GE温湿度传感器

GE温湿度传感器
GE温湿度传感器

GE 温湿度传感器/变送器

使用说明

本文对GE 温湿度一体的传感器/变送器功能及使用作相应的描述。传感器模

块集成了GE 最新推出的温湿度传感器Chipcap ,用户在使用过程中无需校准。该模块上电后及自动检测温度、湿度,通过UART 接口直接输出。

关于湿度测量的精度,请参考Chipcap 的相关文档。本模块在集成Chipcap 过程中,基本保证了Chipcap 性能的一致,其中更是使用了GE 的高精度温度传感器对温度测量提供了更高的精度。

本文中对UART 的数据发送协议也作了详细的描述。

图-1 传感器PCB 尺寸图

图-1为传感器的PCB 尺寸图。整个传感器的尺寸约为2cm ×5.3cm 。安装定位孔的直径为mm 3φ。

一 基本性能

温度测量范围:,超出范围外,通讯协议中有溢出指示

C C °°?70~5湿度测量范围:0~100%RH

输出:UART

二 电气特性

输入电压:5V

%10±接头形式:用户自选(现测试用为4pin 的排针)

接口定义:

管脚编号 管脚名称 说明

1 VCC 电源+

2 GND 电源地

3 TX UART 发送端

4 RX UART 接收端(备用及功能扩展)

接口电平配置:UART 的接口为0-5V 逻辑电平

UART 的配置:

9600bps ,无奇偶校验,1bit 停止位,无流量控制

温湿度测量采样及发送周期为1s 。用户使用时,请留意传感器本身的响应速度,如温度传感器的热响应时间常数现为10s 。

测量参数:

温度测量输出范围(可根据要求扩展):

C C °°?70~5从UART 接收到的数据To 需要通过以下公式进行转换,获得当前实际的温度值T 。

0.5100

?=To T

湿度测量输出范围:0~100%RH

从UART 接收到的数据需要通过以下公式进行转换,获得当前实际的湿度值RHo RH 。

5

.2RHo RH =

三 UART 通讯协议

本UART 接口使用软件的方式进行数据的判别。在发送的每帧数据中,格式如下:

Head Address Byte Count

Command Temperature Humidity Status CRC8

0xFF xFF

0xFE 0x05 0x02 Low High 2 Bytes 1 Byte 1 Byte 1 Byte 2 Bytes 1 Byte 1 Byte 1 Byte

其中前面的5个字节在温湿度测量发送功能中固定不变的。

Head :0xFF 0xFF

每帧数据的起始,可以通过连续两个0xFF进行判别。除帧的起始字节外,帧中其余任何地方出现0xFF时,都要在发送过程中在该字节后面插入一个标识字节

0x00,以将该数据部分的字节与帧起始分开。

Address:0xFE

现指温湿度传感器模块的地址。作为从设备,0xFE是指定为该模块的地址。

Byte Count:该字节中是数字是指从Command到Status为止在未插入标识字节前的字节数。请参考Head部分的说明。举例如下:

0xFF 0xFF 0xFE 0x05 0x02 0xAA 0x0A 0x76 0x00 0x01

Head Data + CRC

上面的数据中没有出现0xFF。

当出现0xFF时,如:

0xFF 0xFF 0xFE 0x05 0x02 0xFF 0x0A 0x76 0x00 0x01

Head Data + CRC

在发送时,数据将会如下:

Head Data + CRC

其中0x00即为插入的标识字节,而表示数据段字节数的参数和CRC校验字节都没有变化。即使将0x00作为参数用于计算CRC,CRC的结果也因为是0的缘故而不会改变。

Command:指令,1个字节

该指令这里将一直是0x02,表示自动发送数据。可以扩展。

Temperature:温度,两个字节

由于温度的精度要求高,因此输出范围较大以增加分辨率。使用两个字节表示。第一个字节为温度数据的低位字节,第二个字节为温度数据的高位字节。

当从状态字节(Status)中发现温度向下溢出时,该数据表示为0xFFFF。

当从状态字节(Status)中发现温度向上溢出时,该数据表示为0xEFFF。

Humidity:湿度,一个字节。

当从状态字节(Status)中发现湿度测量向上溢出时,该数据表示为0xFF。

Status:状态,一个字节

6 5 4 3 2 1 0 Bit7

TU

TO

RHO

1/0 1/0

1/0

Bit0: TU

Bit0 = 1时,说明温度向上溢出;Bit0与Bit1不会同时为1。

Bit1 = 1时,说明温度向下溢出;Bit0与Bit1不会同时为1。

Bit2 = 1时,说明湿度向上溢出;

CRC8:CRC冗余校验,一个字节

CRC8校验的计算从Address字节到Status字节进行。

其生成多项式为:G(x) = x8 + x5 + x4 + 1

以下为C语言编写的一段半字节CRC8生成法。

#define G_Poly 0x31

const unsigned char CRCLTB[16] = {

0x00,0x31,0x62,0x53,0xC4,0xF5,0xA6,0x97,0xB9,0x88,0xDB,0xEA,0x7D,0x4C,0x1F,

0x2E};

unsigned char CRC8LTB(unsigned char *ptr,unsigned char len)

{

unsigned char da;

unsigned char crc = 0;

while(len--)

{

da = crc / 16; /*save high 4 bits of CRC*/

crc <<= 4; /*low 4bits * (2**4)*/

crc ^= CRCLTB[da ^ (*ptr/16)]; /*High half byte*/

da = crc / 16; /*save high 4 bits of CRC*/

crc <<= 4; /*low 4bits * (2**4)*/

crc ^= CRCLTB[da ^ (*ptr & 0x0f)]; /*low half byte*/

ptr++;

}

return(crc);

}

DHT11温湿度传感器

基于单片机的DHT1温湿度 传感器设计 姓名:史延林指导老师:黄智伟学 院:电气工程学院 学号:20094470321 摘要: 温湿度是生活生产中的重要的参数。本设计为基于单片机的温湿度检测与控制 系统,采用模块化、层次化设计。用新型的智能温湿度传感器DHT1住要实现对温度、 湿度的检测,将温度湿度信号通过传感器进行信号的采集并转换成数字信号,再运用单片机STC89C5进行数据的分析和处理,为显示和报警电路提供信号,实现对温湿度的控制报警。报警系统根据设定报警的上下限值实现报警功能,显示部分采用LCD160液晶显示所测温湿度值。系统电路简单、集成度高、工作稳定、调试方便、检测精度高,具有一定的实用价值。

关键词:单片机;DHT1温湿度传感器;LCD1602显示 第一章:课程构思 1.1课题背景 温湿度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用。在生产中,温湿度的高低对产品的质量影响很大。由于温湿度的检测控制不当,可能使我们导致无法估计的经济损失。为保证日常工作的顺利进行,首要问题是加强生产车间内温度与湿度的监测工作,但传统的方法过于粗糙,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。目前,在低温条件下(通常指100C以下),温湿度的测量已经相对成熟。利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。但人们对它的要求越来越高,要为现代人工作、科研、学习、生活提供更好的更方便的设施就需要从数字单片机技术入手,一切向着数字化,智能化控制方向发展。 对于国内外对温湿度检测的研究,从复杂模拟量检测到现在的数字智能化检测越发的成熟,随着科技的进步,现在的对于温湿度研究,检测系统向着智能化、小型化、低功耗的方向发展。在发展过程中,以单片机为核心的温湿度控制系统发展为体积小、操作简单、量程宽、性能稳定、测量精度高,等诸多优点在生产生活的各个方面实现着至关重要的作用。 温湿度传感器除电阻式、电容式湿敏元件之外,还有电解质离子型湿敏元件、重量型湿敏元件(利用感湿膜重量的变化来改变振荡频率)、光强型湿敏元件、声表面波湿敏元件等。湿敏元件的线性度及抗污染性差,在检测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染而影响其测量精度及长期稳定性。 1.2主要内容 本文设计的是基于单片机STC89C5的温湿度检测和控制系统,主要以广泛应用的DHT1作为温度和湿度的检测,该仪器具有测量精度较高、硬件电路简单、并能很好的进行显示,可测试不同环境温湿度的特点。另外和控制电路相连,可以进行加湿电路和除湿电路的控制,使温度和湿度参数在预先设定的范围内,不需要人的直接参与。 单片机是系统的控制核心,所以单片机的性能关系到整个系统的好坏。因此单片机的选择,对所设计系统的实现以及功能的扩展有着很大的影响。本设计中,最终选用的集成温度传

新型的数字温湿度传感器性能参数.

新型的数字温湿度传感器性能参数 LM-400、LM-410、LM-420是一种新型的温度或温湿度采集模块,利用它可以实现现场温度值、相对湿度值的采集,同时利用其自身的RS-485总线串行通信接口可以方便地和机房监控主机或其他工控主机进行联网。 工作于-40℃~85℃工业级温湿度采集模块,按显示方式分,有不带LCD显示屏(LM-400)和带LCD显示屏(LM-410、LM-420)两类,按报警方式分有不带独立报警(LM-400、LM-410)和带独立报警(LM-420)两类。采集温度范围为-40℃~+85℃,精度0.1℃;相对湿度范围0~100%,精度0.5% 。 LM-400、LM-410、LM-420温湿度采集模块可通过隔离的485通讯接口与RS-485局域控制网组网连接,RS-485最多允许32个温湿度采集模块挂在同一总线上,但如采用Link-Max的RS-485中继器,则可将多达256个温湿度采集模块连到同一网络,且最大通信距离为1200m。在将温湿度采集模块安装入网前,应对其进行配置,并首先应将模块的波特率与网络的波特率设为一致,同时应分别设置温湿度采集模块为不同的地址,防止各温湿度采集模块的地址冲突。 将温湿度采集模块正确连接后,主机发出读数据命令即可使温湿度采集模块将数据送回主机。温湿度采集模块内的数据每秒钟更新一次,并周期性地更新LCD显示屏的显示数据。

LM-400用于不需要显示的场合,如户外ATM机柜,LM-410用于不需要现场独立报警的场合,如有主机控制的安防工程;LM-420是功能最多的型号,除可完成温度采集、湿度采集外,还可以预先设置温度、湿度的上下限报警值,当环境参数超过该设定值时,机内蜂鸣器立即响起报警声,同时LM-420机内的继电器吸合,可以用来控制一个声光报警器(警号),不用主机也可实现自主报警,让现场管理人员第一时间地作出应对措施。 LM-400、LM-410、LM-420智能温湿度采集模块是一种具有广泛应用前景的全数字化温湿度采集模块,使用该模块可使计算机房的环境监控变得十分容易,监控主机可方便地进行机房的各重要区块(如刀片服务器机柜、路由器机柜、网络交换机机柜、UPS配电柜)的温湿度数据采集,同时简化了整个机房监控系统,而机房监控系统的可靠性也得到了提高。因此,该模块在机房监控系统、电力系统和工业自动化等领域获得广泛的应用,具有极优的性价比。 LM-400、LM-410、LM-420还可和LM-8052NET配合,组成TCP/IP的温度采集网络,可实现远程采集温度与湿度。 性能参数 输入响应时间(模块内数据更新率)为1秒同步测量 1路隔离的485, MODBUS RTU通讯协议 采用RS-485二线制输出接口时,具有+15kV的ESD保护功能

温湿度传感器SHT21的应用介绍

温湿度传感器SHT21的应用介绍 近年来,随着智能手机、平板电脑等移动设备的迅速发展,其中内置的微机电系统(MEMS)的比例越来越高。根据市调机构Juniper Research公布的最新研究报告,预计到2016年应用到移动设备中的MEMS器件收入将超过60亿美金。其中除了已经大规模应用的加速度计、陀螺仪、重力感应计、麦克风、射频器件等,还包括刚进入商用不久的压力传感器、扬声器、轨迹球、微型投影机、温湿度传感器等。其中温湿度传感器等新兴的MEMS器件则有望成为智能手机硬件差异化的重要部件。 "目前,我们公司的传感器每年的出货量已经超出了几千万片,全球业务增长幅度近年来都在40%左右。"总部位于瑞士的深圳盛思锐(Sensirion)公司总经理Paul Chia表示,作为全球领先的传感器制造商,盛思锐公司早在七年前就已经进入中国市场,并向中国厂商推广温湿度传感器。"我们的产品在中国市场主要分三大应用:第一是安防监控;第二是节能,普遍应用到家电,汽车等领域;第三则是舒适度,主要应用于消费类电子产品领域。"在2009年,盛思锐公司推出了一款当时世界上最小的数字湿度和温度传感器--SHT21,引起市场广泛关注。 一直以来,盛思锐在推广温湿度传感器的过程中,都非常注重于宣传舒适度概念。"之前的客户只有温度的概念,而没有湿度概念。其实相对湿度是与温度密切相关的,只有对同一测量点的湿度和温度进行数据采集,才能保证相对湿度的准确性。"Paul Chia表示,人体对空气湿度的舒适感应空间较窄,因此需要通过感应器来感知湿度,随时补充或降低水分。 在2009年,盛思锐公司推出了一款当时世界上最小的数字湿度和温度传感器-SHT21,引起市场广泛关注。 盛思锐是业内第一家将温、湿度传感器集成到一起的厂商。"我们不仅仅是提供一个感应器,而是把温度补偿和标定数据都集成在一个电路里面。我们的温湿度传感器在出厂前都经过完全标定,客户只需将其跟单片机通讯就可以直接采集到数据。"据介绍,温湿度传感器作为电子技术和物理化学原理的复合技术,硬件因素只占其中50%,另一个重要因素

传感器的发展历程

传感器的历史及现状 传感器是能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。传感器的种类很多,按照不同的功能,不同的适用领域可以划分多种类型。其中,温度传感器是最早开发、应用最广的一类传感器。从17世纪初,人们就开始利用温度计进行测量,而真正把温度变成电信号的传感器是1821年由德国物理学家赛贝发明的,这就是后来的热电偶传感器。在半导体得到充分发展以后,相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。 我国的传感器发展已经经历了50多个春秋,20世纪80年代,改革开放给传感器行业带来了生机与活力。90年代,在党和国家关于“大力加强传感器的开发和在国民经济中普遍应用”的决策指引下,传感器行业进入了新的发展时期。目前来看,传感器的应用已经遍及到工业生产、海洋探测、环境保护、医学诊断、生物工程等多方面的领域,几乎所有的现代化的项目都离不开传感器的应用。在我国的传感器市场中,国外的厂商占据了较大的份额,虽然国内厂商也有了较快的发展,但仍然无法跟上国际传感器技术的步伐。近年来,由于国家的大力支持,我国建立了传感器技术国家重点实验室、微米/纳米国家重点实验室、机器人国家重点试验室等研发基地,初步建立了敏感元件和传感器产业,目前我国已有1,688家从事传感器的生产和研发的企业,其中从事MEMS研发的有50多家。在经济全球化趋势下,随着我国的投资环境的改善已经对传感器技术的大力支持,各国传感器厂商纷纷涌进我国的传感器市场,使得国内的传感器领域的竞争日趋激烈。于此同时,强烈的技术竞争必然会导致技术的飞速发展,促进我国传感器技术的快速进步。 未来的传感器会向着小型化、多功能化、智能化、集成化、系统化的方向发展,由微传感器、微执行器及信号和数据处理器总装集成的系统越来越引起人们的关注。 多功能化 传感器开始只是对单一量的测量,在众多领域中单一的量不能准确客观地反映客观事物和环境。这就要求传感器对多种量进行测量。由若干种敏感元件组成的多功能传感器兼具新一代的探测功能,它可以同时测量多种数值,从而对被测量体变化的测量更加精准。这种多功能的传感器应用范围更广泛。 智能化 当前的智能化传感器通常是融入一个或多个敏感元件、精密模拟电路、数字电路、微处理器(MCU)、通讯接口、智能软件,并将着一系列的硬件集成在一个封装组件内,智能化传感器相对普通传感器的优势是不容质疑的。智能化传感器是一种带微处理器的传感器,是微型计算机和传感器相结合的成果,它兼有检测、判断和信息处理功能,与传统传感器相比有很多特点:具有判断和信息处理功能,能对测量值进行修正、误差补偿,因而提高测量精度;可实现多传感器多参数测量;有自诊断和自校准功能,提高可靠性;测量数据可存取,使用方便;有数据通信接口,能与微型计算机直接通信。把传感器、信号调节电路、单片机集成在一芯片上形成超大规模集成化的高级智能传感器。我国在这方面的研究与开发还很落后,主要是因为我国半导体集成电路工艺水平有限。由于集成电路和芯片技术的发展,传感器装有微处理器,除执行信息处理和信息存储,还能够进行逻辑思考和对特殊情况作出判断并进行处理。 小型化 由于计算机技术的发展,辅助设计(CAD)技术和集成电路技术迅速发展,微机电系统

基于智能手机的温湿度传感器应用

一、基于智能手机的温湿度传感器应用 1、应用系统简介 由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。市场上的温湿度传感器一般是测量温度量和相对湿度量。温湿度传感器不仅广泛的应用在工控行业、食品药物储存行业、档案管理行业中,也可安装在我们的手机上。温湿度传感器的传统应用是天气预报以及室内监测,手机中如果集成这种应用这就极大的方便了客户的出行。 2、应用体系结构 (1)感知层 感知层通过温湿度传感器采集数据,其中包括温度、湿度。 (2)网络层 网络层将传感器采集的数据传给手机应用系统进行处理分析。 (3)应用层 应用层中应用系统将数据处理后的数据展示给用户。 3、信息感知(采集)、传输、处理等方面的技术 温湿度传感器选用湿敏电容型传感器,图1为该传感器的结构。该传感器是温湿感应元件共体,具有防电磁干扰的性能。测温是一个标准的铂电阻Pt100,以四线制方式测量,减少长引线带来的测量误差。 图1 HMC45A温湿传感器外型图 工作原理 传感器主要由湿敏电容和转换电路两部分组成。湿敏电容的结构见图2所示。它由玻璃底衬、下电极、湿敏材料、上电极几部分组成。两个下电极与湿敏材料,上电极构成的两个电容成串联连接。湿敏材料是一种高分子聚合物,它的介电常数随着环境的相对湿度变化而变化。当环境湿度发生变化时,湿敏元件的电容量随之发生改变,即当相对湿度增大时,湿敏电容量随之增大,反之减小(电容量通常在48~56pf间)。传感器的转换电路把湿敏电容变化量转换成电压量变化,对应于相对湿度0~100%RH的变化,传感器的输出呈0~1v的线性变化。

温度传感器的历史发展与研究现状

温度传感器的历史发展与研究现状 摘要:本文通过查阅各类文献并进行分析总结,简述了温度传感器的意义和作用,介绍了温度传感器的发展历史,列举并分析了常用温度传感器的类型,对比了国外温度传感器设计和研究领域的现状与发展,着重阐述了国外先进的CMOS模拟集成温度传感器的主要原理。最后,文章对温度传感器的未来发展方向做出了说明。 关键词:温度传感器,IC温度传感器,CMOS集成温度传感器 一、背景介绍 1.1绪言 人们为了从外界获取信息,必须借助于感觉器官,而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中,它们的功能就远远不够了。为适应这种情况,就需要传感器。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。[1]传感器是以一定的精度和规律把被测量转换为与之有确定关系的、便于应用的某种物理量的测量装置。它是实现自动测量和自动控制的首要环节。[2]温度是反映物体冷热状态的物理参数,它与人类生活环境有着密切关系。早在2000多年前,人类就开始为检测温度进行了各种努力,并开始使用温度传感器检测温度。[3]在人类社会中,无论工业、农业、商业、科研、国防、医学及环保等部门都与温度有着密切的关系。 [4]在工业生产自动化流程中,温度测量点一般要占全部测量点的一半左右。[5]因此,人类离不开温度传感器。传感器技术因而成为许多应用技术的基础环节,成为当今世界发达国家普

遍重视并大力发展的高新技术之一,它与通信技术、计算机技术共同构成了现代信息产业的三大支柱。[6] 1.2温度传感器的发展历史和主要分类 人们研究温度测量的历史已经相当的久远了。公元1600年,伽利略研制出气体温度计。 [7]一百年后,酒精温度计[8]和水银温度计[9]问世。到了1821年,德国物理学家赛贝发明了热电偶传感器[10],人类真正的第一次把温度变成了电信号。此后,随着技术的发展,人们研制出了各种温度传感器。本世纪,在半导体技术的支持下,相继诞生了半导体热电偶传感器、PN结温度传感器和集成温度传感器。[11]与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。[12] 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。[13] 热电偶传感器有自己的优点和缺陷。热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。然而热电偶传感器的灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。[14] IC温度传感器即数字集成温度传感器,其外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。尤其是CMOS工艺实现的智能温度传感芯片具有低成本、低功耗、与标准数字工艺兼容以及芯片面积小等优点,已经取代了双极型工艺。IC温度传感器又包括模拟输出和数字输出两种类型,最主要的特点之一是将温度传感模块和信号的处理电路同时集成在一个芯片上。[15]

浅谈温湿度传感器的未来发展重点

浅谈温湿度传感器的未来发展重点 温湿度传感器市场究竟有多大? 2017年全球市场规模增长至1955亿美元 2018年突破2000亿美元 随着新基建、智慧城市、5G等多种项目推进, 未来5年全球市场将保持8%左右的速度增长 市场规模将会超过3000亿美元!!! 圈内有句老话叫:站在对的风口,猪都可以起飞! 回顾我们的主角 温湿度传感器,一个主要用于监测环境温度、湿度的仪器。 目前,已经广泛应用与医药化工、电子通讯、气象、食品、仓储、农业以及文物保护等领域。

进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。 未来的温湿度传感器市场尤其是在消费电子及物联网等领域拥有广阔的前景。 温湿度传感器作为电子技术和物理化学原理的复合技术,硬件因素只占其中50%,另一个重要因素则是标定。如果要保证测出来的值是准确的,则需要保证每次检测的标定值永远在一个固定范围内,这是非常难做到的。精度高,性能稳定一直是温湿度传感器的硬性指标。 那么未来温湿度传感器有哪些发展重点? 1、应用机器智能的故障探测和预报。任何系统在出现错误并导致严重后果之前,必须对其可能出现的问题作出探测或预报。目前非正常状态还没有准确定义的模型,非正常探测技术还很欠缺,急需将传感信息与知识结合起来以改进机器的智能。 2、正常状态下能高精度、高敏感性地感知目标的物理参数;而在非常态和误动作的探测方面却进展甚微。因而对故障的探测和预测具有迫切需求,应大力开发与应用。 3、目前传感技术能在单点上准确地传感物理或化学量,然而对多维状态的传感却困难。如环境测量,其特征参数广泛分布且具有时空方面的相关性,也是迫切需要解决的一类难题。因此,要加强多维状态传感的研究与开发。 4、目标成分分析的远程传感。化学成分分析大多在基于样本物质,有时目标材料的采样又很困难。如测量同温层中臭氧含量,远程传感不可缺少,光谱测定与雷达或激光探测技术的结合是一种可能的途径。没有样本成分的分析很容易受到传感系统和目标组分之间的各种噪音或介质的干扰,而传感系统的机器智能有望解决该问题。 5、用于资源有效循环的传感器智能。现代制造系统已经实现了从原材料到产品的自动化生产过程,当产品不再使用或被遗弃时,循环过程既非有效,也非自动化。如果

DHT11温湿度传感器

基于单片机的DHT11温湿度 传感器设计 姓名:史延林 指导老师:黄智伟 学院:电气工程学院 学号:20094470321 摘要: 温湿度是生活生产中的重要的参数。本设计为基于单片机的温湿度检测与控制系统,采用模块化、层次化设计。用新型的智能温湿度传感器DHT11主要实现对温度、湿度的检测,将温度湿度信号通过传感器进行信号的采集并转换成数字信号,再运用单片机STC89C52进行数据的分析和处理,为显示和报警电路提供信号,实现对温

湿度的控制报警。报警系统根据设定报警的上下限值实现报警功能,显示部分采用LCD1602液晶显示所测温湿度值。系统电路简单、集成度高、工作稳定、调试方便、检测精度高,具有一定的实用价值。 关键词:单片机;DHT11温湿度传感器; LCD1602显示 第一章:课程构思 1.1课题背景 温湿度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用。在生产中,温湿度的高低对产品的质量影响很大。由于温湿度的检测控制不当,可能使我们导致无法估计的经济损失。为保证日常工作的顺利进行,首要问题是加强生产车间内温度与湿度的监测工作,但传统的方法过于粗糙,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。目前,在低温条件下(通常指100℃以下),温湿度的测量已经相对成熟。利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。但人们对它的要求越来越高,要为现代人工作、科研、学习、生活提供更好的更方便的设施就需要从数字单片机技术入手,一切向着数字化,智能化控制方向发展。 对于国内外对温湿度检测的研究,从复杂模拟量检测到现在的数字智能化检测越发的成熟,随着科技的进步,现在的对于温湿度研究,检测系统向着智能化、小型化、低功耗的方向发展。在发展过程中,以单片机为核心的温湿度控制系统发展为体积小、操作简单、量程宽、性能稳定、测量精度高,等诸多优点在生产生活的各个方面实现着至关重要的作用。 温湿度传感器除电阻式、电容式湿敏元件之外,还有电解质离子型湿敏元件、重量型湿敏元件(利用感湿膜重量的变化来改变振荡频率)、光强型湿敏元件、声表面波湿敏元件等。湿敏元件的线性度及抗污染性差,在检测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染而影响其测量精度及长期稳定性。1.2主要内容

温度传感器的发展现状、原理及应用

温度传感器的发展现状、原理及应用 摘要: 近年来,中国工业现代化进程和电子信息产业的持续快速发展,推动了传感器市场的快速崛起。温度传感器是一类重要的传感器,占传感器总需求量的40%以上。温度传感器是一种半导体器件,利用NTC电阻随温度变化的特点,将非电物理量转化为电量,从而实现精确的温度测量和自动控制。温度传感器广泛应用于温度测量和控制、温度补偿、流量和风速测量、液位指示、温度测量、紫外和红外测量、微波功率测量等领域,广泛应用于彩电领域。电脑彩色显示,开关电源,热水器,冰箱,厨房设备,空调,汽车等领域。近年来,汽车电子和消费电子行业的快速增长推动了中国对温度传感器需求的快速增长。 关键词:温度传感器;发展现状;应用

目录 一、温度传感器的发展现状 (3) 二、温度传感器的原理 (3) (一)热电偶温度传感器原理 (4) (二)金属热电阻温度传感器原理 (4) (三)集成温度传感器原理 (4) 三、温度传感器的应用 (4) (一)在汽车中的应用 (5) (二)在家用电器中的应用 (5) (三)生物医学中的应用 (6) (四)工业中的应用 (6) (五)太空中的应用 (6) 四、结论 (6) 参考文献 (8)

一、温度传感器的发展现状 温度传感器是通过物体随温度变化而改变某种特性来间接测量的[1]。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。 由于工农业生产中温度测量的范围极宽,从零下几百度到零上几千度,而各种材料做成的温度传感器只能在一定的温度范围内使用。温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一。其测量控制一般产用各式各样形态的温度传感器。 表1.1当前市面上温度传感器分类统计表[2] 分类特征传感器名称 测量范围 超高温用1500℃以上光学高温计、辐射传感器 中高温用1000℃ -1500℃ 光学高温计、辐射传感器、热电偶 中温用500℃-1000℃光学高温计、辐射传感器、热电 低温用-250℃-0℃晶体管、热敏电阻、压力式玻璃温度计极低温用-270℃ --250℃ BaSrTi03陶瓷 现如今,在集成数字智能温度传感器领域,国内相关的设计和研究尚处于交 际处的阶段。目前市场上流行的同类温度传感器诸如DS18B20,AD7416,AD7417,AD7418,AD590等F,大国都是出自国外一些比较大的公司。就目前来说,国内的很多公司往往温度传感器产品比较少,并且已申请到的相关专利也非常少,处理厦门大学等高校申请专利外,还有香港应用科技研究院、苏州纳芯微电子、背景中电华大电子设计、上海贝岭等少数研究机构或企业的专利,虽然其专利名称比较大,但是技术涉及点并不全面。因此,在集成数字温度传感器方面,我国尚有较大的发展空间。

温湿度传感器在家庭中的应用

家庭当中常用的传感器主要有温度传感器、气体传感器、光传感器、超声波传感器以及红外线传感器等等。其中温湿度传感器在家电应用最为普遍,它不仅给生活带来极大的便利,还能使家庭内外的空气相平衡。 随着生活水平的提高,家具智能化的需求逐步显现,温度、湿度等数据采集的应用也开始显现出越来越大的市场潜力。通过温湿度传感器,C8051F985低功耗MCU,CP2403 LCD 驱动,和LCD显示器构建一个用于家庭等温度、湿度数据采集的系统,该系统主要用于方便、及时的获取室内、外的温度、湿度等数据(也可和其他传感器集成扩展数据采集应用范围)。家庭数据采集系统的工作原理 使用温湿度传感器,C8051F985低功耗处理器,CP2403 LCD驱动,都具有I C通信接口,可做成模块,只需要选用自己的LCD显示器即可。 典型应用如下:室内、室外各放置温湿度传感器(以下简称采集节点)一个,定时唤醒采集温度、湿度原始数据,经过温湿度传感器内部的AD转换器,和出厂校准的原始数据处理,转换成温、湿度最终数据,经由I C总线传递到低功耗处理器C8051F985处理。C8051F985低功耗处理器决定启用哪个采集节点,以此降低功耗,并控制CP2403 LCD驱动,将数据最终显示LCD显示器上。本文使用的Si7001温湿度传感器,C8051F985低功耗处理器,CP2403 LCD驱动,都具有I2C通信接口,可做成模块,只需要选用自己的LCD显示器即可。典型应用如下:室内、室外各放置2个Si7001温湿度传感器(以下简称采集节点),定时唤醒采集温度、湿度原始数据,经过Si7001内部的AD转换器,和出厂校准的原始数据处理,转换成温、湿度最终数据,经由I2C总线传递到低功耗处理器C8051F985处理。C8051F985低功耗处理器决定启用哪个采集节点,以此降低功耗,并控制CP2403 LCD驱动,将数据最终显示LCD显示器上。 家庭数 据采集系统的性 能- 各节点 功耗① Si7001的功耗 Si7001湿度测量 周期内典型的电 流为240uA,温度 测量周期内典型 的电流为320uA, 睡眠电流0.2uA, 每分钟进行一次 温、湿度测量的平 均功耗仅为1uA。 ②C8051F985的功 耗C8051F985睡眠电流10nA,工作电流150uA/MHz ③CP2403的功耗。睡眠电流0.02μA,工作电流<3uA。以每分钟测量一次,工作频率4MHz进行计算,平均功耗为不超过15uA,非常适合电池供电

温度传感器的应用及原理

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC 的温度等等,下面介绍几种常用的温度传感器。温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。热敏电阻器用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。 表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050K Ω。 虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏

温度传感器发展史

温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段: 1.传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。2.模拟集成温度传感器/控制器。 3.智能温度传感器。目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。 温度传感器的分类 温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。 接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这是的示值即为被测对象的温度。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。 非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大。 温度传感器的发展 1.传统的分立式温度传感器——热电偶传感器 热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量,特殊的热电偶如金铁——镍铬,最低可测到-269℃,钨——铼最高可达2800℃。 2.模拟集成温度传感器 集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。 模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。 2.1光纤传感器 光纤式测温原理 光纤测温技术可分为两类:一是利用辐射式测量原理,光纤作为传输光通量的导体,配合光敏元件构成结构型传感器;二是光纤本身就是感温部件同时又是传输光通量的功能型传感器。光纤挠性好、透光谱段宽、传输损耗低,无论是就地使用或远传均十分方便而且光纤直径小,可以单根、成束、Y型或阵列方式使用,结构布置简单且体积小。因此,作为温度计,适用的检测对象几乎无所不包,可用于其他温度计难以应用的特殊场合,如密封、高电压、强磁场、核辐射、严格防爆、防水、防腐、特小空间或特小工件等等。目前,光纤测温技术主要有全辐射测温法、单辐射测温法、双波长测温法及多波长测温等 2.1.1 全辐射测温法 全辐射测温法是测量全波段的辐射能量,由普朗克定律: 测量中由于周围背景的辐射、测试距离、介质的吸收、发射及透过率等的变化都会严重影响准确度。同时辐射率也很难预知。但因该高温计的结构简单,使用操作方便,而且自动测量,测温范围宽,故在工业中一般作为固定目标的监控温度装置。该类光纤温度计测量范围一般在600~3000℃,最大误差为16℃。 2.1.2 单辐射测温法 由黑体辐射定律可知,物体在某温度下的单色辐射度是温度的单值函数,而且单色辐射度的增长速度较温度升高快得多,可以通过对于单辐射亮度的测量获得温度信息。在常用温度与波长范围内,单色辐射亮度用维恩公式表示: 2.1.3 双波长测温法 双波长测温法是利用不同工作波长的两路信号比值与温度的单值关系确定物体温度。两路信号的比值由下式给出: 际应用时,测得R(T)后,通过查表获知温度T。同时,恰当地选择λ1和λ2,使被测物体在这两特定波段内,ε(λ1,T)与ε(λ2,T)近似相等,就可得到与辐射率无关的目标真实温度。这种方法响应快,不受电磁感应影响,抗干扰能力强。特别在有灰尘,烟雾等恶劣环境下,对目标不充满视场的运动或振动物体测温,优越性显著。但是,由于它假设两波段的发射率相等,这只有灰体才满足,因此在实际应用中受到了限制。该类仪器测温范围一般在600~3000℃,准确度可达2℃。 2.1.4 多波长辐射测温法 多波长辐射测温法是利用目标的多光谱辐射测量信息,经过数据处理得到真温和材料光谱发射率。考虑到多波长高温计有n个通道,其中第i个通道的输出信号Si可表示为: 将式(9)~(13)中的任何一式与式(8)联合,便可通过拟合或解方程的方法求得温度T和光谱发射率。Coates[8,9]在1988年讨论了式(9)、(10)

集成温度传感器

集成温度传感器AD590及其应用[ 标题:集成温度传感器AD590及其应用 htkj 等级:超级版主文章:199 积分:2698 门派:无门无派 注册:2005年...集成温度传感器AD590及其应用集成温度传感器AD590及其应用点击浏览该文件 温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段: 1.传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。 2.模拟集成温度传感器/控制器。 3.智能温度传感器。目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。 温度传感器的分类 温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。 接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这是的示值即为被测对象的温度。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。 非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大。 温度传感器的发展 1.传统的分立式温度传感器——热电偶传感器 热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量,特殊的热电偶如金铁——镍铬,最低可测到-269℃,钨——铼最高可达2800℃。 2.模拟集成温度传感器 集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。 模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。 2.1光纤传感器 光纤式测温原理

温湿度检测设计毕业论文

第1章绪论 1、1研究的目的和意义 随着社会的进步和生产需要,利用无线传感进行温度数据采集的方式应用已经渗透到生活各个方面。 在工业现场,由于生产环境恶劣,工作人员不能长时间停留在现场观察设备是否运行正常,因此需要采集数据并传输数据到一个环境相对较好的操控室内,这样就会产生数据传输问题。由于厂房过大、需要传输数据过多,使用传统的有线数据传输方式就需要铺设很多很长的通讯线。这样浪费资源,占用空间,可操作性差,出现错误换线困难。而且,当数据采集点处于运动状态、所处的环境不允许或时,数据甚至无法传输,此时便需要利用无线传输的方式进行数据收集。 在农业生产上,不论是温室大棚的温湿度监测,还是粮仓的管理,传统上都是采取分区取样的人工方法。这样工作量大,可靠性差,而且大棚和粮仓占地面积大,检测目标分散,测点较多。传统的方法已经不能满足当前农业发展的需要。在当前的科技水平下,无线通信技术的发展使得温度采集测量更加精确,简便易行。在日常生活中,随着人们生活水平不断的提高,居住条件也逐渐变得智能化。如今很多家庭都会安装室内温湿度采集控制系统,其原理就是利用无线通信技术采集室内温湿度数据,并根据室内温度情况进行遥控通风等操作。通过自动调节室内温度湿度,可以更好地改善人们的居住环境。以上只是简单列举几个现实的例子,在现实生活中,这种无线温度采集系统已经被成功应用于工农业、军事国防、环境监测、机器人控制等许多重要领域。而且类似于这种温湿度采集系统的无线通信网络已经被广泛的应用到民用和军事领域。凡是布线繁杂或不允许布线的场合都希望能通过无线方案来解决。为此,需要设计相应的接口系统,控制这些射频芯片工作,完成可靠稳定的无线数据传输,这样的研究也变得更加有意义了[1]。 1、2 国内外研究现状 在温湿度采集设备出现以前,人们都是分别使用温度计和湿度计进行

智能温度传感器原理及应用

智能温度传感器原理及应用 电气信息学院 一、热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为 Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 热电阻的信号连接方式热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。工业用热电阻安装在生产现场,与控制室之间存在一定的距离,因此热电阻的引线对测量结果会有较大的影响。 目前热电阻的引线主要有三种方式 ○1二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合 ○2三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的引线电阻。 ○3四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。

温度传感器的原理及发展

温度传感器的原理及发展 温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段; (1)传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。 (2)模拟集成温度传感器/控制器。 (3)智能温度传感器。目前,国际上新型温度传感器正从模拟式向数字式、集成化向智能化及网络化的方向发展。 1、温度传感器的分类 温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。 接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这时的示值即为被测对象的温度。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。 非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测温方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测温度场的温度分布,但受环境的影响比较大。 2、温度传感器的发展 2.1传统的分立式温度传感器——热电偶传感器 热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精确度;测量范围广,可从—50~l600℃进行连续测量,特殊的热电偶如金铁—镍铬,最低可测到一269,钨—铼最高可达2800℃。 2.2集成(IC)温度传感器 2.2.1模拟集成温度传感器 集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。 模拟集成温度传感器的主要特点是功能单一(仅 测量温度)、测温误差小、价格低、响应速度快、传输 距离远、体积小、微功耗等,适合远距离测温,不需 要进行非线性校准,外围电路简单。 2.2.2智能温度传感器 智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A /D转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。

温湿度传感器管脚及应用

传感器选择: 产品名称: 数字温湿度传感器SHT11 产品型号: SHT11 产品描述: 瑞士Sensirion推出的 SHTxx系列数字温湿度传感器,基于领先世界的CMOSens?数字传感技术,具有极高的可靠性和卓越的长期稳定性。全量程标定,两线数字接口,可与单片机直接相连,大大缩短研发时间、简化外围电路并降低费用。此外,体积微小、响应迅速(<4s)、低能耗(<1μW)、可浸没、抗干扰能力强、温湿一体,兼有露点测量,性价比高,使该产品能够适于多种场合的应用。 产品特点: -SHT1x系列为贴片型温湿度传感器芯片 -全量程标定,两线数字输出; 电源电压 5V -湿度测量范围:0~100%RH; -湿度测量范围:-40~+123.8℃ 湿度测量精度 :SHT11 : ±3%RH -温度测量精度:SHT11 : ±0.4℃ -响应时间:<4s; -低功耗(typ. 30μW) -可完全浸没。 应用领域:数据采集器 变送器 自动化过程控制 汽车行业 楼宇控制&暖通空调 电力 计量测试 医药业 原理: 本系统是实现温度和湿度数据采集系统。通过下位机(AT89S52)直接控制SHT11,将得到的温度湿度数据通过串口发送到上位机(PC机),用上位机实现温度湿度数据的保存,分析处理。系统的主要组成原理如图1所示。 (1)电源部分。外接电源为5—18V的直流电源,经过LM7805稳压后输出5V的电压供系统; (2)单片机和SHT11数据采集部分,两者采用I2C接口,由于AT89S51没有l℃接口,所以通过软件模拟实现I2C通信;

(3)与上位机串口通信部分,该部分采用RS232通信模式,采用MAX232接口芯片;完整原理图如图1,

相关文档
最新文档