基于复杂网络的地下物流系统网络鲁棒性分析

基于复杂网络的地下物流系统网络鲁棒性分析
基于复杂网络的地下物流系统网络鲁棒性分析

基于复杂网络的地下物流系统网络鲁棒性分析

发表时间:2018-09-10T16:04:28.280Z 来源:《科技研究》2018年7期作者:徐昊

[导读] 本文主要着眼于地下物流系统网络的鲁棒性分析,通过蓄意攻击和随意干扰。

(上海海事大学交通运输学院,上海 201306)

摘要:随着城市交通压力不断提升,而60%的地面车辆承担着货物运输的重任,地下物流系统网络逐渐被提出。由于其充分使用地下空间,并采用清洁能源,因此无论是在缓解城市交通压力,还是推动节能减排工作中,都起到积极作用。本文主要着眼于地下物流系统网络的鲁棒性分析,通过蓄意攻击和随意干扰,考量其平均路径长度、网络效率和有效介数这三大指标,以检验网络的稳定性。关键词:复杂网络、地下物流系统网络、鲁棒性分析

1 地下物流

1.1 研究背景

随着汽车保有量的全球化激增,交通拥堵问题越发严重,交通拥堵成为世界各大城市都遇到的“困局”之一。

“地下物流系统”网络充分利用地下空间,将运输主场从地上转移至地下,一定程度上减轻了地面交通的负荷量,并且由于采用清洁动力,有效减少了城市污染;它不受外界条件干扰,运输更加可靠、高效。

1.2 国内外发展现状

地下物流系统(ULS)是指城市内部及城市间通过地下管道或者隧道运输货物的一种全新概念的运输和供应系统[1]。国外对地下货运系统的研究比国内要早些,早在1998年Joseph V. Sinfield, Herbert H. Einstein[2]就对管道货运运输系统做了简要的回顾,并在实际的城市环境下对网络构建成本进行了计算,结果表明了管道运输系统的可行性;Bert Vernimmen[3]等(2007)针对安特卫普口岸日益增长的集装箱运输量,提出了建设地下物流系统的方案,并从能力和成本问题,技术规范三方面进行了分析,结论表明地下物流系统具有很好的发展前景。我国对于地下物流系统的接触较晚,2002年1 月,杨东援[4]第一次引入了 ULS 这一概念,文章介绍了日本东京地下货运系统的组成形式,并进行了效益和盈亏评价分析;郭东军等[5]从空间、能源、环境等视角出发,深层分析了使用集装箱运输在地下运输系统发展的原因,提出将自动运输与隧道结合在一起。

2 地下物流鲁棒性分析

2.1 地下物流系统网络鲁棒性分析

2.1.1 地下物流系统网络鲁棒性定义

网络的鲁棒性,是指网络对故障与攻击的承受程度。而地下物流网络的鲁棒性,是系统在受到内部运作和外部突发事件等不确定性干扰下,仍然保持供应链整体效益最优和整体运行平稳功能的能力[6]。

根据复杂网络理论,攻击方式分为随机攻击和蓄意攻击两种。为了能够更加全面的分析地下物流网络的鲁棒性,本文选取随机攻击方式和蓄意攻击方式,研究地下物流网络的鲁棒性。

2.1.2 地下物流系统网络鲁棒性指标

(1)平均路径长度

最短路径是指网络中任意两个节点间包含的最小连接数目,而平均路径长度就是所有节点对之间最短距离的平均值L,数学公式可以表达为:

3.1 地下物流系统网络鲁棒性分析

在分析网络鲁棒性时,主要分为蓄意攻击和随机干扰。

借助MATLAB工具,计算在蓄意攻击和随机干扰下,复杂网络的平均路径长度、网络效率、有效介数和孤点比例。

提高控制系统的鲁棒性与适应性

提高控制系统的鲁棒性与适应性 1、含义 鲁棒性:控制器参数变化而保持控制性能的性质。 适应性:控制器能适应不同控制对象的性质。 控制系统在其特性或参数发生摄动时仍可使品质指标保持不变的性能。鲁棒性是英文robustness一词的音译,也可意译为稳健性。鲁棒性原是统计学中的一个专门术语,70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。在实际问题中,系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此,鲁棒性已成为控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必需考虑的一个基本问题。对鲁棒性的研究主要限于线性定常控制系统,所涉及的领域包括稳定性、无静差性、适应控制等。鲁棒性问题与控制系统的相对稳定性和不变性原理有着密切的联系,内模原理的建立则对鲁棒性问题的研究起了重要的推动作用。 2、控制系统设计要求(指标) (1)、结构渐近稳定性 以渐近稳定为性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的,并且对标称值的一个邻域内的每一种情况它也是渐近稳定的,则称此系统是结构渐近稳定的。结构渐近稳定的控制系统除了要满足一般控制系统设计的要求外,还必须满足另外一些附加的条件。这些条件称为结构渐近稳定性条件,可用代数的或几何的语言来表述,但都具有比较复杂的形式。结构渐近稳定性的一个常用的度量是稳定裕量,包括增益裕量和相角裕量,它们分别代表控制系统为渐近稳定的前提下其频率响应在增益和相角上所留有的储备。一个控制系统的稳定裕量越大,其特性或参数的允许摄动范围一般也越大,因此它的鲁棒性也越好。 (2)、结构无静差性 以准确地跟踪外部参考输入信号和完全消除扰动的影响为稳态性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的且可实现无静差控制(又称输出调节,即系统输出对参考输入的稳态跟踪误差等于零),并且对标称值的一个邻域内的每一种情况它也是渐近稳定和可实现无静差控制的,那么称此控制系统是结构无静差的。使系统实现结构无静差的控制器通常称为鲁棒调节器。在采用其他形式的数学描述时,鲁棒调节器和结构无静差控制系统的这些条件的表述形式也不同。鲁棒调节器在结构上有两部分组成,一部分称为镇定补偿器,另一部分称为伺服补偿器。镇定补偿器的功能是使控制系统实现结构渐近稳定。伺服补偿器中包含有参考输入和扰动信号的一个共同的动力学模型,因此可实现对参考输入和扰动的无静差控制。对于呈阶跃变化的参考输入和扰动信号,它

对鲁棒控制的认识

对鲁棒控制的认识 姓名:_______________ 赵呈涛_______________ 学号:092030071 专业: 鲁棒控制(RobustControl )方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构、大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。以闭环系统的鲁棒性作为目标设计得到的固 定控制器称为鲁棒控制器。 鲁棒控制的早期研究,主要针对单变量系统(SIS0)的在微小摄动下的不确 定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故

障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了 以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。现代鲁棒 控制是一个着重控制算法可靠性研究的控制器设计方法,际环其设计目标是找到在实境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。 鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息和它的变化范围,一些算法不需要精确的过程模型,但需要一些离线辨识。鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。主要的鲁棒控制理论有: 1)Kharitonov 区间理论; 2)H控制理论; 3)结构奇异值理论理论。 面就这三种理论做简单的介绍。 1 Kharitonov区间理论1.1参数不确定性系统的研究概况 对参数不确定性系统的研究源于20世纪20年代。Black采用大回路增益的反馈控制技术来抑制真空管放大器中存在的严重不确定性,由于采用大回路增益,所以设计的系 统常常不稳定;1932年,Nyquist给出了判断系统稳定性的频域判据,在控制系统设计时,用来在系统稳定性和回路增益之间进行折衷;1945年,Bode首次提出灵敏度函数的概念,对系统的参数不确定性进行定量的描述。在此基础上,Horowitz在1962年提出一种参数不灵敏系统的频域设计方法,此后,基于灵敏度分析的方法成为控制理论中对付系统参数不确定性的主要工具。不过,这种方法是基于无穷小分析的,在实际系统的设计中并不总是能收到良好效果。因为系统的参数不确定性通并不能看作无穷小扰动;另外灵敏度分析法一般要求知道对象的标称值,这在实际中往往也难以做到。于是,人们开始研究用有界扰动来刻画参数的不确定性,出现了鲁棒辨识方法。此法给出的辨识结果不是一个确定值,而是参数空间中的一个域(如超矩形、凸多面体、椭球等)。相应地, 不确定系统的参数空间设计方法也得到广泛而深入的研究。1984年,Barmish将前苏联 学者Kharitonov的区间多项式鲁棒稳定性的著名结果一一四多项式定理。引入控制界,掀起了在参数空间中研究系统鲁棒性的热潮。 1.2关于区间多项式的几个重要定理 参数摄动通常表现为独立摄动、线性相关摄动和多线性相关摄动3种模式。判断在相应的参数摄动模式下系统鲁棒稳定性的主要定理分别是:四多项式定理、棱边定理和映射定理。 2结构奇异值理论(理论) 2. 1结构奇异值理论的产生和L定义

算 法 的 鲁 棒 性

[论文笔记]集成方法提高神经网络的对抗鲁棒性 集成方法提高神经网络的对抗鲁棒性一、多个弱防御的集成不能形成强防御1.攻击者2.防御策略3.对抗样本生成方法4.干扰大小的度量5.实验6.结论二、简单集成神经网络1.攻击方法2.集成模型3.计算梯度4.实验5.结论三、 ensemble of specialists1.利用FGSM 方法得到模型的混淆矩阵:2.伪代码如下:3.实验考虑三种模型4.实验结果四、随机自集成1.思想2.taget攻击与untarget攻击3.网络设计4.伪代码如下:5.理论分析6.结论五、集成对抗训练1.前言 2.对抗训练 3.集成对抗训练六、对抗训练贝叶斯神经网络(adv-BNN)1.前言2.PGD攻击3.BNN4.adv-BNN 一、多个弱防御的集成不能形成强防御 1.攻击者 假设攻击者知道模型的各种信息,包括模型架构、参数、以及模型的防御策略(白盒攻击)。 考虑两种白盒攻击者: (1)静态 不知道模型的防御策略,因此静态攻击者可以利用现有的方法生成对抗样本,但不针对特定的防御策略。 (2)动态 知道模型的防御策略,可以自适应地制定攻击方法,比静态攻击者更强大。

2.防御策略 (1)feature squeezing 包括两个检测组件:reducing the color depth to fewer bits 和spatially smoothing the pixels with a median filter (2)specialist-1 ensemble method 根据对抗混淆矩阵将数据集分成K+1个子集,形成由K+1个分类器组成的一个集成分类器 (3)多个检测器集成 包括Gong、Metzen、Feinman三个人提出的对抗样本检测器; 3.对抗样本生成方法 利用优化方法生成对抗样本,最小化如下损失函数: loss(x′)=∣∣x′?x∣∣22+cJ(Fθ(x′),y)loss(x#x27;)=||x #x27;-x||_{2}^{2}+cJ(F_{theta}(x#x27;),y)loss(x′)=∣∣x′? x∣∣22?+cJ(Fθ?(x′),y) 其中c为超参数,该方法也称为CW攻击方法。 4.干扰大小的度量 用下式度量对抗样本与干净样本之间差异: d(x?,x)=∑i(x?x)2d(x^{*},x)=sqrt{sum_i(x^{*}-x)^{2}}d(x? ,x)=i∑?(x?x)2? 其中样本点都被归一化[0,1]之间。 5.1 攻击 feature squeezing 结论:feature squeezing 不是一种有效的防御方法。首先单独

鲁棒控制

鲁棒控制理论中的H∞控制理论 (浙江大学宁波理工学院信息科学与工程分院自动化) 【摘要】首先简要的介绍了鲁棒控制中的H∞控制理论,并把其发展分为两个阶段,而后就上当已存在的H∞控制的主要成果进行了讨论和归纳,还指出了H∞控制理论尚未解决的问题。 【关键词】H∞控制理论;非线性系统;时滞;范数 1.概述 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓鲁棒性,是指标称系统所具有的某一种性能品质对于具有不确定性的系统集的所有成员均成立,如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。主要的鲁棒控制理论有:Kharitonov区间理论;H∞控制理论;结构奇异值理论u理论; 鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。 2.H∞控制理论出现的背景及意义 1981年,加拿大著名学者Zames在其论文中引入了H∞范数作为目标函数进行优化设计,标志着H∞控制理论的诞生。Zames考虑了这样一个单入单出( SISO)系统的设计问题: 假设干扰信号属于某一有限能量的已知信号集,要求设计一个反馈控制器,使闭环系统稳定,且干扰对系统的影响最小。要解决这样的问题就必须在能够使闭环系统稳定的所有控制器中选出一个控制器使之相应的灵敏度函数的H∞范数最小。 虽然Zames 首先提出了H∞最优化问题,但是他没能给出行之有效的解法。

复杂网络理论及其研究现状

复杂网络理论及其研究现状 复杂网络理论及其研究现状 【摘要】简单介绍了蓬勃发展的复杂网络研究新领域,特别是其中最具代表性的是随机网络、小世界网络和无尺度网络模型;从复杂网络的统计特性、复杂网络的演化模型及复杂网络在社会关系研究中的应用三个方面对其研究现状进行了阐述。 【关键词】复杂网络无标度小世界统计特性演化模型 一、引言 20世纪末,以互联网为代表的信息技术的迅速发展使人类社会步入了网络时代。从大型的电力网络到全球交通网络,从Internet 到WWW,从人类大脑神经到各种新陈代谢网络,从科研合作网络到国际贸易网络等,可以说,人类生活在一个充满着各种各样的复杂网络世界中。 在现实社会中,许多真实的系统都可以用网络的来表示。如万维网(WWW网路)可以看作是网页之间通过超级链接构成的网络;网络可以看成由不同的PC通过光缆或双绞线连接构成的网络;基因调控网络可以看作是不同的基因通过调控与被调控关系构成的网络;科学家合作网络可以看成是由不同科学家的合作关系构成的网络。复杂网络研究正渗透到数理科学、生物科学和工程科学等不同的领域,对复杂网络的定性与定量特征的科学理解,已成为网络时代研究中一个极其重要的挑战性课题,甚至被称为“网络的新科学”。 二、复杂网络的研究现状 复杂网络是近年来国内外学者研究的一个热点问题。传统的对网络的研究最早可以追溯到18世纪伟大数学家欧拉提出的著名的“Konigsberg七桥问题”。随后两百多年中,各国的数学家们一直致力于对简单的规则网络和随机网络进行抽象的数学研究。规则网络过于理想化而无法表示现实中网络的复杂性,在20世纪60年代由Erdos和Renyi(1960)提出了随机网络。进入20世纪90年代,人们发现现实世界中绝大多数的网络既不是完全规则,也不是完全随机

对鲁棒控制的认识

对鲁棒控制的认识 姓名:赵呈涛 学号: 092030071 专业:双控

鲁棒控制(RobustControl)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构、大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。 鲁棒控制的早期研究,主要针对单变量系统(SISO)的在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法,其设计目标是找到在实际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。 鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息和它的变化范围,一些算法不需要精确的过程模型,但需要一些离线辨识。鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。主要的鲁棒控制理论有: (1)Kharitonov区间理论; 控制理论; (2)H ∞ (3)结构奇异值理论μ理论。 下面就这三种理论做简单的介绍。 1 Kharitonov区间理论 1.1参数不确定性系统的研究概况 对参数不确定性系统的研究源于20世纪20年代。Black采用大回路增益的反馈控制技术来抑制真空管放大器中存在的严重不确定性,由于采用大回路增益,所以设计的系

复杂网络拓扑结构的鲁棒性与动力学过程研究

复杂网络拓扑结构的鲁棒性与动力学过程研究近年来发展起来的复杂网络理论是研究复杂系统的一套有效方法。采用复杂网络理论,将现实生活中的复杂系统抽象为节点和边组成的网络,对这些网络的拓扑结构以及网络上的各种动力学过程的分析,极大地提高了人类对现实世界复杂性的认识,也因此复杂网络成为了国内外研究的热点。 网络拓扑结构决定网络功能,而网络功能则是由网络结构上的动力学过程实现的,因此网络结构影响动力学过程的行为。可见,对网络拓扑结构特征的研究,是复杂网络一切研究的基础所在。 当网络拓扑遭到破坏时,网络所能承担的功能会有所变化,功能变化越小的网络具有越高的鲁棒性。对鲁棒性的研究能够指导构建健壮的网络,因此具有重要现实意义。 此外,网络中的节点往往能够根据自身所处的条件,自适应地调整拓扑结构,以恰当地应对(促进或抑制)网络上的动力学过程对节点所产生的影响。网络拓扑结构自适应变化与网络上的动力学过程之间的相互影响被称为共同演化,如何精确地描述共同演化是近年来的研究难点所在。 本文针对复杂网络拓扑结构特征、鲁棒性以及动力学过程与网络结构的共同演化现象进行了研究。本文的创新点包括以下几个方面:(1)本文第三章对一种重要的表征拓扑结构特征的统计量——边介数及其性质进行研究。 基于生成函数理论,提出了服从任意度分布的随机网络中有限集团(即,有限大小的类树连通子图)内任意边的介数的期望值的解析表达式,并分别以泊松度分布和幂率度分布随机网络为例验证了该表达式。此外,发现了边介数与边所在有限集团的大小之间存在渐进的幂率关系。

以往欠缺对边介数的解析研究,而本文所提出的解析表达式填补了理论空白而且能够精确衡量任意边的负载程度及其发生拥塞的危险性。(2)本文第四章研究网络在遭受结构上的随机故障后,其结构和功能的变化。 解析地分析了随机网络在遭受随机边删除后,平均最短路径长度的变化,提出了较为精确的估计公式来刻画这种变化,还分别以泊松度分布、幂率度分布和指数度分布随机网络为例验证了所提公式。所提公式为研究各种随机网络的鲁棒性提供了一个通用的框架,对构建抗随机故障的网络结构具有重要指导意义。 (3)本文第五章研究有限大小网络上的一种共同演化现象:复杂网络上的病毒传播以及网络中节点为应对病毒传播而改变拓扑结构的自适应行为。提出了一种自适应SIS模型(简称ASIS模型),该模型以精确的马尔科夫过程刻画了有限大小网络上的此种共同演化现象,分析了该过程稳态时的行为,得到了平均亚稳态染病节点比例以及传播临界值的表达式。 此外,发现了传播临界值与拓扑结构自适应变化的速率之间具有线性关系,即拓扑结构自适应变化能够抑制病毒传播且抑制效果是线性的。通过计算机模拟实验研究发现,在病毒传播的网络上,节点的自适应行为使得网络拓扑变得具有同配性和社团结构,处于健康态的全部节点组成内部紧密连接的一个社团,而染病态的所有节点被孤立起来组成另一个社团,两社团之间连接松散。 在理论上,本文提出的精确描述有限大小网络上共同演化现象的方法,克服了传统的平均场近似法因为忽略拓扑结构等细节信息而产生的理论上的不严谨性;在实践上,本文的研究有助于更精确地理解网络中个体行为对病毒传播过程的影响,对于预测防治病毒传播有重要意义。

鲁棒控制综述

鲁棒控制综述 课程目标 1.了解鲁棒控制研究的基本问题 2.掌握鲁棒控制的基础知识和基本概念 3.明确鲁棒控制问题及其形式化描述 4.掌握几种鲁棒稳定性分析与设计方法 5.掌握状态空间H∞控制理论 6.了解鲁棒控制系统的μ分析与μ综合方法 7.初步了解非线性系统鲁棒控制方法 8.掌握时滞系统的鲁棒控制稳定性分析 控制系统就是使控制对象按照预期目标运行的系统。 大部分的控制系统是基于反馈原理来进行设计的 反馈控制已经广泛地应用于工业控制、航空航天和经济管理等各个领域。 不确定性 在实际控制问题中,不确定性是普遍存在的 所描述的控制对象的模型化误差 可能来自外界扰动 因此,控制系统设计必须考虑不确定性带来的影响。 控制系统设计的任务 对于给定的控制对象和传感器,寻找一个控制器,使反馈控制系统能够在实际工作环境中按预期目标运行 ●实际控制对象就是具体的装置、设备或生产过程 ●通过各种建模方法,可以建立实际控制对象的模型 ●针对控制对象的模型,应用控制理论提供的设计方法设计出控制器,对实际控制对 象实施控制 ●控制系统的控制效果在很大程度上取决于实际控制对象模型的准确性 ●在控制系统设计中采用的模型与实际控制对象存在着一定的差异,即存在着模型不 确定性 ●控制系统的运行也受到周围环境和有关条件的制约 ●例如,在图1-1中,传感器噪声n和外部扰动d分别来自控制系统本身和控制系统 所处的环境,它们往往是一类未知的扰动信号 ●这种扰动不确定性对控制系统的运动将产生的影响 控制系统设计中需要考虑的不确定性 (1)来自控制对象的模型化误差; (2)来自控制系统本身和外部的扰动信号 ●需要一种能克服不确定性影响的控制系统设计理论 ●这就是鲁棒控制所要研究的课题 1.1.2 控制系统设计的基本要求 在控制系统设计中,往往把图1-1所示的反馈控制系统更一般化,考虑如图1-3所示的单位反馈控制系统,其中P是控制对象,C是控制器。

复杂网络的某些性质研究及其应用

复杂网络的某些性质研究及其应用 自从Watts,Strogatz 1998年发现真实网络的小世界特性以来,复杂网络融合了图论、工程数学、计算机理论、社会科学等学科的有关理论与成果,已成为了一门单独的学科。经过十多年的研究,科学家们已经发现了一些典型复杂网络模型如小世界网络模型、无标度网络模型、确定性小世界网络模型等,同时也发现了这些典型网络模型的一些主要特性。 本文围绕复杂网络的小世界现象,针对典型复杂网络模型重点研究了网络节点度序列长度特性、电阻距离特性及其应用;基于代数图论中的凯莱图(Cayley)模型在随机化加边后也同样具有复杂网络的小世界特性,论文结合无线传感器网络和数据中心网络的应用需求,同时研究了基于代数图论的具有小世界特性的复杂网络模型及应用。论文主要成果如下:(1)在肖文俊等人提出复杂网络度序列长度新特性的基础上,论文从理论上证明了具有扩展幂律分布、泊松分布、指数分布的复杂网络模型的度序列长度的新特性:即度序列长度l与 log2N是同级别的结论,进一步完善了肖文俊等人的结论。 实验仿真结果及现实网络的数据验证了该结论的有效性。该结论从理论上解释了为什么现实世界的网络直径不大的问题,可以作为复杂网络的基本特性之一,同时论文提出了基于复杂网络的度序列长度的复杂网络模型。 针对复杂网络的搜索问题,论文完成了最短路径算法和最大度算法的仿真实验,结果表明在复杂网络中基于最大度的搜索算法相比基于最短路径的搜索算法更有效。(2)论文研究了复杂网络中的电阻距离特性及其在社团划分中应用的需求,提出了结合节点中心性指标与电阻距离的社团划分算法。 论文选择了节点度中心性、接近度指标、特征向量、聚类系数及最短路径等

稳健性调查分析

附件:3-1-1 各项资产减值准备计提方法3-1-1-1 访谈记录

3-1-2-1 问卷调查反馈意见 1、公司是否按规定计提各项准备金(包括但不限于应收账款坏账准备、其他应收款坏账准备、存货跌价准备、固定资产减值准备、无形资产减值准备等)。资产减值准备的计提、冲销和转回所履行的审批程序,列示计提方法和比例变更情况,是否不存在利用资产减值准备调节利润的情形? 2、本年度全额计提坏账准备,或集体坏账准备的比例较大的(计提比例一般不超过40%及以上的),说明计提的比例以及理由? 3、以前年度已全额计提坏账准备,或计提坏账准备的比例较大的,但在本年度又全额或部分收回的,或通过重组等其他方式收回的,说明其原因、原估计计提比例的理由、以及原估计计提比例的合理性? 4、对某些金额较大的应收款项不计提,或计提比例较低(一般为5%或低于5%)时,请说明理由? 5、请说明本年度实际冲销的应收款项及其理由,对实际冲销的关联交易产生的应收款项是否已单独披露? 6、公司是否存在以应收债券融资或出售应收债权? 7、说明存货跌价准备的核算方法,是否按规定提取存货跌价准备。存货是否已分项列示期末余额?存货跌价准备是否已分项列示计提的存货跌价准备金额及其增减变动情况?是否已披露各类存货可变现净值的确定方法? 8、公司除应收账款外的金融资产和长期股权投资减值准备的的计提情况?

9、固定资产减值准备计提情况? 10、公司无形资产减值准备的情况?

附件:3-1-3 各项资产减值准备实际计提、冲销与转回明细 3-1-3-1 2015年1-11月各项资产减值准备实际计提、冲销与转回明细 单位:元

复杂网络结构对信息路由鲁棒性的影响

计算机科学与技术学院 毕业设计(论文) 论文题目复杂网络结构对信息路由鲁棒性的影响 指导教师职称讲师 学生姓名学号 专业班级 系主任院长 起止时间2013年10月11日至2014年5月23日 2014年5月23日

南华大学计算机科学与技术学院毕业设计(论文) 目录 摘要 (i) Abstract (iii) 第一章绪论 (1) 1.1 课题的研究背景和意义 (1) 1.2 复杂网络上信息路由的鲁棒性概述 (2) 1.3 课题的提出及主要工作 (4) 第二章复杂网络的拓扑结构参数 (6) 2.1图的基本概念 (6) 2.2网络的聚类系数 (7) 2.3网络的度分布 (9) 2.4实际中的网络拓扑 (11) 2.4.1 Internet (11) 2.4.2 www (12) 2.4.3 其他网络阅读概述 (13) 第三章复杂网络模型 (14) 3.1 随机网络 (14) 3.2 小世界网络 (17) 3.3 无标度网络 (19) 第四章三种复杂网络模型上的信息路由鲁棒性仿真分析 (21) 4.1 MATLAB软件简介 (21) 4.2基于最短路径路由的级联故障模型 (22) 4.3 随机网络的的信息路由鲁棒性仿真 (24) 4.4小世界网络的信息路由鲁棒性仿真 (26) 4.5无标度网络的信息路由鲁棒性仿真 (28) 4.6 三种网络模型上结果的对比分析 (30) 第五章总结 (31) 参考文献 (32) 谢辞 (34)

复杂网络结构对信息路由鲁棒性的影响 摘要:现在社会越来越依赖于许多大规模网络,如Internet、交通网、物流网等,在这些网络上输送或路由着与人类密切相关的的大量信息流。一个网络的路由鲁棒性的强弱无疑是人们比较关心的问题。研究已表明,网络结构对其上的动力学行为有着重要影响,因此,越来越多的研究者基于典型的复杂网络模型对信息路由的鲁棒性展开研究。 本文首先概述了复杂网络上信息路由的鲁棒性研究现状。其次介绍了复杂网络的基本理论,如拓扑结构参数和典型的网络模型。然后,基于三种典型的复杂网络模型,包括WS小世界网络、BA无标度网络和ER随机网络,利用matlab 仿真研究在最短路径路由策略下,网络由随机攻击和蓄意攻击而引发的级联故障行为,详细分析了网络结构对信息路由鲁棒性的影响。仿真结果表明,在随机攻击下,无标度网络的路由鲁棒性强于随机网络,在蓄意攻击下,则正好相反,而小世界网络的路由鲁棒性始终介于随机网络与无标度网络之间,且重连概率对小世界网络的路由鲁棒性产生了影响,本研究为当前网络拓扑和路由的优化和重新设计提供参考。 关键词:复杂网络;信息路由;鲁棒性;级联故障

鲁棒控制讲义-第1-2章

第一章概述 §1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control) 1.1.1 名义系统和实际系统(nominal system) 控制系统设计过程中,常常要先获得被控制对象的数学模型。在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。 1.1.2不确定性和摄动(Uncertainty and Perturbation) 如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。模型不确定性包括:参数、结构及干扰不确定性等。 1.1.3 不确定系统的控制 经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。例如早期导弹控制系统设计时就是这样:首先按名义模型设计一个控制系统,然后反复调整设计参数,这样的结果是浪费了大量的人力物力;一种导弹从设计到定型要反复计算数百条弹道,对大小回路控制器参数要进行数十次调整,还要经过反复试射,这类参数的调整往往没有一个理论可以遵循,而依据设计者的经验。

第七章 PID控制与鲁棒控制

第七章 PID 控制与鲁棒控制 7.1 引言 一、PID 控制概述 目前,基于PID 控制而发展起来的各类控制策略不下几十种,如经典的Ziegler-Nichols 算法和它的精调算法、预测PID 算法、最优PID 算法、控制PID 算法、增益裕量/相位裕量PID 设计、极点配置PID 算法、鲁棒PID 等。本节主要介绍PID 控制器的基本工作原理及几个典型设计方法。 1、三种控制规律 P 控制: p K G = ()∞↑?e K p ↓↓,但稳定性; I 控制: s T G i 1 = ; D 控制: ,s T G d =; 2、PID 的控制作用 (1) PD 控制: ()()() dt t du T K t u K t u d p p 112+= ()() ()s K K s T K s U s U G D p d p +=+== 112 PD 有助于增加系统的稳定性. PD 增加了一个零点D p K K z -=,提高了系统的阻尼,可改善暂态性能. (2) PI 控制:

()()()dt t u T K t u K t u t i p p ?+ =0 1 12 ()s K K s T K s G I p i p +=???? ??+=11 PI 提高了系统按稳态误差划分的型. (3)PID 控制 ()()()dt t du T K dt t u T K u K t u d p t i p p 10 112++ =? ()s K d K K s G D I p ++ = 7.2 PID 控制器及其参数的调整 一、PID 控制概述 1、PID 控制器的工作原理 下图为它的控制结构框图,典型PID 为滞后-超前校正装置。 由图可见,PID 控制器是通加对误差信号e(t)进行比例、积分和微分运算,其结果的加权,得到控制器的输出u(t),该值就是控制对象的控制值。PID 控制器的数学描述为:

鲁棒性

1鲁棒性的基本概念 “鲁棒”是一个音译词,其英文为robust ,意思是“强壮的”、“健壮的”。在控制理论中,鲁棒性表示当一个控制系统中的参数或外部环境发生变化(摄动)时,系统能否保持正常工作的一种特性或属性。 鲁棒概念可以描述为:假定对象的数学模型属于一集合,考察反馈系统的某些特性,如内部稳定性,给定一控制器K,如果集合中的每一个对象都能保持这种特性成立,则称该控制器对此特性是鲁棒的。因此谈及鲁棒性必有一个控制器、一个对象的集合和某些系统特性。 由于一个具有良好鲁棒性的控制系统能够保证,当控制参数发生变化(或在一定范围内发生了变化)时系统仍能具有良好的控制性能。因此,我们在设计控制器时就要考虑使得控制系统具有好的鲁棒性,即设计具有鲁棒性的控制器——鲁棒控制器。 所以,鲁棒控制就是设计这样一种控制器,它能保证控制对象在自身参数或外部环境在某种范围内发生变化时,仍能正常工作。这种控制器的特点是当上述变化发生时,控制器自身的结构和参数都不改变。 2 鲁棒控制系统 我们总是假设已经知道了受控对象的模型,但由于在实际问题中,系统特性或参数的变化常常是不可避免的,在实际中存在种种不确定因素,如: 1)参数变化; 2)未建模动态特性; 3)平衡点的变化; 4)传感器噪声; 5)不可预测的干扰输入; 等等。产生变化的原因主要有两个方面,一个是由于测量的不精确使特性或参数的实际值偏离它的设计值;另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢变化。因此,如何使所设计的控制系统在系统参数发生摄动的情况下,仍具有期望的性能便成为控制理论中的一个重要研究课题。所以我们所建立的对象模型只能是实际物理系统的不精确的表示。鲁棒系统设计的目标就是要在模型不精确和存在其他变化因素的条件下,使系统仍能保持预期的性能。如果模型的变化和模型的不精确不影响系统的稳定性和其它动态性能,这样的系统我们称它为鲁棒控制系统。 2.1系统的不确定性 2.1.1参数不确定性 如二阶系统: ()[] +-∈++=a a a as s s G ,,1 1 2 可以代表带阻尼的弹簧装置,RLC 电路等。这种不确定性通常不会改变系统的结构和阶次。 2.2.2动态不确定性

非线性时变系统的稳定性和鲁棒性

外文资料翻译 非线性时变系统的:稳定性和鲁棒性 概要:我们这里所叙述的是采样数据模型预测控制的框架,使用连续时间模型, 但采样的实际状况以及为计算控制的状态,进行了在离散instants的时间。在此框架内可以解决一个非常大的一类系统,非线性,时变的,非完整。 如同在许多其他采样数据模型预测控制计划,barbalat的引理一个重要的角色,在证明的名义稳定的结果。这是争辩这泛barbalat的引理,形容这里,可以有也类似的的作用,在证明的鲁棒稳定性的结果,也允许以解决一个很一般类非线性,时 变的,非完整系统,受到的干扰。那个的可能性的框架内,以容纳间断的意见是必要 的实现名义的稳定性和鲁棒稳定性,例如一般类别的系统。 1 引言 许多模型预测控制(MPC)计划描述,在文献上使用连续时间的模型和样本状态 的在离散的instants 时间。见例如[3,7,9,13] ,也是[6] 。有许多好处,在考虑 连续时间模型。不过,任何可执行的模型预测控制计划只能措施,状态和解决的优化问题在离散instants的时间。 在所有的提述,引用上述情况, barbalat的引理,或修改它,是用来作为一个 重要步骤,以证明稳定的MPC的计划。( barbalat的引理是众所周知的和有力的工具,以推断的渐近稳定性的非线性系统,尤其是时间变系统,利用Lyapunov样的办法; 见例如[17]为讨论和应用)。显示模型预测控制的一项战略是稳定(在名义如此),这表明,如果某些设计参数(目标函数,码头设置等),方便的选定,然后价值函数是单调递减。然后,运用barbalat的引理,吸引力该轨迹的名义模型可以建立(i.e. x(t) →0 as t →∞).这种稳定的状态可以推断,一个很笼统的类非线性系统:包括时变 系统的,非完整系统,系统允许间断意见,等此外,如果值函数具有一定的连续性属性,然后Lyapunov稳定性(即轨迹停留任意接近的起源提供了足够的密切开始向原产地)

算 法 的 鲁 棒 性

算法模型好坏、评价标准、算法系统设计 算法模型好坏的评价通用标准: 1、解的精确性与最优性。基于正确性基础上。 2、计算复杂度,时间成本。 3、适应性。适应变化的输入和各种数据类型。 4、可移植性。 5、鲁棒性。健壮性。 鲁棒性(robustness)就是系统的健壮性。它是在异常和危险情况下系统生存的关键。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。 一个电子商务网站推荐系统设计与实现——硕士论文分析 一、应用场景 1、网站首页、新品推荐:采用item相似度策略推荐。目标:提供新颖商品。 2、商品详情、看过的还看过,看过的还买过:采用频繁项集挖掘推荐。目的:降低商品寻求成本,提高体验、促进购买。 3、网站购物车、买过的还买过:频繁项集挖掘。目的:提高客单

价。 4、网站会员中心、与用户浏览历史相关商品:item相似度。目的:提升复购率。 5、商品收藏栏、搜索栏、品牌栏、品类栏:item相似度。目的:获取用户更多反馈;帮助用户发现需求;完善内链结构,流畅页面跳转;完善品类之间内链结构,流畅跳转。 二、推荐系统核心问题 三个核心要素:用户、商品、推荐系统。 用户特征分析:行为特征、兴趣特征。 用户不同特征以不同形式存储在不同介质中:注册信息存储在关系型数据库、行为数据存储在web日志中。 开发时,需要将这些数据进行清理,然后转换到统一的用户偏好数据库中。 商品特征:基本特征、动态特征。 基本特征:品牌、品类、颜色、型号、尺寸、性别等。 动态特征:销量、库存、市场价格、浏览次数、加购物车次数等。 补充说明:如果商品不能直接说明用户的兴趣特征,比如电影、图书,则可以通过用户的标签系统进行推荐。 或者通过协同过滤算法进行推荐,因为协同过滤算法不需要依赖商品自身的特征属性。 用户和商品一般具有三种关系:这是推荐系统工作的依据。 用户--喜欢--商品--相似--商品:基于item的推荐系统思想。

鲁棒性

鲁棒性介绍 鲁棒是Robust的音译,也就是健壮和强壮的意思。它是在异常和危险情况下系统生存的关键。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。 1.溯源和背景 鲁棒性原是统计学中的一个专门术语,20世纪70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。 在实际问题中,系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此,鲁棒性已成为控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必须考虑的一个基本问题。对鲁棒性的研究主要限于线性定常控制系统,所涉及的领域包括稳定性、无静差性、适应控制等。 2.原理 鲁棒性问题与控制系统的相对稳定性(频率域内表征控制系统稳定性裕量的一种性能指标)和不变性原理(自动控制理论中研究扼制和消除扰动对控制系统影响的理论)有着密切的联系,内模原理(把外部作用信号的动力学模型植入控制器来构成高精度反馈控制系统的一种设计原理)的建立则对鲁棒性问题的研究起了重要的推动作用。当系统中存在模型摄动或随机干扰等不确定性因素时能保持其满意功能品质的控制理论和方法称为鲁棒控制。早期的鲁棒控制主要研究单回路系统频率特性的某些特征,或基于小摄动分析上的灵敏度问题。现代鲁棒控制则着重研究控制系统中非微有界摄动下的分析与设计的理论和方法。

优化设计和鲁棒性分析方法综述

工作汇报 (1)优化设计和鲁棒性分析 优化设计的过程就是确定优化目标、设计参数和约束条件,通过迭代算法确定最优的设计参数,得到最优的性能。 查阅这方面的论文,主要有两种方法。一种是目标函数与设计参数之间有解析式关系的,比如《Application of optimal and robust designmethods to a MEMS accelerometer》这篇论文,优化目标是加速度计的最小测量加速度、满量程加速度以及谐振频率,设计参数是梁、质量块、梳齿以及间隙的尺寸参数。文章中就给出了优化目标和设计参数的解析式: 通过这些解析式,以及一些约束条件就可以构建优化设计的数学模型:

最后通过优化算法程序(这篇用的是遗传算法)得到最优解。 第二种也是大部分文献,都没有给出优化目标和设计参数之间的解析式。比如《Optimal and Robust Design of a MEMS GyroscopeBased on Sensitivity Analysis and Worst-caseTolerance》,优化目标是陀螺仪的敏感性(让敏感电容C最大)。这篇文章没有目标函数的解析式。它是通过有限元仿真软件和优化软件连接在一起计算,应该是用仿真结果代替解析式计算结果,具体的我没明白。 鲁棒性分析的方法主要是考虑设计参数的制造误差(一般是±0.5um),将±0.5um分别带入设计参数,让优化目标最小化的同时,标准差也最小化。 优化设计还看到一篇文献,《Optimization of Sensing Stators in CapacitiveMEMS Operating at Resonance》提出了两种新颖的结构,然后比较它们和传统结构的性能,以及它们的优点。这篇论文没有参数优化。 (2)动态特性分析 动态特性分析方面看了两篇文献。《Nonlinear Dynamic Study of a Bistable MEMS:Model and Experiment》讲了加速度双稳态开关中,切换稳定性与激励时间和激励幅值的关系。当激励时间长时,开关稳定切换,时间短时,可能切换失败。以及激励幅值超过门限很多时,也会使质量块振荡返回初始状态而切换失败。文章分析了原因,确定的最短激励时长。 第二篇文献《Shock-Resistibility of MEMSBased Inertial Microswitch underReverse Directional Ultra-High gAcceleration for IoT Applications》,本文研究了在反向高g值冲击下,惯性开关的冲击稳定性。在实际应用中,惯性开关不可避免的受到高或极高的反向冲击。高g值(几百到几千)的反向加速度冲击下,支

鲁棒控制及其发展概述

鲁棒控制及其发展概述 摘要 本文首先介绍了鲁棒控制理论的发展过程;接下来主要介绍了研究鲁棒多变量控制过程中两种常用的分析方法:方法以及分析方法;最后给出了鲁棒控制理论的应用及其控制方法,不仅仅用在工业控制中,它被广泛运用在经济控制、社会管理等很多领域。随着人们对于控制效果要求的不断提高,系统的鲁棒性会越来越多地被人们所重视,从而使这一理论得到更快的发展。并且指出了目前鲁棒控制尚未解决的问题以及研究的热点问题。 关键词:鲁棒控制;鲁棒多变量控制;鲁棒控制;分析方法 一、引言 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。控制系统的鲁棒性研究是现代控制理论研究中一个非常活跃的领域,鲁棒控制问题最早出现在上个世纪人们对于微分方程的研究中。 最早给出鲁棒控制问题的解的是Black在1927年给出的关于真空开关放大器的设计,他首次提出采用反馈设计和回路高增益的方法来处理振控管特信各大范围波动。之后,Nyquist频域稳定性准则和Black回路高增益概念共同构成了Bode的经典之著[1]中关于鲁棒控制设计的基础。20世纪60年代之前这段时间可称为经典灵敏度设计时

期。此间问题多集中于SISO系统,根据稳定性、灵敏度的降低和噪声等性能准则来进行回路设计。 20世纪六七十年代中鲁棒控制只是将SISO系统的灵敏度分析结果向MIMO进行了初步的推广[2],灵敏度设计问题包括跟踪灵敏度、性能灵敏度和特征值/特征向量灵敏度等的设计。 20世纪80年代,鲁棒设计进入了新的发展时期,此间研究的目的是寻求适应大范围不确定性分析的理论和方法。 二、正文 1. 鲁棒控制理论 方法在工程中应用最多,它以输出灵敏度函数的范数作为性能指标,旨在可能发生“最坏扰动”的情况下,使系统的误差在无穷范数意义下达到极小,从而将干扰问题转化为求解使闭环系统稳定并使相应的范数指标极小化的输出反馈控制问题。 鲁棒控制理论是在空间(即Hardy 空间)通过某些性能指标 的无穷范数优化而获得具有鲁棒性能的控制器的一种控制理论。空间是在开右半平面解析且有界的矩阵函数空间,其范数定义为: (1) 即矩阵函数在开右半平面的最大奇异值的上界。范数的物理意义是指系统获得的最大能量增益[3]。 鲁棒控制理论的实质是为MIMO(多输入多输出)且具有模型

相关文档
最新文档