑战后,将会激活左右相邻的门;下一个人可以在已激活的门中任选一个未被挑战的门挑战,完成挑战后将会激活左右相邻门中未被激活的门;以此类推.结果跑跑家族七人全部都完成了挑战,按照他们挑战的次序将七个门的编号排序将会得到一个七位数,这个七位数一共有种不同可能.9.如图,四边形EFCD是平行四边形,如果梯形ABCD的面积是320,四边形ABGH的面积是80,那么三角形OCD的面积是.10.某城市早7:00到8:00是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上6:50,甲、乙两人从这城市的A、B两地同时出发,相向而行,在距离A地24千米的地方相遇.如果甲晚出发20分钟,两人恰好在AB中点相遇;如果乙早出发20分钟,两人将在距离A地20千米的地方相遇.那么,AB两地相距千米.11.在每个空格中填入数字1﹣4,使得每行和每列的数字都不重复.表格外的数字表示该方向所在行或列里第一个奇数或者第一个偶数,那么,第三行的四个格从左到右所填的数字组成的四位数是.2019年“迎春杯”数学花园探秘初赛试卷(六年级A卷)参考答案与试题解析一、填空题Ⅰ(每题10分,共40分)1.(10分)算式:2016×的计算结果是1024.【解答】解:分母:1+++++=1+1﹣+﹣+﹣+﹣+﹣=2﹣=则,2016×=2016×=2016×=1024故答案为:1024.2.(10分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有66张.【解答】解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.3.(10分)如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是83720.【解答】解:4.(10分)每场篮球比赛都分为四节,在某场比赛中,加西亚在前两节中投篮20次,命中12次,在第三节中,他一共投篮10次,但命中率有所下降,只有前两节总体命中率的50%,在最后一节中,命中率有所回升,比第三节提高了,最后全场命中率为46%.那么加西亚在第四节一共投中8次.【解答】解:根据分析,前两节的命中率为:=60%;第三节的命中率为:50%×60%=30%,投中次数为:10×30%=3次;最后一节的命中率为:=40%,设再第四节中一共投中n次,则投篮次数为:,根据全场命中率可得:,解得:n=8.故答案是:8.二、填空题(共7小题,每小题15分,满分60分)5.(15分)如图,正方形边长为80厘米,O为正方形中心,A为OB中点,在正方形内以A点为圆心,OA为半径的圆,以B点为圆心,OB为半径的圆与正方形的一边围成了一个特殊的图形.将这个图形绕O点顺时针旋转三次能够得到一个风车的形状.那么这个风车(阴影部分)的面积是912平方厘米.(π取3.14)【解答】解:依题意可知:图中三角形OBC的面积为80×80÷4=1600(平方厘米).可得出OB2=1600.OB2=3200.∵∠OBC=45°.八分之一的圆的面积为πOB2=400×3.14=1256(平方厘米).OA2==800.四分之一的圆的面积为:πOA2=628(平方厘米).小三角形的面积是整个三角形OBC的四分之一.1600÷4=400(平方厘米).一个小阴影的面积为:1256﹣628﹣400=228(平方厘米).整个阴影面积为:228×4=912(平方厘米).故答案为:9126.(15分)对于自然数N,如果在1~9这九个自然数中至少有六个数可是N的因数,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是2016.【解答】解:由题意可知,这个六合数一定有因数1,一定是一个偶数.大于2000的偶数有:2002、2004、2006、2008、2010、2012、2014、2016、2018、2020…在这些数中,最小是2016符合六合数的条件.故本题答案为2016.7.(15分)如图是由9块相同的长方体摆放而成的大长方体,已知大长方体的表面积是360平方厘米,那么一个小长方体的表面积是88平方厘米.【解答】解:根据分析,设小长方体的长为a,宽为b,高为c,如下图所示,则有:3b =2a,a=3c故大长方体的表面积=2×(b+c)×(b+b+b)+2×(b+c)×a+2×a×(b+b+b)=360⇒3b2+3bc+4ab+ac=180又3b=2a,a=3c,可解得:a=6,b=4,c=2,则一个小长方体的表面积是:2×6×4+2×6×2+2×4×2=88平方厘米.故答案是:88平方厘米.8.(15分)跑跑家族七人分别要通过图中7个门完成挑战;第一个人可以任选一个门激活,完成挑战后,将会激活左右相邻的门;下一个人可以在已激活的门中任选一个未被挑战的门挑战,完成挑战后将会激活左右相邻门中未被激活的门;以此类推.结果跑跑家族七人全部都完成了挑战,按照他们挑战的次序将七个门的编号排序将会得到一个七位数,这个七位数一共有64种不同可能.【解答】解:由题意,每种选择情况一定对应一个七位数,第一人选完后,后六人只需要选择“左”还是“右”,而第一个人的门可以完全由后六个人的“左”“右”总情况逆推出来,即后六人中每人都有两种选择方法,所以按照他们挑战的次序将七个门的编号排序将会得到一个七位数,这个七位数一共有26=64种不同可能.故答案为64.9.如图,四边形EFCD是平行四边形,如果梯形ABCD的面积是320,四边形ABGH的面积是80,那么三角形OCD的面积是45.【解答】解:S AHGB=S△AHE+S△GHE+S△GEF+S△GBF=S△AHE+S△CHE+S△GDF+S△GBF=S△ACE+S△BDF即AHGB的面积相当于一个底是AE+BF=AB﹣EF=AB﹣CD,高是梯形的高的三角形面积,设AB=a,CD=b,,解得,从而由蝴蝶模型,S△OCD占S ABCD的,所以三角形OCD的面积为320×=45.10.某城市早7:00到8:00是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上6:50,甲、乙两人从这城市的A、B两地同时出发,相向而行,在距离A地24千米的地方相遇.如果甲晚出发20分钟,两人恰好在AB中点相遇;如果乙早出发20分钟,两人将在距离A地20千米的地方相遇.那么,AB两地相距42千米.【解答】解:甲晚出发20分钟,乙已经走了10分钟快速及10分钟慢速的路(即15分钟快速的路),而乙早出发20分钟,即早走了20分钟快速的路,所以中点的位置应该在24千米处和20千米处之间的处,即24﹣(24﹣20)×=21(千米)21×2=42(千米)故:AB两地相距42千米.11.在每个空格中填入数字1﹣4,使得每行和每列的数字都不重复.表格外的数字表示该方向所在行或列里第一个奇数或者第一个偶数,那么,第三行的四个格从左到右所填的数字组成的四位数是4213.【解答】解:依题意可知根据第一行的数字规律可知从左到右是3在1前面,2在4前面,第一个位置不能填写1,第二和第四不能填写2,再根据上面的数字是3424推断符合条件的数字3124的概率比较大.枚举法即可排除.故答案为:4213。
六年级迎春杯试题及答案
六年级迎春杯试题及答案一、选择题(每题2分,共20分)1. 下列哪项不是迎春杯的特点?A. 面向六年级学生B. 竞赛形式C. 以体育竞技为主D. 旨在提高学生的综合素质2. 迎春杯的举办时间通常在每年的:A. 春季B. 夏季C. 秋季D. 冬季3. 迎春杯的参赛资格包括:A. 仅限学校推荐B. 仅限个人报名C. 学校推荐或个人报名均可D. 仅限教师推荐4. 以下哪项不是迎春杯的竞赛项目?A. 数学B. 语文C. 英语D. 体育5. 迎春杯的奖项设置通常包括:A. 一等奖、二等奖、三等奖B. 金奖、银奖、铜奖C. 一等奖、二等奖、三等奖、优秀奖D. 金奖、银奖、铜奖、鼓励奖二、填空题(每题2分,共20分)1. 迎春杯的全称是_________。
2. 迎春杯的参赛对象主要是_________年级的学生。
3. 迎春杯的竞赛内容通常涵盖_________、_________、_________等学科。
4. 迎春杯的举办目的是为了_________和_________学生的_________能力。
5. 迎春杯的奖项设置通常根据参赛人数的比例来确定,一等奖通常占总参赛人数的_________。
三、简答题(每题10分,共20分)1. 请简述迎春杯对于参赛学生的意义。
答:迎春杯对于参赛学生的意义在于提供一个展示自我、挑战自我的平台,通过竞赛激发学生的学习兴趣和竞争意识,同时培养团队合作精神和解决问题的能力。
2. 请描述迎春杯的组织流程。
答:迎春杯的组织流程通常包括:发布竞赛通知、接受报名、组织初赛、复赛、决赛,最后进行颁奖典礼。
在整个过程中,组织者需要确保比赛的公平、公正,并提供必要的指导和帮助。
四、论述题(每题20分,共40分)1. 论述迎春杯在促进学生全面发展中的作用。
答:迎春杯在促进学生全面发展中起到了积极的作用。
首先,它通过竞赛激发学生的学习热情,帮助学生发现和培养自己的兴趣和特长。
其次,迎春杯的竞赛内容覆盖多个学科,有助于学生全面发展各方面的知识与技能。
迎春杯小高组决赛(卷C)
迎春杯小高组决赛(卷C)2021年“数学花园探秘”科普活动小学高年级组决赛试卷C(测评时间:2021年1月6日8:00---9:30)一、填空题Ⅰ(每小题8分,共32分)1255?3?1236的计算结果是()。
1、算式111??2?33?66?22、商店里有一件等待销售的服装,定价240元,利润率是20%。
如果定价提高20%,利润率将变成()%。
13、秋秋家养了一些鸡和一些兔子。
如果再买来20只鸡,那么鸡的腿数比兔子的腿数多;如果卖掉10只31兔子,那么兔子的腿数比鸡的腿数少。
秋秋家养了()只鸡。
24、[x]表示不超过x的最大整数,例如,[4]=4,[3.4]=3。
已知对于数a,有[5a]+5a=2021.16,那么[[25a]+25a]=()。
二、填空题Ⅱ(每小题10分,共40分)5、一个正整数的4倍、5倍、6倍、7倍的因数个数都相同,那么这个正整数最小是()。
6、如图是由一个正方形和两个长方形拼成的对称图形。
已知阴影部分的周长为36,线段AB的长度为2,那么大正方形的面积是()。
7、请将0、1、2、3、4、5、6、7、8、9分别填入下面算式的方格中,使算式成立。
现在1、6已经填好了,那么算式中的被减数是()。
8、A至G这7个房间中,每个房间都有一个小精灵看守。
现在有个小淘气,第1天在这7个房间中任选一个房间住一天,之后的每一天都沿着实线挪到相邻的房间住下,刚好7天把所有房间都住过一次。
第1天,B、C、E、F房间的小精灵表示小淘气住在自己房间里,其余小精灵说小淘气不住在自己房间里;第2天,A、E、F房间的小精灵表示小淘气住在自己房间里,其余小精灵说小淘气不住在自己房间里;第5天,只有E、F房间的小精灵表示小淘气住在自己房间里,其余小精灵说小淘气不住在自己房间里。
已知这些小精灵中有4个小精灵始终说真话,2个小精灵始终说假话,剩下的1个小精灵时而说真话时而说假话。
若小精灵是在第a、b、c、d天分别住进A、B、C、D号房间的,则四位数abcd为()。
六年级下册数学竞赛试题-北京市“迎春杯”数学竞赛决赛试卷(含答案解析)全国通用
北京市“迎春杯”小学数学竞赛决赛试卷一、计算:1.(×1.65﹣+×)×47.5×0.8×2.5.2.(﹣)÷[+(4﹣)÷1.35].二、填空题(共20小题,每小题3分,满分60分)3.(3分)用一个杯子盛满水向一个空罐里倒水.如果倒进2杯水,连罐共重0.6千克;如果倒进5杯水,连罐共重0.975千克.这个空罐重千克.3.(3分)计算:÷÷=.4.(3分)一个直角梯形,它的上底是下底的60%.如果上底增加24米,可变成正方形.原来直角梯形的面积是平方米.5.(3分)如果按一定规律排出的加法算式是:3+4,5+9,7+14,9+19,11+24,….那么,把各个算式中前后两个加数分别排到第10个就是和;第80个算式就是.6.(3分)甲、乙两人共同加工一批零件,8小时可以完成任务,如果甲单独加工,需要12小时完成,现在甲、乙两人共同生产了2小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务,乙一共加工了零件多少个?7.(3分)把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大的正方体.这个大正方体的表面积是平方厘米.8.(3分)有5000多根牙签,可按六种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8、7、6、5根为一包,那么最后也分别剩7、6、5、4根.原来一共有牙签根.9.(3分)用红、黄、蓝、黑、白、绿六种颜色分别涂在正方体的各面上(每个面只涂一种颜色),现在涂色方式完全一样的相同的四块小正方体,把它们拼成一长方体,如图所示.试回答:每个小正方体红色面的对面涂的是色,黄色面的对面涂的是色,黑色面的对面涂的是色.10.(3分)李刚给军属王奶奶运蜂窝煤,第一次运了全部的,第二次运了50块.这时,已运来的恰好是没运来的.还有块蜂窝煤没有运来.11.(3分)在下面各数之间,填上适当的运算符号和括号,使等式成立.10 6 9 3 2=48.13.(3分)有一个长方形,它的各边的长度都是小于10的自然数.如果用宽作分子,长作分母,那么所得的分数值比要大,比要小.那么满足上述条件的各个长方形的面积和是.14.(3分)一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是,商的个位数字是,余数是.15.(3分)有黑白两种棋子共300枚,黑乌鸦将黑白两种棋子按每堆3枚分成100堆.其中只有l枚白子的共有27堆,有2枚或3枚黑子的共有42堆,有3枚白子的与3枚黑子的堆数相等.那么,在这些棋子中白子共有枚.16.(3分)如图,已知长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF 的面积是4,那么三角形ABC的面积是.17.(3分)在小于5000的自然数中,能被11整除,并且数字和为13的数,共有个.18.(3分)已知算术式﹣=1994,其中、均为四位数;a、b、c、d、e、f、g、h是0、1、2、…、9中8个不同整数,且a≠0,e≠0.那么与之和的最大值是,最小值是.19.(3分)男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B).两人同时从A点出发,在A、B之间不停地往返奔跑.如果男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3米,那么两人第二次迎面相遇的地点离A点米.20.(3分)用1×2的小长方形或1×3的小长方形覆盖2×6的方格网(如图),共有种不同的盖法.21.(3分)某车间原有工人不少于63人.在1月底以前的某一天调进了若干工人,以后,每天都增调1人进车间工作.现知该车间1月份每人每天生产一件产品,共生产1994件.试问:1月几号开始调进工人?共调进多少工人?22.(3分)一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.北京市第十届“迎春杯”小学数学竞赛决赛试卷参考答案与试题解析一、计算:1.(×1.65﹣+×)×47.5×0.8×2.5.【解答】解:(×1.65﹣+×)×47.5×0.8×2.5=×(1.65﹣1+)×47.5×(0.8×2.5)=×1×47.5×2=×1×47.5×2=1994.2.(﹣)÷[+(4﹣)÷1.35].【解答】解:(﹣)÷[+(4﹣)÷1.35],=÷[+÷1.35],=÷[+],=÷,=.二、填空题(共20小题,每小题3分,满分60分)3.(3分)用一个杯子盛满水向一个空罐里倒水.如果倒进2杯水,连罐共重0.6千克;如果倒进5杯水,连罐共重0.975千克.这个空罐重0.35千克.【解答】解:3杯水重:0.975﹣0.6=0.375(千克),2杯水重:0.375÷3×2=0.25(千克),空罐重:0.6﹣0.25=0.35(千克);答:这个空罐重0.35千克.3.(3分)计算:÷÷=.【解答】解:÷÷,=××,=××,=××,=,=.故答案为:.4.(3分)一个直角梯形,它的上底是下底的60%.如果上底增加24米,可变成正方形.原来直角梯形的面积是2880平方米.【解答】解:原来直角梯形的下底是:24÷(1﹣60%)=60(米);原來直角梯形的上底是:60×60%=36(米);原來直角梯形的面积是:(60+36)×60÷2=2880(平方米);答:原来直角梯形的面积是2880平方米.故答案为:2880.5.(3分)如果按一定规律排出的加法算式是:3+4,5+9,7+14,9+19,11+24,….那么,把各个算式中前后两个加数分别排到第10个就是21和49;第80个算式就是161+399.【解答】解:第10个算式的加数分别是:2×10+1=21,5×10﹣1=49,这两个加数就是21,49.第80个算式的加数分别是:2×80+1=81,5×80﹣1=399,第80个算式是161+399.故答案为:21,49,161+399.6.(3分)甲、乙两人共同加工一批零件,8小时可以完成任务,如果甲单独加工,需要12小时完成,现在甲、乙两人共同生产了2小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务,乙一共加工了零件多少个?【解答】解:加工的总零件为:420÷(1﹣2×)=420÷(1﹣)=420÷=600(个);乙一共加工的零件为:600﹣600÷12×2=600﹣120=480(个);答:乙一共加工了480个零件.7.(3分)把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大的正方体.这个大正方体的表面积是600平方厘米.【解答】解:长25厘米,宽10厘米,高4厘米的长方体木块锯成边长为1厘米的正方体的个数:25×10×4=1000;1000个小正方体拼成一个大的正方体的长、宽、高为10厘米,因为10×10×10=1000;所以,这个大正方体的表面积是:10×10×6=600平方厘米;答:这个大正方体的表面积是600平方厘米.故答案为:600.8.(3分)有5000多根牙签,可按六种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8、7、6、5根为一包,那么最后也分别剩7、6、5、4根.原来一共有牙签5039根.【解答】解:这个数+1=10、9、8、7、6、5的公倍数,10,9、8、7、6、5的最小公倍数为:5×2×3×3×4×7=2520,满足5000多这个条件的公倍数是2520×2=5040,牙签的数量就是5040﹣1=5039(根).答:原来一共有牙签5039根.故答案为:5039.9.(3分)用红、黄、蓝、黑、白、绿六种颜色分别涂在正方体的各面上(每个面只涂一种颜色),现在涂色方式完全一样的相同的四块小正方体,把它们拼成一长方体,如图所示.试回答:每个小正方体红色面的对面涂的是绿色色,黄色面的对面涂的是蓝色色,黑色面的对面涂的是白色色.【解答】解:通过以上分析可知,红色的对面是绿色;黄色的对面是蓝色;黑色的对面是白色.故答案为:①绿色;②蓝色;③白色.10.(3分)李刚给军属王奶奶运蜂窝煤,第一次运了全部的,第二次运了50块.这时,已运来的恰好是没运来的.还有700块蜂窝煤没有运来.【解答】解:已运来的恰好是没运来的,那么已运来的就是全部的:=,没运来的就是全部的:=;50÷()=50÷,=1200(块);1200×=700(块);答:还有700块没运来.故答案为:700.11.(3分)在下面各数之间,填上适当的运算符号和括号,使等式成立.10 6 9 3 2=48.【解答】解:10×6﹣(9﹣3)×2=48.13.(3分)有一个长方形,它的各边的长度都是小于10的自然数.如果用宽作分子,长作分母,那么所得的分数值比要大,比要小.那么满足上述条件的各个长方形的面积和是133.【解答】解:根据题意,可知<<,变换后可得:2×宽<长<×宽,所以:(1)若宽=1,则2<长<10/3,长=3;(2)若宽=2,则4<长<20/3,长=5或6;(3)若宽=3,则6<长<10,长=7或8或9;(4)若宽=4,则8<长<10<40/3,长=9.所以所有满足条件的长方形面积之和为1×3+2×5+2×6+3×7+3×8+3×9+4×9=133.14.(3分)一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是5,商的个位数字是2,余数是7.【解答】解:试探≈0.2307692308、≈2.5384615385、≈25.615384615…=25641,所以这个1994位数除以13的结果是:25641的循环.(忽略小数部分),故200÷6=33…2,商的第200位(从左往右数)数字是5;1994÷6=332…2,33÷13的结果33÷13=2…7,由此可以知道商的个位数字是2余数是7.答:一个1994位数,各个数位的数字都是3,它除以13,商的第200位(从左往右数)数字是5,商的个位是2,余数是7.故答案为:5、2、7.15.(3分)有黑白两种棋子共300枚,黑乌鸦将黑白两种棋子按每堆3枚分成100堆.其中只有l枚白子的共有27堆,有2枚或3枚黑子的共有42堆,有3枚白子的与3枚黑子的堆数相等.那么,在这些棋子中白子共有158枚.【解答】解:只有一枚白子,即1白2黑,是27堆,2黑或3黑共42堆,其中2黑已经知道有27堆,那么3黑的就有:42﹣27=15(堆),所以,3白的也是15堆,又因为一共有100堆,那么2白1黑的就有:100﹣27﹣15﹣15=43(堆),所以,白子共有:27×1+15×0+15×3+43×2=158(枚);答:白子共有158枚.故答案为:158.16.(3分)如图,已知长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF 的面积是4,那么三角形ABC的面积是 6.5.【解答】解:△AEC的面积:16÷2﹣4=4,△ABE的面积:16÷2﹣3=5,BD:BE=3:5,DE=BD+BE=3+5=8,△BCE的面积:4×=2.5,△ABC的面积:16﹣(3+4+2.5)=6.5;故答案为:6.5.17.(3分)在小于5000的自然数中,能被11整除,并且数字和为13的数,共有18个.【解答】解:①奇数位数字和=12,偶数位数字和=1,为3190,3091,4180,4081共4种可能.②奇数位数字和=1,偶数位数字和=12.为1309,1408,1507,1606,1705,1804,1903;319,418,517,616,715,814,913共14种可能.共4+14=18种.故答案为:18.18.(3分)已知算术式﹣=1994,其中、均为四位数;a、b、c、d、e、f、g、h是0、1、2、…、9中8个不同整数,且a≠0,e≠0.那么与之和的最大值是15000,最小值是4988.【解答】解:由以上分析可知,和的最大值为8497+6503=15000;和的最小值为3496+1502=4998.故答案为:15000,4998.19.(3分)男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B).两人同时从A点出发,在A、B之间不停地往返奔跑.如果男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3米,那么两人第二次迎面相遇的地点离A点47米.【解答】解:设两人第二次迎面相遇的地点离A点X米,则++=+,+=,220+2x=550﹣5x,7x=330,x=47;答:两人第二次迎面相遇的地点离A点47米.故此题答案为:47.20.(3分)用1×2的小长方形或1×3的小长方形覆盖2×6的方格网(如图),共有30种不同的盖法.【解答】解:(1)都用1×2的长方形,共需要6个:①都横着放,1种方法;②都竖着放,1种方法;③2个横放,4竖放,5种方法.④4个横放,2竖放,6种方法.(2)都用1×3的长方形,共需4个,只用1种方法,都横放.(3)用2个1×3的长方形,3个1×2的长方形:①,两个1×3的长方形并排放,2种方法,②,两个1×3的长方形排成1列,10种方法,③,两个1×3的长方形错着放,4种方法.其他数量都不可以.1+1+5+6+1+10+2+4=30(种)一共27种.故答案为:30.21.(3分)某车间原有工人不少于63人.在1月底以前的某一天调进了若干工人,以后,每天都增调1人进车间工作.现知该车间1月份每人每天生产一件产品,共生产1994件.试问:1月几号开始调进工人?共调进多少工人?【解答】解:因为原有工人不少于63人,并且1994=63×31+41,1994=64×31+10,1994<65×31,所以,这个车间原有工人不多于64人,即这个车间原有工人63人或64人.这个车间原有工人1月份完成产品是63×31=1953或64×31=1984(件).于是可知,余下的41件或10件产品应该表示为连续自然数之和.据已知,不能是1月31日调进工人,设第一天调进x名工人,共调入n天,那么显然2≤n≤8.事实上,九个连续自然数之和最小为1+2+3+4+5+6+7+8+9=45>41.经检验,当n=2时x=20,并且有:20+21=41;当n=4时x=1,并且有:1+2+3+4=10.答:从1月30日开始调进工人,共调进工人21名;或者从1月28日开始调进工人,共调进工人4人.22.(3分)一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.【解答】解:设这个数为n,除以9所得余数r≤8,所以除以8得到的商q≥13﹣8=5,又显然q≤13.q=5时,r=8,n=5×8+4=44;q=6时,r=7,n=6×8+4=52;q=7时,r=6,n=7×8+4=60;q=8时,r=5,n=8×8+4=68;q=9时,r=4,n=9×8+4=76;q=10时,r=3,n=10×8+4=84;q=11时,r=2,n=11×8+4=92;q=12时,r=1,n=12×8+4=100;q=13时,r=0,n=13×8+4=108.满足条件的自然数共有9个:108,100,92,84,76,68,60,52,44.答:满足条件的自然数共有9个:108,100,92,84,76,68,60,52,44.。
“迎春杯”数学花园探秘决赛试卷(小高组d卷)
2016年“迎春杯”数学花园探秘决赛试卷(小高组D卷)一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016×+的计算结果是.2.(8分)一个三位数,在适当位置加上小数点后得到一个小数,这个小数比原来的三位数减少了201.6;那么原三位数是.3.(8分)帅帅七天背了一百多个单词,前三天所背单词比后四天所背单词量少20%,前四天所背单词量比后三天所背单词量多20%;那么帅帅七天一共背了个单词.4.(8分)在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是.5.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是.二、填空题(共5小题,每小题10分,满分50分)6.(10分)商店有大白和小黄两种玩具,共60个,已知大白与小黄的单价比是6:5(单价均为整数元),把它们全部卖出后共得2016元.那么大白有个.7.(10分)有6块砖如图所放,当某块砖上方没有砖压着它时才能被拿走;明明要把所有砖拿走,拿砖的顺序一共有种.8.(10分)有A、B、C三个两位数.A是一个完全平方数,而且它的每一位数字都是完全平方数;B是一个质数,而且它的每一位数字都是质数,数字和也是质数;C是一个合数,而且它的每一位数字都是合数,两个数字之差也是合数,并且C介于A、B之间.那么A,B、C这三个数的和是.9.(10分)如图,一个凹五边形有四条边的长度已经标出(单位:厘米),其中有三个角是直角;那么五边形的面积是平方厘米.10.(10分)郭老师有一块蛋糕要分给4或5名小朋友,于是郭老师把蛋糕切成若干块,其中每块不一定一样大;这样无论是来4名小朋友还是5名小朋友,都可以取其中的若干块使得每个人分得的一样多,那么郭老师至少把蛋糕分成块.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,一个正18边形的面积是2016平方厘米,那么图中的阴影长方形的面积是平方厘米.12.(12分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是.13.(12分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是.14.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走分钟到达B地.2016年“迎春杯”数学花园探秘决赛试卷(小高组D卷)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016×+的计算结果是2015 .【解答】解:2016×+=(2015+1)×+=2015×++=2014+(+)=2014+1=2015;故答案为:20152.(8分)一个三位数,在适当位置加上小数点后得到一个小数,这个小数比原来的三位数减少了201.6;那么原三位数是224 .【解答】解:201.6÷(10﹣1)=201.6÷9=22.4224×10=224,答:这个三位数是224.故答案为:224.3.(8分)帅帅七天背了一百多个单词,前三天所背单词比后四天所背单词量少20%,前四天所背单词量比后三天所背单词量多20%;那么帅帅七天一共背了198 个单词.【解答】解:根据分析,设前三天背的单词量x,第四天背的单词量y,和后三天背的单词量z,则:x=;x+y=,解得:9y=2z,5x=22y⇒x:y:z=44:10:45 又100<x+y+z<200,设x=44k,则y=10k,z=45k100<44k+10k+45k<200⇒100<99k<200只有当k=2时,才能满足题意,此时七天一共背的单词量为:x+y+z=99k =99×2=198故答案为:1984.(8分)在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是53036 .【解答】解:依题意可知乘积的结果的个位数字分别是2,1,7.根据尾数是1的共有1×1,3×7,9×9.再根据尾数是7的乘积是1×7,3×9,两次都有数字3,那么优先考虑除数的尾数是3的情况.那么商分别是4079.再根据除数与7的积是两位数,那么首位数字只能是1,即13×4079+9=53036故答案为:530365.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是2601 .【解答】解:根据分析,将2016的四个数字重新编排,设此四位数为A =n2,322<1026≤A≤6210<802,32<n<80,要想组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,个位数为1和6的数有:2061、2601、6021、6201、1206、1026、2016、2106,共八个数,其中,若个位数为6,则n=36、46、56、66、76,而362=1296,462=2116,562=3136,662=4356,762=5776,均不合题意,故排除,所以个位数为1,而2061、2601、6021、6201,这四个数中只有2601=512,是一个平方数,此四位数是2601,故答案是:2601.二、填空题(共5小题,每小题10分,满分50分)6.(10分)商店有大白和小黄两种玩具,共60个,已知大白与小黄的单价比是6:5(单价均为整数元),把它们全部卖出后共得2016元.那么大白有36 个.【解答】解:依题意可知极端法:如果全是6元和5元,那么最大是360元不够2016.再扩大5倍.如果是30和25元那么最大是1800元不够2016;如果是36元和30元,最大正好是2160元.符合题意;设大白有x个,小黄有60﹣x个.36x+30(60﹣x)=2016解得:x=36故答案为:367.(10分)有6块砖如图所放,当某块砖上方没有砖压着它时才能被拿走;明明要把所有砖拿走,拿砖的顺序一共有16 种.【解答】解:如图,,首先要拿走1号砖,然后可以拿走2号砖或3号砖,(1)拿走2号砖,接着拿走3号砖时,拿走4号、5号、6号砖的顺序有:=3×2×1=6(种)(2)拿走2号砖,接着拿走4号砖时,有两种拿砖的顺序:2号→4号→3号→5号,2号→4号→3号→6号.(6+2)×2=8×2=16(种)答:拿砖的顺序一共有16种.故答案为:16.8.(10分)有A、B、C三个两位数.A是一个完全平方数,而且它的每一位数字都是完全平方数;B是一个质数,而且它的每一位数字都是质数,数字和也是质数;C是一个合数,而且它的每一位数字都是合数,两个数字之差也是合数,并且C介于A、B之间.那么A,B、C这三个数的和是120 .【解答】解:根据分析,先确定A,∵一位数为完全平方数的只有1,4,9,而其中能构成平方数的两位数只有49,∴A=49;∵质数B的两个数字之和为质数且每个数字都是质数,∴B的十位上数字只能是2,而个位只能是3,故B=23;∵合数C的两数字之差是合数且每个数字都是合数,则这个数字只能是:4,6,8,9,C介于A、B之间即,∴C=48,故A+B+C=49+23+48=120,故答案是:120.9.(10分)如图,一个凹五边形有四条边的长度已经标出(单位:厘米),其中有三个角是直角;那么五边形的面积是81 平方厘米.【解答】解:根据凹五边形中由3厘米和9厘米的线段组成的角是直角,可知是把一个长方形沿一个对折后形成的图形(12+9)×9÷2﹣3×9÷2=21×9÷2﹣3×9÷2=94.5﹣13.5=81(平方厘米)答:这个五边形的面积是81平方厘米.故答案为:81.10.(10分)郭老师有一块蛋糕要分给4或5名小朋友,于是郭老师把蛋糕切成若干块,其中每块不一定一样大;这样无论是来4名小朋友还是5名小朋友,都可以取其中的若干块使得每个人分得的一样多,那么郭老师至少把蛋糕分成8 块.【解答】解:由题意,把蛋糕切三刀,横竖纵各一刀,四大块各占,四小块的和占,答:郭老师至少把蛋糕分成8块.故答案为8.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,一个正18边形的面积是2016平方厘米,那么图中的阴影长方形的面积是448 平方厘米.【解答】解:2016÷18×4=112×4=448(平方厘米)答:图中的阴影长方形的面积是448平方厘米.故答案为:448.12.(12分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是7 .【解答】解:根据丙说:“我拿到的两个数都是合数,但它们互质”可得,是4、8、9、10中的两张,丙抽取的两张是9和4、8、10中的一张;根据乙说:“我拿到的两个数不互质,也不是倍数关系”可得,肯定没有2,那么只能是4、6、8、10中的两个,即4和6、4和10、6和8、6和10、8和10;先假设,丙抽取的两张是9和4;乙抽取的两张是8和6,还剩下,2、3、5、7、10,此时,先满足甲说:“我拿到的两个数互质,因为它们相邻”,满足此条件的是2、3;则,还剩下5、7、10,其中满足丁说:“我拿到的两个数是倍数关系,它们也不互质”是5和10,所以,最后还剩下数字7.答:剩下的一张卡片上写的数是7.故答案为:7.13.(12分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是46123 .【解答】解:依题意可知:首先是第二行第二列的数字只能是5,第三行第四列只能是6.继续推理可知答案如图所示:故答案为:46123.14.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走12 分钟到达B地.【解答】解:设甲、乙的速度分别为v甲、v乙,当甲走了全程的时被乙追上,时间为t小时,则,v甲(t+)=v乙t=S,∴v甲=,v乙=,又v甲(t+++)+v乙=S代入整理可得t=小时=24分钟,所以甲行全程需要108分钟,又相遇后乙再次来到追上甲的地点的时间为24分钟,即又甲行了24分钟,总共行了72+24=96分钟,所以甲还要走108﹣96=12分钟.故答案为12分钟.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:15:23;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
第十八届“迎春杯”学科竞赛六年级数学试卷
铜陵师范附小第十八届“迎春杯”学科竞赛 六 年 级 数 学 试 卷 一、填空题(每空3分,共60分)。
1.1.8的倒数是( )。
2.如果把甲桶中水的41倒入乙桶后,甲、乙两桶中水的重量比是1:2,则甲、乙两桶中原来水的重量比是( )。
3.把5件相同的礼物全部分给3个小朋友,使每个小朋友都分到礼物,分礼物的不同方法一共有( )种。
4.有8个同学走到一起,他们俩俩握手一次,问一共握手( )次。
5.A 除以B 的商是7,余数是3,如果把A 、B 两个数同时扩大为原数的100倍,那么商是( ),余数是( )。
6.在有余数的整数除法算式中,除数是b ,商是c (b 、c 均不为0),被除数最大为( )。
7.有三个连续偶数,最大的一个是a ,则最小的一个是( ),它们的平均数是( )。
8.甲、乙两数的最小公倍数是78,最大公约数是13,已知甲数是26,乙数是( )。
9.A=2×3×n 2,B=3×n 3×5,其中n 为质数,那么A 、B 两数的最大公约数是( ),最小公倍数是( )。
10.用同样大小的方砖铺一块正方形地面,两条对角线铺黑色的瓷砖(如图所示)。
当铺满这块地面时,共用了97块黑色的瓷砖,那么共用了( )块白色的瓷砖。
11.一艘轮船从甲地到乙地每小时航行30km ,然后按原路返回,若想往返的平班级姓名密封线内不得答题同学们,别紧张,认真思考,细心解题, 相信你们能在80分钟内,满意地完成答卷! 满分:120 分 得分:均速度为40千米/小时,则返回时每小时应航行( )km 。
12.在所给的9×7的点子图中,横排和竖排每相邻两点间的长度均为1,以这些点为顶点的三角形称为网格三角形。
请找出点M ,使以A 、B 、M 为顶点的网格三角形是直角三角形,且面积为2,这样的点M有( )个。
13.一双鞋子如果卖140元,可赚40%,如果卖120元,可赚( )。
六年级迎春杯试题及答案
六年级迎春杯试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是正确的?A. 地球是平的B. 地球是圆的C. 地球是方的D. 地球是三角形的2. 以下哪个数学公式是正确的?A. 圆的面积 = 半径× 半径B. 圆的面积 = 半径× π × 半径C. 圆的周长 = 直径× 2D. 圆的周长 = 半径× 2π3. 根据题目所给信息,以下哪个选项是错误的?A. 春天是一年四季之一B. 迎春杯是冬季举行的竞赛C. 迎春杯是为了庆祝春天的到来D. 迎春杯通常在春季举行4. 以下哪个成语与“春天”有关?A. 春暖花开B. 秋高气爽C. 夏日炎炎D. 冬日暖阳5. 以下哪个选项是迎春杯试题的类型?A. 选择题B. 填空题C. 判断题D. 论述题二、填空题(每题2分,共10分)6. 春天是_________、_________、_________和_________四个季节之一。
7. 迎春杯试题的类型包括选择题、填空题、_________和_________。
8. 地球的形状是_________,因为它在自转和公转时表现出的离心力和引力的平衡。
9. 圆的周长公式是_________,其中C代表周长,d代表直径。
10. 成语“春暖花开”常用来形容_________。
三、判断题(每题1分,共5分)11. 迎春杯试题及答案的标题是“六年级迎春杯试题及答案”。
()12. 地球的形状是平的。
()13. 迎春杯试题通常在冬季举行。
()14. 成语“秋高气爽”与春天有关。
()15. 圆的面积公式是πr²,其中r代表半径。
()四、简答题(每题5分,共10分)16. 请简述迎春杯试题的特点。
17. 请解释为什么地球的形状是圆的。
五、论述题(15分)18. 论述春天对人们生活的影响。
参考答案:1. B2. B3. B4. A5. A6. 春、夏、秋、冬7. 判断题、论述题8. 圆的9. C = πd10. 春天的气候温暖,百花盛开的景象11. √12. ×13. ×14. ×15. √16. 迎春杯试题通常包括选择题、填空题、判断题和论述题,旨在考查学生的综合能力。
迎春杯数学竞赛试题
迎春杯数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 32. 如果一个圆的半径是5厘米,那么它的周长是多少? - A. 10π厘米- B. 15π厘米- C. 20π厘米- D. 25π厘米3. 一个数的平方根是8,那么这个数是:- A. 16- B. 64- C. 8- D. 无法确定4. 以下哪个表达式的结果不是整数?- A. (-3)^2- B. √16- C. 2^3- D. 1/35. 以下哪个数是完全数?- A. 6- B. 28- C. 496- D. 36二、填空题(每空3分,共15分)1. 如果一个三角形的三个内角分别是50°、60°和______,那么它是一个锐角三角形。
2. 一个数的立方根是2,那么这个数是______。
3. 一个等差数列的前三项分别是2、5、8,那么它的公差是______。
4. 如果一个分数的分子是15,分母是______,那么它的倒数是1/3。
5. 一个圆的直径是14厘米,它的面积是______平方厘米(结果保留π)。
三、解答题(每题10分,共20分)1. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求它的体积。
2. 一个等差数列的前10项之和是110,首项是2,公差是d。
求这个数列的第10项。
四、证明题(每题10分,共10分)证明:对于任意的正整数n,n^3 - n^2 + n - 1 可以被6整除。
答案:一、选择题1. B2. C3. B4. D5. C二、填空题1. 70°2. 83. 34. 455. 39π三、解答题1. 长方体的体积是 3cm * 4cm * 5cm = 60立方厘米。
2. 等差数列的第10项是 2 + (10-1) * d = 2 + 9d,由于前10项之和是110,我们有 10 * (2 + 2 + (10-1) * d) / 2 = 110,解得 d = 3,因此第10项是 2 + 9 * 3 = 29。
迎春杯六年级试题及答案
迎春杯六年级试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是质数?A. 15B. 23C. 48D. 66答案:B2. 一个长方体的长、宽、高分别是10cm、8cm和6cm,那么它的体积是多少立方厘米?A. 480B. 400C. 320D. 240答案:A3. 一个数的3倍是48,这个数是多少?A. 16B. 12C. 8D. 6答案:A4. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A5. 一个圆的直径是14cm,那么它的半径是多少?B. 14cmC. 21cmD. 28cm答案:A6. 一个数除以5余3,除以7余1,这个数最小是多少?A. 36B. 37C. 38D. 39答案:B7. 一个等腰三角形的底边长为10cm,两腰长为8cm,那么它的周长是多少?A. 26cmB. 28cmD. 32cm答案:A8. 一个数的5倍加上3等于这个数的7倍减去5,这个数是多少?A. 4B. 5C. 6D. 7答案:A9. 一个长方形的长是宽的两倍,如果宽增加2cm,长减少2cm,那么它的面积不变,原来的长方形的长和宽分别是多少?A. 长8cm,宽4cmB. 长10cm,宽5cmC. 长12cm,宽6cmD. 长14cm,宽7cm答案:B10. 一个数的1/4加上这个数的1/3等于9,这个数是多少?A. 12B. 18C. 24D. 36答案:C二、填空题(每题4分,共40分)11. 一个数的倒数是1/5,这个数是______。
答案:512. 一个数的1/2加上这个数的1/3等于7,这个数是______。
答案:1213. 一个数的3倍减去2等于这个数的2倍加上3,这个数是______。
答案:514. 一个长方体的长、宽、高分别是a、b、c,那么它的表面积是______。
答案:2(ab + ac + bc)15. 一个数的1/4加上这个数的1/6等于1/2,这个数是______。
数学花园探秘(迎春杯)六年级决赛试卷及详解
超 出作答范围不得分.)
102
1.答案:64
2017 数学花园探秘科普活动小高决赛 A 解析 解析:原式=(632-613 )+(1-613 )=63+1=64
2.答案:2384
解析:500+15 ×2×π ×(100+200+300+400+500)=2384
3.答案:94 解析:注意到前三局比前两局多 25 分,后三局比后两局多 25 分,所以中国队得
12.答案:2 解析:注意到如下操作:
所以每次可以将一个“L”形的四个棋子中去掉 3 个,另一个回到原格。所以将 36 枚棋子按图中 的分组依次去掉,最后剩下右下的 1×3 的棋子,再操作一次即可剩下 2 枚。
下面证明最少剩下 2 枚棋子
104
如下图对期盼进行三染色,则每次操作时,有两种颜色格内的棋子数减 1,第三种颜色格内的棋 子数加 1,而开始时三种颜格内的棋子数均相等,所以每次操作后三种颜色格内的棋子数奇偶 性相同,而最后棋子不可能一枚不剩,所以最少剩下 2 枚棋子。
A
B
11. 有一列正整数,其中第 1 个数是 1,第 2 个数是 1、2 的最小公倍数,第 3 个数是 1、2、 3 的最小 公倍数,„„,第 n 个数是 1、2、„„、n 的最小公倍数.那么这列数的前 100 个数 中共_______个不同的值.
迎春杯小学数学六年级试卷
一、选择题(每题5分,共20分)1. 下列数中,哪个数是质数?A. 35B. 49C. 61D. 1002. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?A. 15厘米B. 25厘米C. 30厘米D. 35厘米3. 下列哪个数是3的倍数?A. 23B. 27C. 32D. 364. 一个正方形的边长是8厘米,它的面积是多少平方厘米?A. 64平方厘米B. 80平方厘米C. 72平方厘米D. 96平方厘米5. 小明有5个苹果,小红比小明多2个苹果,小红有多少个苹果?A. 7个B. 8个C. 9个D. 10个二、填空题(每题5分,共25分)6. 7乘以9等于__________。
7. 下列分数中,哪个分数小于1/2?A. 3/4B. 2/3C. 1/3D. 4/58. 一个长方体的长是6厘米,宽是4厘米,高是3厘米,它的体积是__________立方厘米。
9. 下列哪个数是2的倍数?A. 13B. 14C. 15D. 1610. 一个圆形的半径是5厘米,它的面积是__________平方厘米。
三、解答题(每题10分,共30分)11. 小华有一些糖,他给了小明5块,又给了小刚3块,最后还剩下12块。
小华原来有多少块糖?12. 一个梯形的上底是6厘米,下底是10厘米,高是4厘米,它的面积是多少平方厘米?13. 小明有一些钱,他买了一个笔记本用了20元,又买了一些铅笔用了15元,最后还剩下35元。
小明原来有多少钱?四、应用题(每题10分,共20分)14. 小明去图书馆借了5本书,每天可以还一本,他一共要还几天?15. 一辆汽车从甲地到乙地,每小时行驶60千米,用了3小时到达。
甲地到乙地的距离是多少千米?答案:一、选择题1. C2. C3. D4. A5. A二、填空题6. 637. C8. 729. B10. 78.5三、解答题11. 小华原来有40块糖。
12. 梯形的面积是44平方厘米。
13. 小明原来有70元。
2018年“迎春杯”六年级数学花园探秘科普活动总决赛试卷及答案解析
2018年“迎春杯”六年级数学花园探秘科普活动总决赛试卷一、填空题。
(每小题10分,共30分)
1.(10分)如图,在每个空格内填入1~4中的一个,使每行、每列以及每个由粗线所围成的区域中的四个数都不重复,且任意相邻两个空格所填数的和都是质数.那么四位数ABCD=.
2.(10分)一个半径为5厘米的轮子放置在如图的阴影弓形中,它能沿着弓形的弦AB滚动,如果弓形的半径OA、OB为25厘米,AB长为48厘米.那么轮子在AB上滚动时能扫过区域的面积为平方厘米.(π取3)
3.(10分)下式中相同字母代表相同数字,不同的字母代表不同的数字,那么四位数abcd 是.
(ab)c×acd=abcacd
二、解答题(每题15分,共30分)
4.(15分)老国王要把100座城池划分给自己的7个王子,7个王子按照年龄从大到小分到的城池数量是递减的.
大王子:“虽然我分到的城池最多,但还是要比五弟、六弟、七弟的总和少.”
二王子:“还好我分到的城池数量比六弟、七弟的总和多.”
三王子:“真可惜,我分到的城池数量就比六弟、七弟的总和少.”
四王子:“我分到的城池数量是5的倍数.”
如果王子们都没有说谎,并且大王子分到的城池数量是个质数,请问:三王子分到了多少个城池?
第 1 页共5 页。
六年级下册数学试题-2019年“迎春杯”数学花园探秘决赛试卷(小高组c卷)(含答案解析)全国通用
2019年“迎春杯”数学花园探秘决赛试卷(小高组C卷)一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016÷(13﹣8)×(﹣)的计算结果是.2.(8分)帅帅七天背了一百多个单词,前三天所背单词量与后四天所背单词量的比是3:4,后三天所背单词量与前四天所背单词量的比是5:6;那么帅帅第四天背了个单词.3.(8分)四段相同的圆弧围成了图①的地板砖,且每段圆弧都是同一个圆的四分之一(这样的地板砖可以如图②那样密铺平面),如果地板砖的两段外凸弧的中点间距离30厘米,那么一块地板砖的面积是平方分厘米.4.(8分)销售一种商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高%.5.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是.二、填空题(共5小题,每小题10分,满分50分)6.(10分)某项工程,单独做甲需要24天,乙需要36天,丙需要60天;已知三个队伍都恰好干了整数天,且18天内(含18天)完成了任务,那么甲至少干了天.7.(10分)请将1﹣9分别填入下面算式的方框中,每个数字恰用一次,使等式成立,已知两位数不是3的倍数,那么五位数是.8.(10分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是.9.(10分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是.10.(10分)分数化成循环小数后,循环节恰有位.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,在七个空白的方格内各填入一个正整数(可以相同),使得上下相邻的两个数,下面是上面的倍数;左右相邻的两个数,右面是左面的倍数,那么共有种填法.12.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走分钟到达B地.13.(12分)正十二边形的边长是12厘米,那么图中阴影部分的面积是平方厘米.14.(12分)如图的字母分别表示1﹣9内的不同数字,相邻两格中数字共能组成24个两位数(如,,),同行或同列三个数字共能依次组成12个三位数(如,,),这36个数中,合数最多有个.2019年“迎春杯”数学花园探秘决赛试卷(小高组C卷)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016÷(13﹣8)×(﹣)的计算结果是105.【解答】解:2016÷(13﹣8)×(﹣)=2016÷×=2016××=105故答案为:105.2.(8分)帅帅七天背了一百多个单词,前三天所背单词量与后四天所背单词量的比是3:4,后三天所背单词量与前四天所背单词量的比是5:6;那么帅帅第四天背了18个单词.【解答】解:根据分析,设前三天背的单词量为3k,则后四天背的单词量为4k,第四天的单词量为a,则后三天背的单词量为4k﹣a,按题意,有:,解得:a=,故后三天背的单词量为:,故:前三天,第四天,后三天背的单词量之比为:3k::=33:9:35,设前三天,第四天,后三天背的单词量分别为:33b,9b,35b,则七天的单词量为:33b+9b+35b=77b,∵100<77b<200∴b=2,即:第四天背的单词量为:9×2=18个.故答案是:18.3.(8分)四段相同的圆弧围成了图①的地板砖,且每段圆弧都是同一个圆的四分之一(这样的地板砖可以如图②那样密铺平面),如果地板砖的两段外凸弧的中点间距离30厘米,那么一块地板砖的面积是450平方分厘米.【解答】450解:30÷2=15(厘米)3.14×(30÷2)2÷4﹣15×15÷2=3.14×225÷4﹣112.5=176.625﹣112.5=64.125(平方厘米)3.14×(30÷2)2﹣64.125×4=3.14×225﹣256.5=706.5﹣256.5=450(平方厘米)答:一块地板砖的面积是450平方厘米.故答案为:450.4.(8分)销售一种商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高12%.【解答】解:1+25%=125%1+40%=140%(140%﹣125%)÷125%=15%÷125%=12%答:售价应该提高12%.故答案为:12.5.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是2601.【解答】解:根据分析,将2016的四个数字重新编排,设此四位数为A=n2,322<1026≤A≤6210<802,32<n<80,要想组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,个位数为1和6的数有:2061、2601、6021、6201、1206、1026、2016、2106,共八个数,其中,若个位数为6,则n=36、46、56、66、76,而362=1296,462=2116,562=3136,662=4356,762=5776,均不合题意,故排除,所以个位数为1,而2061、2601、6021、6201,这四个数中只有2601=512,是一个平方数,此四位数是2601,故答案是:2601.二、填空题(共5小题,每小题10分,满分50分)6.(10分)某项工程,单独做甲需要24天,乙需要36天,丙需要60天;已知三个队伍都恰好干了整数天,且18天内(含18天)完成了任务,那么甲至少干了6天.【解答】解:依题意可知:甲乙丙的效率为:,,.要甲最少干几天那么需要乙丙工作天数多.当乙正好工作18天时,工作总量为18×=.当乙工作天数为18天时,剩余的工作总量丙工作不是整数天.那么分析60的约数15天时,丙的工作量为:.甲的工作天数为:(1﹣﹣)=6(天)故答案为:67.(10分)请将1﹣9分别填入下面算式的方框中,每个数字恰用一次,使等式成立,已知两位数不是3的倍数,那么五位数是85132.【解答】解:2016=2×2×2×2×2×7×3×3,因为两位数不是3的倍数,则后面必乘以至少有一个能被3整除的个位数,此时,2016=32×7×9=56×6×6;显然56×6×6不合题意,舍去,故2016=×□×□=32×7×9,=32;1~9数字已经用了2,3,7,9;再看看□×□×(﹣C)只能是1,4,5,6,8.只有2016=4×8×63=6×8×42=4×6×84可能符合,①若2016=4×8×63,则63=70﹣7=71﹣8=72﹣9=64﹣1=65﹣2=66﹣3=67﹣4=68﹣5=69﹣6(数字重复,故舍去);②若2016=6×8×42,则42=50﹣8=51﹣9=43﹣1=44﹣2=45﹣3=46﹣4=47﹣5=48﹣6=49﹣7(数字重复,故舍去),③若2016=4×6×84,则84=90﹣6=91﹣7=92﹣8=93﹣9=85﹣1=86﹣2=87﹣3=88﹣4=89﹣5,符合条件的只有84=85﹣1,故2016=4×6×(85﹣1)即:,C=1.此五位数是:85132.故答案是:85132.8.(10分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是7.【解答】解:根据丙说:“我拿到的两个数都是合数,但它们互质”可得,是4、8、9、10中的两张,丙抽取的两张是9和4、8、10中的一张;根据乙说:“我拿到的两个数不互质,也不是倍数关系”可得,肯定没有2,那么只能是4、6、8、10中的两个,即4和6、4和10、6和8、6和10、8和10;先假设,丙抽取的两张是9和4;乙抽取的两张是8和6,还剩下,2、3、5、7、10,此时,先满足甲说:“我拿到的两个数互质,因为它们相邻”,满足此条件的是2、3;则,还剩下5、7、10,其中满足丁说:“我拿到的两个数是倍数关系,它们也不互质”是5和10,所以,最后还剩下数字7.答:剩下的一张卡片上写的数是7.故答案为:7.9.(10分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是46123.【解答】解:依题意可知:首先是第二行第二列的数字只能是5,第三行第四列只能是6.继续推理可知答案如图所示:故答案为:46123.10.(10分)分数化成循环小数后,循环节恰有6位.【解答】解:=1÷2016=0.00049603174603174…,所以,循环节是603174,循环节恰有6位.故答案为:6.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,在七个空白的方格内各填入一个正整数(可以相同),使得上下相邻的两个数,下面是上面的倍数;左右相邻的两个数,右面是左面的倍数,那么共有136种填法.【解答】解:(1)E=1时,B=1,D=1;F=1时,C=1,此时一共有6种填法;F=3时,C=1或3,此时一共有12种填法;F=9时,C=1或3或9,此时一共有18种填法;(2)E=3,B=D=1时,F=3,C=1或3,此时一共有2•(2+2+1)=10种填法;F=9,C=1或3或9,此时一共有3•(2+2+1)=15种填法;(3)E=3,B=1,D=3时,F=3,C=1或3,此时一共有2•(2+1)=6种填法;F=9,C=1或3或9,此时一共有3•(2+1)=9种填法;(4)E=3,B=3,D=1时,同(3)有6+9=15种填法;(5)E=B=D=3时,F=3,C=3,此时一共有3种填法;F=9,C=3或9,此时一共有6种填法;(6)E=9,B=D=1时,F=9,C=1或3或9,H=9,G=1或3或9,此时一共有9种填法;(7)E=9,B=1,D=3时,F=9,H=9,G=3或9,C=1或3或9,此时一共有6种填法;(8)E=9,B=1,D=9时,F=9,此时有3种填法,同理E=9,B=3时,一共有6+4+2=12种填法;E=9,B=8时,一共有6种填法,综上所述,一共有36+25+30+9+9+6+15+6=136种.12.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走12分钟到达B地.【解答】解:设甲、乙的速度分别为v甲、v乙,当甲走了全程的时被乙追上,时间为t 小时,则,v甲(t+)=v乙t=S,∴v甲=,v乙=,又v甲(t+++)+v乙=S代入整理可得t=小时=24分钟,所以甲行全程需要108分钟,又相遇后乙再次来到追上甲的地点的时间为24分钟,即又甲行了24分钟,总共行了72+24=96分钟,所以甲还要走108﹣96=12分钟.故答案为12分钟.13.(12分)正十二边形的边长是12厘米,那么图中阴影部分的面积是576平方厘米.【解答】解:如图,易知∠ADC=(180°﹣30°)=75°,∠DAC=(150°﹣90°)=30°,∴∠ACD=180°﹣∠ADC﹣∠DAC=75°,∴AD=AC=12,∵∠ACB=180°﹣75°﹣45°=60°,∴∠ABC=30°,∵∠CAB=90°,∴BC=2AC=24,∴阴影部分的面积=24×24=576平方厘米.故答案为57614.(12分)如图的字母分别表示1﹣9内的不同数字,相邻两格中数字共能组成24个两位数(如,,),同行或同列三个数字共能依次组成12个三位数(如,,),这36个数中,合数最多有33个.【解答】解:由题意,与5有关的两位质数只有两个53,59两种情况,故E取5,又3,6,9无论怎么组合,都是两位或3位合数,故考虑C=3,F=6,I=9,此时H=4,49,94都是合数,剩下4个数1,2,7,8,个位数是偶数,该数一定是合数,故考虑A=8,G=2,进而D=1,B=7,此时36个数中,只有13,31,457不是合数,所以36个数中,合数最多有33个.故答案为33.。
六年级下册数学试题-2019年“迎春杯”数学花园探秘初赛试卷(六年级a卷)(含答案解析)全国通用
2019年“迎春杯”数学花园探秘初赛试卷(六年级A卷)一、填空题Ⅰ(每题10分,共40分)1.(10分)算式:2016×的计算结果是.2.(10分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有.3.(10分)如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是.4.(10分)每场篮球比赛都分为四节,在某场比赛中,加西亚在前两节中投篮20次,命中12次,在第三节中,他一共投篮10次,但命中率有所下降,只有前两节总体命中率的50%,在最后一节中,命中率有所回升,比第三节提高了,最后全场命中率为46%.那么加西亚在第四节一共投中次.二、填空题(共7小题,每小题15分,满分60分)5.(15分)如图,正方形边长为80厘米,O为正方形中心,A为OB中点,在正方形内以A点为圆心,OA为半径的圆,以B点为圆心,OB为半径的圆与正方形的一边围成了一个特殊的图形.将这个图形绕O点顺时针旋转三次能够得到一个风车的形状.那么这个风车(阴影部分)的面积是平方厘米.(π取3.14)6.(15分)对于自然数N,如果在1~9这九个自然数中至少有六个数可是N的因数,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.7.(15分)如图是由9块相同的长方体摆放而成的大长方体,已知大长方体的表面积是360平方厘米,那么一个小长方体的表面积是平方厘米.8.(15分)跑跑家族七人分别要通过图中7个门完成挑战;第一个人可以任选一个门激活,完成挑战后,将会激活左右相邻的门;下一个人可以在已激活的门中任选一个未被挑战的门挑战,完成挑战后将会激活左右相邻门中未被激活的门;以此类推.结果跑跑家族七人全部都完成了挑战,按照他们挑战的次序将七个门的编号排序将会得到一个七位数,这个七位数一共有种不同可能.9.如图,四边形EFCD是平行四边形,如果梯形ABCD的面积是320,四边形ABGH的面积是80,那么三角形OCD的面积是.10.某城市早7:00到8:00是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上6:50,甲、乙两人从这城市的A、B两地同时出发,相向而行,在距离A地24千米的地方相遇.如果甲晚出发20分钟,两人恰好在AB中点相遇;如果乙早出发20分钟,两人将在距离A地20千米的地方相遇.那么,AB两地相距千米.11.在每个空格中填入数字1﹣4,使得每行和每列的数字都不重复.表格外的数字表示该方向所在行或列里第一个奇数或者第一个偶数,那么,第三行的四个格从左到右所填的数字组成的四位数是.2019年“迎春杯”数学花园探秘初赛试卷(六年级A卷)参考答案与试题解析一、填空题Ⅰ(每题10分,共40分)1.(10分)算式:2016×的计算结果是1024.【解答】解:分母:1+++++=1+1﹣+﹣+﹣+﹣+﹣=2﹣=则,2016×=2016×=2016×=1024故答案为:1024.2.(10分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有66张.【解答】解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.3.(10分)如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是83720.【解答】解:4.(10分)每场篮球比赛都分为四节,在某场比赛中,加西亚在前两节中投篮20次,命中12次,在第三节中,他一共投篮10次,但命中率有所下降,只有前两节总体命中率的50%,在最后一节中,命中率有所回升,比第三节提高了,最后全场命中率为46%.那么加西亚在第四节一共投中8次.【解答】解:根据分析,前两节的命中率为:=60%;第三节的命中率为:50%×60%=30%,投中次数为:10×30%=3次;最后一节的命中率为:=40%,设再第四节中一共投中n次,则投篮次数为:,根据全场命中率可得:,解得:n=8.故答案是:8.二、填空题(共7小题,每小题15分,满分60分)5.(15分)如图,正方形边长为80厘米,O为正方形中心,A为OB中点,在正方形内以A点为圆心,OA为半径的圆,以B点为圆心,OB为半径的圆与正方形的一边围成了一个特殊的图形.将这个图形绕O点顺时针旋转三次能够得到一个风车的形状.那么这个风车(阴影部分)的面积是912平方厘米.(π取3.14)【解答】解:依题意可知:图中三角形OBC的面积为80×80÷4=1600(平方厘米).可得出OB2=1600.OB2=3200.∵∠OBC=45°.八分之一的圆的面积为πOB2=400×3.14=1256(平方厘米).OA2==800.四分之一的圆的面积为:πOA2=628(平方厘米).小三角形的面积是整个三角形OBC的四分之一.1600÷4=400(平方厘米).一个小阴影的面积为:1256﹣628﹣400=228(平方厘米).整个阴影面积为:228×4=912(平方厘米).故答案为:9126.(15分)对于自然数N,如果在1~9这九个自然数中至少有六个数可是N的因数,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是2016.【解答】解:由题意可知,这个六合数一定有因数1,一定是一个偶数.大于2000的偶数有:2002、2004、2006、2008、2010、2012、2014、2016、2018、2020…在这些数中,最小是2016符合六合数的条件.故本题答案为2016.7.(15分)如图是由9块相同的长方体摆放而成的大长方体,已知大长方体的表面积是360平方厘米,那么一个小长方体的表面积是88平方厘米.【解答】解:根据分析,设小长方体的长为a,宽为b,高为c,如下图所示,则有:3b =2a,a=3c故大长方体的表面积=2×(b+c)×(b+b+b)+2×(b+c)×a+2×a×(b+b+b)=360⇒3b2+3bc+4ab+ac=180又3b=2a,a=3c,可解得:a=6,b=4,c=2,则一个小长方体的表面积是:2×6×4+2×6×2+2×4×2=88平方厘米.故答案是:88平方厘米.8.(15分)跑跑家族七人分别要通过图中7个门完成挑战;第一个人可以任选一个门激活,完成挑战后,将会激活左右相邻的门;下一个人可以在已激活的门中任选一个未被挑战的门挑战,完成挑战后将会激活左右相邻门中未被激活的门;以此类推.结果跑跑家族七人全部都完成了挑战,按照他们挑战的次序将七个门的编号排序将会得到一个七位数,这个七位数一共有64种不同可能.【解答】解:由题意,每种选择情况一定对应一个七位数,第一人选完后,后六人只需要选择“左”还是“右”,而第一个人的门可以完全由后六个人的“左”“右”总情况逆推出来,即后六人中每人都有两种选择方法,所以按照他们挑战的次序将七个门的编号排序将会得到一个七位数,这个七位数一共有26=64种不同可能.故答案为64.9.如图,四边形EFCD是平行四边形,如果梯形ABCD的面积是320,四边形ABGH的面积是80,那么三角形OCD的面积是45.【解答】解:S AHGB=S△AHE+S△GHE+S△GEF+S△GBF=S△AHE+S△CHE+S△GDF+S△GBF=S△ACE+S△BDF即AHGB的面积相当于一个底是AE+BF=AB﹣EF=AB﹣CD,高是梯形的高的三角形面积,设AB=a,CD=b,,解得,从而由蝴蝶模型,S△OCD占S ABCD的,所以三角形OCD的面积为320×=45.10.某城市早7:00到8:00是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上6:50,甲、乙两人从这城市的A、B两地同时出发,相向而行,在距离A地24千米的地方相遇.如果甲晚出发20分钟,两人恰好在AB中点相遇;如果乙早出发20分钟,两人将在距离A地20千米的地方相遇.那么,AB两地相距42千米.【解答】解:甲晚出发20分钟,乙已经走了10分钟快速及10分钟慢速的路(即15分钟快速的路),而乙早出发20分钟,即早走了20分钟快速的路,所以中点的位置应该在24千米处和20千米处之间的处,即24﹣(24﹣20)×=21(千米)21×2=42(千米)故:AB两地相距42千米.11.在每个空格中填入数字1﹣4,使得每行和每列的数字都不重复.表格外的数字表示该方向所在行或列里第一个奇数或者第一个偶数,那么,第三行的四个格从左到右所填的数字组成的四位数是4213.【解答】解:依题意可知根据第一行的数字规律可知从左到右是3在1前面,2在4前面,第一个位置不能填写1,第二和第四不能填写2,再根据上面的数字是3424推断符合条件的数字3124的概率比较大.枚举法即可排除.故答案为:4213。
2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)
2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(1+3+5+…+89)﹣(1+2+3+…+63)的计算结果是.2.(8分)沿长方形ABCD中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为厘米.3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生人.4.(8分)大正方形ABCD的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB边从A滑动到B,再从B沿着对角线BD滑动到D,再从D沿着DC边滑动到C;小正方形经过的面积是平方厘米.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:130、67、132、68…,那么这列数中第2016个数是.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是.6.7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐只.8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有种不同的拼法.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是.10.(12分)自然数1、2、3、…、2014、2015、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉10、11、12、13,保留14;…;即第几步操作就先依次划掉几个数,再保留1个数,这样操作,直到将所有的数划掉为止,那么最后一个被划掉的数是.11.(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A、B、C、D、E,那么五位数ABCDE= .2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(1+3+5+…+89)﹣(1+2+3+…+63)的计算结果是9 .【分析】首先根据等差数列的求和公式,分别求出1+3+5+...+89、1+2+3+...+63的值各是多少;然后把它们相减,求出算式(1+3+5+...+89)﹣(1+2+3+ (63)的计算结果是多少即可.【解答】解:(1+3+5+...+89)﹣(1+2+3+ (63)=(1+89)×[(89﹣1)÷2+1]÷2﹣(1+63)×63÷2=90×45÷2﹣64×63÷2=2025﹣2016=9故答案为:9.【点评】此题主要考查了加减法中的巧算问题,要熟练掌握,解答此题的关键是要明确等差数列的求和公式:和=(首项+末项)×项数÷2.2.(8分)沿长方形ABCD中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为52 厘米.【分析】观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2(ME+FH+GN)+2(EF+GH).【解答】解:观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2(ME+FH+GN)+2(EF+GH)=6+6+10+10+2×6+2×4=52cm,故答案为52【点评】本题考查剪切和拼接、长方形的性质等知识,解题的关键是学会用整体的思想思考问题.3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生15 人.【分析】首先用蕾蕾的身高减去蓉蓉的身高,求出两人的身高的差是多少;然后分别用两人的身高的差除以2、3,求出一班、二班的人数各是多少,再把一班、二班的人数相加,求出两个班共有学生多少人即可.【解答】解:158﹣140=18(厘米),18÷2+18÷3=9+6=15(人)答:两个班共有学生15人.故答案为:15.【点评】此题主要考查了平均数问题,要熟练掌握,解答此题的关键是分别求出一班、二班的人数各是多少.4.(8分)大正方形ABCD的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB边从A滑动到B,再从B沿着对角线BD滑动到D,再从D沿着DC边滑动到C;小正方形经过的面积是36 平方厘米.【分析】可以将图画出,用虚线表示小正方形经过的区域,可以用大正方形的面积减去其它空白部分的面积,而其它空白部分是两个相等的直角三角形,刚好可以拼接成一个边长为10﹣2=8厘米的正方形,故不难求得小正方形经过的区域的面积.【解答】解:根据分析,如图所示,a和b部分的面积刚好可以拼接成一个边长为:10﹣2×1=8厘米的正方形,小正方形经过的区域的面积=10×10﹣8×8=36(平方厘米).故答案是;36.【点评】本题考查剪切和拼接,突破点是:利用剪切和拼接,将图形简化,不难求得小正方形经过的区域的面积.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:130、67、132、68…,那么这列数中第2016个数是 6 .【分析】首先发现数字求的是2016项,那么一定是有规律的计算,找到周期规律即可.【解答】解:依题意可知:数字规律是130、67、132、68、36、20、12、8、6、5、8、6、5、8、6、5、去掉钱7项是循环周期数列2016﹣7=2009.每3个数字一个循环2009÷3=667 (2)循环数列的第二个数字就是6.故答案为:6【点评】本题考查对数字规律的理解和运用,关键问题是根据枚举法找到周期规律.问题解决.6.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是342 .【分析】要使得数最小,由于有乘法,所以两个两位数,要用最小的四个数字1、2、3、4组成,且最高位放最小的数字;剩下的为5×6;据此解答即可.【解答】解:最小的1和2,分别放在十位上,剩下的3与1组成13,2和4组成24,最后5和6组成算式5×6,所以得数最小是:13×24+5×6=312+30=342答:能得到的最小结果是 342.故答案为:342.【点评】本题重点是理解,要使两个数的积最小,尽量把小的数字放在最高位上.7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐14 只.【分析】首先根据题意,设仙山上共有九尾狐x只,九头鸟y只,然后根据:九尾狐的数量×9+九头鸟的数量﹣1=[(九头鸟的数量﹣1)×9+九尾狐的数量]×4,(九尾狐的数量﹣1)×9+九头鸟的数量=[九头鸟的数量×9+九尾狐的数量﹣1]×3,列出二元一次方程组,求出仙山上共有九尾狐多少只即可.【解答】解:设仙山上共有九尾狐x只,九头鸟y只,则由(1),可得:x﹣7y+7=0(3)由(2),可得:3x﹣13y﹣3=0(4)(4)×7﹣(3)×13,可得8x﹣112=08x﹣112+112=0+1128x=1128x÷8=112÷8x=14答:仙山上共有九尾狐14只.故答案为:14.【点评】此题主要考查了差倍问题,考查了分析推理能力的应用,要熟练掌握,首先要把题意弄清,再根据等量关系列出方程组解答即可.8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有 2 种不同的拼法.【分析】因最底层已经给定两块的位置,且拼成生图③是上下两层的,所以剩下部分的拼法有只能是把图①立起来拼,且两个一组的在上面,从一个缺口处两块的位置有两种拼法,所以共有两种拼法.【解答】解:如图:答:剩下部分一共有2种不同的拼法.故答案为:2.【点评】本题主要考查了学生对图形拼法的掌握情况,重点是根据最底层给定的两块的位置,再进行拼.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是2143 .【分析】按照题目要求,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和填入具体的数字,即可得出结论.【解答】解:如图所示,根据每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和,由于1+2=3,4+2=6,3+2=5,结合每一行和每一列数字都不重复,可得最下面一行的两个数字按从左到右的顺序依次组成的四位数是2143.故答案为2143.【点评】本题考查凑数字,考查学生的动手能力,正确理解题意,得出图形是关键.10.(12分)自然数1、2、3、…、2014、2015、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉10、11、12、13,保留14;…;即第几步操作就先依次划掉几个数,再保留1个数,这样操作,直到将所有的数划掉为止,那么最后一个被划掉的数是2015 .【分析】首先分析题意首项数字保留的是2,可分析出保留的数字的规律,进而得出最后一个保留的数字是多少.【解答】解:依题意可知:第一轮保留的数字是2,5,9,…那么第一轮保留的最大数字为:2+3+4+…+n=当n=63时,数列和是2015.说明2015是保留的数字.此时数字没有全部划掉还需要继续划.但由于是圆圈,继续划掉的话,划掉的顺序是2016,2,5,9…,这次是第63次操作,2015是最后一个被划掉的.故答案为:2015.【点评】本题考查对数字问题的理解和运用,关键问题是理解数字和的规律即运用.问题解决.11.(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A、B、C、D、E,那么五位数ABCDE= 25649 .【分析】首先分析新二只和新三只能放在哪一个狗舍,推理出原来的不相邻的狗舍位置继续推理即可求解.【解答】解:依题意可知:①首先第一只小狗在2号狗舍.第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;说明第2只小狗旁边进来2只小狗.小狗入住时都恰好有2只小狗喊一声,所以新2号小狗不能在角落1,3,6,7,8,9狗舍.只能在5号狗舍.②第4只新入住的小狗住4号狗舍,它没喊过;小狗入住时都恰好有2只小狗喊一声说明1和7是有一个是空的,如果是1空那么小狗舍会相邻.只能是7空.③新2号小狗喊2声,那么说明在6号或者8号入住一只小狗原来也是有1只小狗.那么只能是8号是原来的,6号是新入住的.④那么原来的三个不相邻的狗舍就是在1,3,8狗舍.第五只在9号.故答案为:25649【点评】本题考查对逻辑推理的理解和运用,关键问题是找到新2和新3的位置.问题解决.。
福建省福州市福清市东瀚学区“迎春杯”六年级数学竞赛试卷
福建省福州市福清市东瀚学区“迎春杯”六年级数学竞赛试卷一、(第1、4、6、13题各8分,第5、11题各7分,其它各6分)1.(8分)3﹣5+7﹣9+11﹣13…+1995﹣1997+1999=.=.2.(6分)若干人围成8圈,一圈套一圈,从外向内各圈人数依次少4人.如果共有304人,最外圈有几人?3.(6分)多思希望小学有100名学生参加数学考试,平均分是63分,其中男生的平均分是60分,女同学的平均分是70分,男生比女生多人.4.(8分)甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙.若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙.问甲、乙两人每秒钟各跑米,米.5.(7分)有一次乒乓球比赛前,甲、乙、丙、丁四名选手预测各自的名次.甲说:“我绝对不会得最后!”乙说:“我不能得第一,也不会得最后!”丙说:“我肯定得第一!”丁说:“那我是最后一名!”比赛揭晓后知道,四人没有并列名次,而且只有一名选手预测错误,这就是选手预测错了.6.(8分)用一根绳子测量井的深度,如果线绳两折时,多5米,;如果绳子3折时,差4米,绳子长米,井深米.7.(6分)有一个电话号码是六位数,其中左边三位数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数.这个电话号码是.8.(6分)有一串数,第100行的第四个数是.1,23,4,5,67,8,9,10,11,12…9.(7分)在1997×1997的方形棋盘上每格都装有一盏灯和一个按钮,按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变不亮,不亮变亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?10.(6分)小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年岁.1。
2020年“春笋杯”数学花园探秘科普活动试卷(小高组决赛a卷)
根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末占整个药剂的百分比).他首
先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为 9%;如果再
加入同等量的水仙根粉末,这时“生死水”的浓度变为 23%;那么普通型“生死水”的
浓度为
%.
二、填空题Ⅱ(每题 10 分,共 50 分)
6.(10 分)一次考试有 3 道题,四个好朋友考完后核对答案,发现四人分别对了 3、2、1、
乙:我全对了,丙全错了,甲考的不如丁.
丙:我对了一道,丁对了两道,乙考的不如甲.
丁:我全对了,丙考的不如我,甲考的不如乙.
如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了 A、B、C、D 道
题,那么四位数 = 1203 . 【解答】解:根据分析,全队的人不会说自己对的题少于 3,所以只有乙、丁可能全对. 若乙全对,则排名是乙、丁、甲、丙,与丙所说的:“丁对了两道”是假话矛盾;
题,那么四位数 =
.
7.(10 分)如图算式中,不同的汉字代表不同的数字.如果
=2015,且 是
第 1页(共 12页)
质数,那么
=
.
8.(10 分)如图的图案由 1 个圆和 2 个大小相同的正方形组成(2 个正方形的公共部分为正
八边形).如果圆的半径为 60 厘米,那么阴影部分的面积是
平方厘米.(π取 3.14)
2015 年“迎春杯”数学花园探秘科普活动试卷(小高组决赛 A
卷)
一、填空题Ⅰ(每题 6 分,共 30 分)
1.(6 分)算式(1﹣ + ﹣ + ﹣ )÷( + + )的计算结果是
.
2.(6 分)一张边长为 10 厘米的正方形纸片,如图对折两次,再沿两遍的中点连线剪掉一
迎春杯小中组决赛(卷C)
2018年“数学花园探秘”科普活动小学中年级组决赛试卷C(测评时间:2018年1月6日10:30---11:30)一、填空题Ⅰ(每小题8分,共32分)1、算式37×(5+4+3+2+1)的计算结果是()。
2、下面两个算式中,不同汉字代表不同的非零数字,相同汉字代表相同数字。
数×学=花园数+学=探秘那么,“花园探秘”代表的四位数是()。
3、有8个大小相同的正方体木块,其中红色的3个,蓝色的5个,用它们拼成一个如图所示的大正方体。
那么,有()种不同的拼法。
(经旋转后相同的算同一种拼法)4、P市举办了A、B两场音乐会。
某音乐学院弦乐系有37名学生听了音乐会A,23名学生听了音乐会B。
若听了两场的学生与只听了一场的学生一样多,那么,其中这两场音乐会都听了的学生有()名。
二、填空题Ⅱ(每小题10分,共40分)5、聪聪参加了7门考试,每门满分都是100分,之后成绩一门一门地公布,每公布一门成绩,他的“已公布成绩的平均分”都提高1分,则第一门公布的成绩和最后一门公布的成绩差()分。
6、在空格内填入数字1---9,使得每行九个数字互不相同,每列三个数字也互不相同,且同列三个数的和写在了每列的最上方方格里。
表格中的黑点表示两边的数字成两倍关系,白点表示两边的数字差为1(没有标记黑点或白点的格子就不存在这样的关系)。
那么,从右边数第二列从上到下组成的三位数是()。
7、某一年,精英一班孩子的年龄之和与精英二班孩子的年龄之和恰好相等;过了一年,精英一班新报名了一个孩子,使一班的年龄和比二班的年龄和大6岁;又过了一年,这个孩子调到了精英二班,使二班的年龄和比一班的年龄和大16岁。
那么两个班原来相差()人。
8、将数字0---9各一个填入右边的十个六边形中,每个六边形中填一个数字,要求:任意相邻的两个六边形中所填的数字,下层的比上层的大,同层中右边的比左边的大。
那么满足要求的不同填法共有()种。
三、填空题Ⅲ(每小题12分,共48分)9、开心小学的老师为“防尘降霾”植树活动买来了一些树苗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年“迎春杯”数学花园探秘决赛试卷(小高组C卷)一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016÷(13﹣8)×(﹣)的计算结果是.2.(8分)帅帅七天背了一百多个单词,前三天所背单词量与后四天所背单词量的比是3:4,后三天所背单词量与前四天所背单词量的比是5:6;那么帅帅第四天背了个单词.3.(8分)四段相同的圆弧围成了图①的地板砖,且每段圆弧都是同一个圆的四分之一(这样的地板砖可以如图②那样密铺平面),如果地板砖的两段外凸弧的中点间距离30厘米,那么一块地板砖的面积是平方分厘米.4.(8分)销售一种商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高%.5.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是.二、填空题(共5小题,每小题10分,满分50分)6.(10分)某项工程,单独做甲需要24天,乙需要36天,丙需要60天;已知三个队伍都恰好干了整数天,且18天内(含18天)完成了任务,那么甲至少干了天.7.(10分)请将1﹣9分别填入下面算式的方框中,每个数字恰用一次,使等式成立,已知两位数不是3的倍数,那么五位数是.8.(10分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是.9.(10分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是.10.(10分)分数化成循环小数后,循环节恰有位.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,在七个空白的方格内各填入一个正整数(可以相同),使得上下相邻的两个数,下面是上面的倍数;左右相邻的两个数,右面是左面的倍数,那么共有种填法.12.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走分钟到达B地.13.(12分)正十二边形的边长是12厘米,那么图中阴影部分的面积是平方厘米.14.(12分)如图的字母分别表示1﹣9内的不同数字,相邻两格中数字共能组成24个两位数(如,,),同行或同列三个数字共能依次组成12个三位数(如,,),这36个数中,合数最多有个.2019年“迎春杯”数学花园探秘决赛试卷(小高组C卷)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016÷(13﹣8)×(﹣)的计算结果是105.【解答】解:2016÷(13﹣8)×(﹣)=2016÷×=2016××=105故答案为:105.2.(8分)帅帅七天背了一百多个单词,前三天所背单词量与后四天所背单词量的比是3:4,后三天所背单词量与前四天所背单词量的比是5:6;那么帅帅第四天背了18个单词.【解答】解:根据分析,设前三天背的单词量为3k,则后四天背的单词量为4k,第四天的单词量为a,则后三天背的单词量为4k﹣a,按题意,有:,解得:a=,故后三天背的单词量为:,故:前三天,第四天,后三天背的单词量之比为:3k::=33:9:35,设前三天,第四天,后三天背的单词量分别为:33b,9b,35b,则七天的单词量为:33b+9b+35b=77b,∵100<77b<200∴b=2,即:第四天背的单词量为:9×2=18个.故答案是:18.3.(8分)四段相同的圆弧围成了图①的地板砖,且每段圆弧都是同一个圆的四分之一(这样的地板砖可以如图②那样密铺平面),如果地板砖的两段外凸弧的中点间距离30厘米,那么一块地板砖的面积是450平方分厘米.【解答】450解:30÷2=15(厘米)3.14×(30÷2)2÷4﹣15×15÷2=3.14×225÷4﹣112.5=176.625﹣112.5=64.125(平方厘米)3.14×(30÷2)2﹣64.125×4=3.14×225﹣256.5=706.5﹣256.5=450(平方厘米)答:一块地板砖的面积是450平方厘米.故答案为:450.4.(8分)销售一种商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高12%.【解答】解:1+25%=125%1+40%=140%(140%﹣125%)÷125%=15%÷125%=12%答:售价应该提高12%.故答案为:12.5.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是2601.【解答】解:根据分析,将2016的四个数字重新编排,设此四位数为A=n2,322<1026≤A≤6210<802,32<n<80,要想组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,个位数为1和6的数有:2061、2601、6021、6201、1206、1026、2016、2106,共八个数,其中,若个位数为6,则n=36、46、56、66、76,而362=1296,462=2116,562=3136,662=4356,762=5776,均不合题意,故排除,所以个位数为1,而2061、2601、6021、6201,这四个数中只有2601=512,是一个平方数,此四位数是2601,故答案是:2601.二、填空题(共5小题,每小题10分,满分50分)6.(10分)某项工程,单独做甲需要24天,乙需要36天,丙需要60天;已知三个队伍都恰好干了整数天,且18天内(含18天)完成了任务,那么甲至少干了6天.【解答】解:依题意可知:甲乙丙的效率为:,,.要甲最少干几天那么需要乙丙工作天数多.当乙正好工作18天时,工作总量为18×=.当乙工作天数为18天时,剩余的工作总量丙工作不是整数天.那么分析60的约数15天时,丙的工作量为:.甲的工作天数为:(1﹣﹣)=6(天)故答案为:67.(10分)请将1﹣9分别填入下面算式的方框中,每个数字恰用一次,使等式成立,已知两位数不是3的倍数,那么五位数是85132.【解答】解:2016=2×2×2×2×2×7×3×3,因为两位数不是3的倍数,则后面必乘以至少有一个能被3整除的个位数,此时,2016=32×7×9=56×6×6;显然56×6×6不合题意,舍去,故2016=×□×□=32×7×9,=32;1~9数字已经用了2,3,7,9;再看看□×□×(﹣C)只能是1,4,5,6,8.只有2016=4×8×63=6×8×42=4×6×84可能符合,①若2016=4×8×63,则63=70﹣7=71﹣8=72﹣9=64﹣1=65﹣2=66﹣3=67﹣4=68﹣5=69﹣6(数字重复,故舍去);②若2016=6×8×42,则42=50﹣8=51﹣9=43﹣1=44﹣2=45﹣3=46﹣4=47﹣5=48﹣6=49﹣7(数字重复,故舍去),③若2016=4×6×84,则84=90﹣6=91﹣7=92﹣8=93﹣9=85﹣1=86﹣2=87﹣3=88﹣4=89﹣5,符合条件的只有84=85﹣1,故2016=4×6×(85﹣1)即:,C=1.此五位数是:85132.故答案是:85132.8.(10分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是7.【解答】解:根据丙说:“我拿到的两个数都是合数,但它们互质”可得,是4、8、9、10中的两张,丙抽取的两张是9和4、8、10中的一张;根据乙说:“我拿到的两个数不互质,也不是倍数关系”可得,肯定没有2,那么只能是4、6、8、10中的两个,即4和6、4和10、6和8、6和10、8和10;先假设,丙抽取的两张是9和4;乙抽取的两张是8和6,还剩下,2、3、5、7、10,此时,先满足甲说:“我拿到的两个数互质,因为它们相邻”,满足此条件的是2、3;则,还剩下5、7、10,其中满足丁说:“我拿到的两个数是倍数关系,它们也不互质”是5和10,所以,最后还剩下数字7.答:剩下的一张卡片上写的数是7.故答案为:7.9.(10分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是46123.【解答】解:依题意可知:首先是第二行第二列的数字只能是5,第三行第四列只能是6.继续推理可知答案如图所示:故答案为:46123.10.(10分)分数化成循环小数后,循环节恰有6位.【解答】解:=1÷2016=0.00049603174603174…,所以,循环节是603174,循环节恰有6位.故答案为:6.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,在七个空白的方格内各填入一个正整数(可以相同),使得上下相邻的两个数,下面是上面的倍数;左右相邻的两个数,右面是左面的倍数,那么共有136种填法.【解答】解:(1)E=1时,B=1,D=1;F=1时,C=1,此时一共有6种填法;F=3时,C=1或3,此时一共有12种填法;F=9时,C=1或3或9,此时一共有18种填法;(2)E=3,B=D=1时,F=3,C=1或3,此时一共有2•(2+2+1)=10种填法;F=9,C=1或3或9,此时一共有3•(2+2+1)=15种填法;(3)E=3,B=1,D=3时,F=3,C=1或3,此时一共有2•(2+1)=6种填法;F=9,C=1或3或9,此时一共有3•(2+1)=9种填法;(4)E=3,B=3,D=1时,同(3)有6+9=15种填法;(5)E=B=D=3时,F=3,C=3,此时一共有3种填法;F=9,C=3或9,此时一共有6种填法;(6)E=9,B=D=1时,F=9,C=1或3或9,H=9,G=1或3或9,此时一共有9种填法;(7)E=9,B=1,D=3时,F=9,H=9,G=3或9,C=1或3或9,此时一共有6种填法;(8)E=9,B=1,D=9时,F=9,此时有3种填法,同理E=9,B=3时,一共有6+4+2=12种填法;E=9,B=8时,一共有6种填法,综上所述,一共有36+25+30+9+9+6+15+6=136种.12.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走12分钟到达B地.【解答】解:设甲、乙的速度分别为v甲、v乙,当甲走了全程的时被乙追上,时间为t 小时,则,v甲(t+)=v乙t=S,∴v甲=,v乙=,又v甲(t+++)+v乙=S代入整理可得t=小时=24分钟,所以甲行全程需要108分钟,又相遇后乙再次来到追上甲的地点的时间为24分钟,即又甲行了24分钟,总共行了72+24=96分钟,所以甲还要走108﹣96=12分钟.故答案为12分钟.13.(12分)正十二边形的边长是12厘米,那么图中阴影部分的面积是576平方厘米.【解答】解:如图,易知∠ADC=(180°﹣30°)=75°,∠DAC=(150°﹣90°)=30°,∴∠ACD=180°﹣∠ADC﹣∠DAC=75°,∴AD=AC=12,∵∠ACB=180°﹣75°﹣45°=60°,∴∠ABC=30°,∵∠CAB=90°,∴BC=2AC=24,∴阴影部分的面积=24×24=576平方厘米.故答案为57614.(12分)如图的字母分别表示1﹣9内的不同数字,相邻两格中数字共能组成24个两位数(如,,),同行或同列三个数字共能依次组成12个三位数(如,,),这36个数中,合数最多有33个.【解答】解:由题意,与5有关的两位质数只有两个53,59两种情况,故E取5,又3,6,9无论怎么组合,都是两位或3位合数,故考虑C=3,F=6,I=9,此时H=4,49,94都是合数,剩下4个数1,2,7,8,个位数是偶数,该数一定是合数,故考虑A=8,G=2,进而D=1,B=7,此时36个数中,只有13,31,457不是合数,所以36个数中,合数最多有33个.故答案为33.。