温湿度传感器论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 引言
1.1 温室控制系统设计背景
中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。大棚内的温度和湿度参数,直接关系到蔬菜和水果的生长。国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。而当今大多数对大棚温度、湿度的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度,使大棚内形成有利于蔬菜,水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节[1]。
影响作物生长发育的环境条件主要包括:温度、湿度、光照、CO2浓度、土壤等。所有这些环境条件之间是相互作用、相互联系、相互耦合的,某个控制变量发生改变,会影响其它控制变量的变化。作物的生长发育是所有这些环境条件综合作用的结果。温度和湿度一直是人类关注的对象,这两种环境因素时刻影响着人们的生产和生活,下面主要就温度和湿度对作物的影响进行简略说明。
(1)温度温室内气温、地温对作物的光合作用、呼吸作用、根系的生长和水分、养分的吸收有着显著的影响,因此影响作物生长发育的环境条件中,以温度最为敏感,也最为重要,对温室环境控制的研究也是最先从温度控制开始的。不同种类的作物对温度的要求是不同的,同一作物在不同发育阶段对温度的要求亦有所不同,而且在同一发育期阶段内对温度的要求也会随着昼夜变化而呈周期性地变化。一般说来在白天作物进行光合作用需要的温度较高,晚上维持呼吸作用所需的温度要低一些。
作物生长发育适宜的温度,随种类、品种、生育阶段及生理活动的变化而变化。
为了增加光合产物的生成,抑制不必要的呼吸消耗,在一天中,随着光照强度的变化,实行变温管理是一种很有效的管理方法[1]。
(2)湿度温室内作物对水分的要求体现为对温室内空气湿度和土壤湿度的要求。空气湿度用相对湿度来表示,因为相对湿度更能反应事实。根据有关研究记载,除了阴雨天以外,温室内午后过低的空气湿度会导致作物发生光合作用的午休现象,因此空气相对湿度的大小直接影响到作物的光合作用,这时就需要增加温室内的空气湿度。当温室内的空气湿度较高时,可能会诱发一些病虫害。温室中空气湿度的管理包括增湿和降湿。
土壤湿度对作物的影响也很大。如果土壤中水分过剩,湿度过高,导致土壤中的氧气含量减少,作物根部呼吸困难,进而危害作物的生长发育。相反,当土壤中含水量减少时,作物根部吸收的水分就相应的减少,从而阻碍作物的生长,严重时作物出现萎蔫现象。不同的作物对湿度的要求不同,即使是同一种类在不同发育阶段对湿度的要求也不尽相同。
土壤湿度的管理就是把包括渗灌、滴灌、微灌等灌溉技术应用到温室中来。传统的大水漫灌既浪费水资源,又容易使土壤发生板结,提高了室内湿度。在温室中应用渗灌技术具有灌水均匀,提高地温,保持土壤疏松,降低室内湿度,减轻病害发生,生育期提前等优点。
从很久以前人类就想出各种方法控制温度和湿度,以满足人们生产生活的需要。从古代人们通过扇子、雨伞、毛巾等试图去控制温度和湿度到今天高科技发展迅速的社会所发明出的各种工具,如风扇、空调、加热器等,表明人类一直努力去控制这两种和人类密切相关的环境因素。现代科技的发展,使得温度和湿度的控制更容易,更高效,特别是传感器和单片机的应用,使得温度和湿度控制系统性能有了根本性的提高,精度更高,而且实现了自动化[2]。
人们使用温度计、湿度计来采集温度和湿度,通过人工操作加热、加湿、通风和降温设备来控制温湿度,这样不但控制精度低、实时性差,而且操作人员的劳动强度大。即使有些用户采用半导体二极管作温度传感器,但由于其互换性差,效果也不理想。在某些行业中对温湿度的要求较高,特别是在大型的电力系统中,由于温度过高或过低引起的元器件失效或由于环境湿度过高而引起的漏电事故时有发生。对电力系统的可靠运行造成影响,甚至危及到电力系统局部及操作人员的安全。为了避免这些故障,需要在电力设备柜体内安装控温、除湿设备。
1.2 本设计的内容及意义
1.2.1 本设计的主要内容
本设计以STC89C51单片机的温度、湿度测量和控制系统为核心来对温湿度进行实时巡检。单片机能独立完成各自功能,同时能根据主控机的指令对温度进行定时采集。测量结果不仅能在本地显示,而且可以利用单片机的串行口和 RS-232总线通信协议能把温室中的温度、湿度等参数及时上传至上位机,并与设定值进行比较,与设定值不符时采取相应的处理措施,以实现恒温恒湿环境。
在设计的过程中充分考虑到性价比和精度,在选用低价格、通用元件的的基础上,尽量满足设计要求,并使系统具有高的精度。本控制系统以单片机的控制为核心,实时监测环境的温度和湿度,并设定了这两个参数的上下限定值,并具有相应的报警系统,当超过设定的限定值时,单片机控制报警系统进行报警,而且同时驱动继电器打开相应的开关使相应的执行机构运行。当参数值恢复到设定值范围内时,单片机控制执行机构停止运行。从而使环境的温湿度在一定的范围内得到控制。
本设计主要内容包括以下几个方面:
(1)掌握STC89C51单片机的主要功能和特性,以其为核心设计控制系统。
(2)设计简单的人机对话接口系统,如键盘、显示、报警等。
(3)利用RS232实现单片机与上位机的通信。
(4)实现系统的可靠性和抗干扰性。
(5)选择适合的传感器,设计相应的信号采集和处理电路。
1.2.2本设计的意义
传统的方法,人们主要采用温度计、湿度计来采集温度值和湿度值,通过人工操作加热、加湿、通风和降温设备来控制温湿度。但是由于温度计、湿度计精度比较低,以及人工读数的人为因素等原因,温湿度检测不仅速度慢,精度低,实时性差,而且操作人员的劳动强度大。随着科技的发展,采用各种传感器、模数转换器、报警器等组成的温湿度监测系统的出现,可对环境内的各个测点进行巡回检测,检测速度、精度有了一定的提高,降低了劳动强度,但由于所采用的传感器灵敏度比较低、稳定性比较差,致使检测精度、系统可靠性还不够理想,同时在农业生产和农业科研过程中的很多场合需要对上面提到的物理量进行精确的检测和控制。由于现在基本沿用人工的测控方法,这就不可避免的存在着劳动强度大、繁琐、测量精度低,并且由于检测报警不及时,给生产和科研工作造成了一定的损失[2]。