污泥干化去除水分蒸发和扩散过程及干燥工艺

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产生危险的原因在于干燥系统本身的特点。一般干燥系统在调试的过程中,给热量及其相关的工艺气体量已经确定,仅通过监测干燥器出口的气体温度和湿度来控制进料装置的给料量。
给热量的确定,意味着单位时间里蒸发量的确定。当进料含水率变化,而进料量不变时,系统内部的湿度平衡将被打破,如果湿度增加,可能导致干化不均;如果湿度减少,则意味着粉尘量的增加和颗粒温度的上升。全干化系统的含水率变化较为敏感,在直接进料时,理论上最多只允许2个百分点的波动(如设定20%,而实际22%),此时由于污泥水分的急遽减少,干燥器内产品的温度会飞升,形成危险环境。由于这一区间非常狭小,对调整湿泥进料量的监测反馈系统要求较高。
蒸汽的利用一般是首先对过热蒸汽进行饱和,只有饱和蒸汽才能有效地加以利用。饱和蒸汽通过换热表面加热工艺气体(空气、氮气)或物料时,蒸汽冷凝为水,释放出全部汽化热,这部分能量就是蒸汽利用的主要能量。
3)污泥干化厂的系统组成:
一般来说,干化工艺需要配备以下基础配套设施,但根据工艺可能有较大变化:
(1)xx循环系统:
解决湿泥含水率变化敏感性的最好方法是在可能的范围内降低最终产品的含固率。当最终含固率从90%降为80%时,理论上可允许5个百分点的波动(如设定20%,而实际25%)。
大多数全干化工艺都采用了干泥返混。这样做的目的一般都是为了避免污泥的胶粘相特性使之在干燥器内易于黏着、板结,另外一个好处正是由此扩大了可允许的湿泥波动范围。
直接加热形式中热源烟气直接成为介质,其热效率接近燃烧效率本身。其余加热形式均是通过换热设备将热传给某种介质的间接加热。烟气可以通过热交换器将热量传给空气,空气作为换热介质与湿物料进行接触。烟气可以提高热交换器将热传递给导热油或蒸汽,然后利用导热油或蒸汽来加热金属或工艺气体,由金属热表面或工艺气体与湿物料进行接触。这两类换通过热交换器的换热均形成一定的热损失,一般来说在8-15%之间。
来自化工企业的废能。
沼气:
可以直接燃烧供热,价格低廉,也较清洁,但供应不稳定。
蒸汽:
清洁,较经济,可以直接全部利用,但是将降低系统效率,提高折旧比例。可以考虑部分利用的方案。
燃油:
较为经济,以烟气加热导热油或蒸汽,或直接加热利用。
天然气:
清洁能源,但是价格最高,以烟气加热导热油或蒸汽,或直接加热利用。
2."污泥干化工艺
干化(Dry)意味着在单位时间里将一定数量的热能传给物料所含的湿分,这些湿分受热后汽化,与物料分离,失去湿分的物料与汽化的湿分被分别收集起来,这就是干化的工艺过程。从设备角度来描述这一过程,包括上料、干化、气固分离、粉尘捕集、湿分冷凝、固体ቤተ መጻሕፍቲ ባይዱ送和储存等。
如果因物料的性质(粘度、含水率等)可能造成干化工艺的不稳定性的(如黏着、结块等),则有必要采用部分干化后产品与湿物料混合的工艺(返料、干泥返混)。此时,在上料之前和固体输送之后应相应增加输送、储存、分离、粉碎、筛分、提升、混合、上料等设备。
(2)间接利用:
将高温烟道气的热量通过热交换器,传给某种介质,这些介质可能是导热油、蒸汽或者空气。介质在一个封闭的回路中循环,与被干化的物料没有接触。热量被部分利用后的烟道气正常排放。间接利用存在一定的热损失。
对干化工艺来说,直接或间接加热具有不同的热效率损失,也具有不同的环境影响,是进行项目环评和经济性考察的重要内容。
如果说干化的目的仅仅是减量化,则会产生不同的含固率要求。将含固率20%的湿泥干化到90%或干化到60%,其减量比例分别为78%和67%,相差仅11个百分点。根据最终处置目的的不同,事实上要求不同的含固率。比如填埋,填埋场的垃圾含固率平均低于60%,要求污泥达到90%含固率从经济上来讲没有实际意义。
所以,将污泥干燥到该处置环境下的平衡稳定湿度,即周围空气中的水蒸气分压与物料表面上的水蒸气压达到平衡,应该是最经济合理的要求。
有些污泥干化工艺可以将湿污泥处理至含固率50-65%,而这时的处理量明显高于全干化时的处理量。其原因有两个:
首先,对于干燥系统来说,干燥时间决定了干燥器的处理量。当物料的最终含水率较高(所谓半干化)时,蒸发相同水量的时间要少于最终含水率高的情况(所谓全干化),单位处理时间内可以有更高的处理量。
其次,污泥在不同的干燥条件下失去水分的速率是不一样的,当含湿量高时失水速率高,相反则降低。大多数干化工艺需要20-30分钟才能将污泥从含固率20%干化至90%。
干泥返混一般要求将原含固率20-25%的湿泥,经过添加相当于湿泥重量1-2倍的已经干化到90%以上的干泥细粉,将其混合到平均含固率60-70%。从绝干物质量上增加了7-10倍以上。如果将干燥器的湿泥进料含固率设定为60%,其最高理论波动范围可以达到66%,这对返混工艺来说应该是可以轻松实现的了。
以导热介质为热油对间接干化工艺加以说明:
热源与污泥无接触,换热是通过导热油进行的,相应设备为导热油锅炉。
导热油锅炉在我国是一种成熟的化工设备,其标准工作温度为280度,这是一种有机质为主要成份的流体,在一个密闭的回路中循环,将热量从燃烧所产生的烟气转移到导热油中,再从导热油传给介质(气体)或污泥本身。导热油获得热量和将热量给出的过程形成一定的热量损失。一般来说,导热油锅炉的热效率介于80%-90%之间,含废热利用。
用于干泥产品的冷却等
(2)冷凝水处理系统:
工艺气体及其所含杂质的洗涤等;
(3)工艺水系统:
用于安全系统的自来水
(4)电力系统:
整个系统的供电
(5)压缩空气系统:
气动阀门的控制
(6)氮气储备系统:
干泥料仓以及工艺回路的惰性化;
(7)除臭系统:
湿泥料斗、储仓、工艺回路的不可凝气体的处理
(8)制冷系统:
导热油热量撤除
如果将污泥的含水率降到一定程度,燃烧就是可能的,而且,燃烧所得到的热量可以满足部分甚至全部进行干化的需要。同样的道理,无论制造建材还是其他利用,减少含水率是关键。因此,可以说污泥干化或半干化事实上是污泥资源化利用的第一步。
1.污泥干化概述
干燥是为了去除水分,水分的去除要经历两个主要过程:
1)蒸发过程:
所有的干化系统都可以利用废热烟气来进行。其中,间接干化系统通过导热油进行换热,对烟气无限制性要求;而直接干化系统由于烟气与污泥直接接触,虽然换热效率高,但对烟气的质量具有一定要求,这些要求包括:
含硫量、含尘量、流速和气量等。
只有间接加热工艺才能利用蒸汽进行干化,但并非所有的间接工艺都能获得较好的干化效率。一般来说,蒸汽由于温度相对较低,必然在一定程度上影响干燥器的处理能力。
污泥干燥中所谓的干化和半干化的区别在于干燥产品最终的含水率不同,这一提法是相对的。“全干化”指较高含固率的类型,如含固率85%以上;而半干化则主要指含固率在50-65%之间的类型。
如果说干化的目的是卫生化,则必须将污泥干燥到较高的含固率,最高可能要求达到90%以上,此时,污泥所含的水分大大低于环境温度下的平均空气湿度,回到环境中时会逐渐吸湿。
根据干燥器的最大蒸发量,以及该干燥工艺的实际热能消耗,可以得到一个每小时最大热能净消耗的需求量,将导热油锅炉的热效率考虑进来,即可得到导热油锅炉的选型参照标准。
2)污泥干化的热源
干化的主要成本在于热能,降低成本的关键在于是否能够选择和利用恰当的热源。
干化工艺根据加热方式的不同,其可利用的能源来源有一定区别,一般来说间接加热方式可以使用所有的能源,其利用的差别仅在温度、压力和效率。直接加热方式则因能源种类不同,受到一定限制,其中燃煤炉、焚烧炉的烟气因量大和腐蚀性污染物存在而难以使用,蒸汽因其特性无法利用。
物料表面的水分汽化,由于物料表面的水蒸气压低于介质(气体)中的水蒸气分压,水分从物料表面移入介质。
2)扩散过程:
是与汽化密切相关的传质过程。当物料表面水分被蒸发掉,形成物料表面的湿度低于物料内部湿度,此时,需要热量的推动力将水分从内部转移到表面。
上述两个过程的持续、交替进行,基本上反映了干燥的机理。干燥是由表面水汽化和内部水扩散这两个相辅相成、并行不悖的过程来完成的,一般来说,水分的扩散速度随着污泥颗粒的干燥度增加而不断降低,而表面水分的汽化速度则随着干燥度增加而增加。由于扩散速度主要是热能推动的,对于热对流系统来说,干燥器一般均采用并流工艺,多数工艺的热能供给是逐步下降的,这样就造成在后半段高干度产品干燥时速度的减低。对热传导系统来说,当污泥的表面含湿量降低后,其换热效率急速下降,因此必须有更大的换热表面积才能完成最后一段水分的蒸发。
1)污泥干化的加热方式:
直接干化和间接干化
干化是依靠热量来完成的,热量一般都是能源燃烧产生的。燃烧产生的热量存在于烟道气中,这部分热量的利用形式有两类:
(1)直接利用:
将高温烟道气直接引入干燥器,通过气体与湿物料的接触、对流进行换热。这种做法的特点是热量利用的效率高,但是如果被干化的物料具有污染物性质,也将带来排放问题,因高温烟道气的进入是持续的,因此也造成同等流量的、与物料有过直接接触的废气必须经特殊处理后排放。
污泥干化(干燥)
污泥无论来自工业还是市政,其处理的一个可行目标就是使所有来自工业中的污染物作为原料返回到工艺中去。所有的污染物事实上都是中间过程流失的原料,造成流失的媒介大多数情况下是水,去除水,将使得大量的潜在污染物可以重新得到利用。
污泥所含的污染物一般均有很高的热值,但是由于大量水分的存在,使得这部分热值无法得到利用。如果焚烧高含水率的污泥,不但得不到热值,还需要大量补充燃料才能完成燃烧。
(9)消防系统:
为整厂配置的灭火系统和安全区
4)干泥返混:
进料含水率的变化对于干化系统来说是非常重要的经济参数。这个数值越低,意味着投资更大。此外,它还是一个有关安全性的重要参数。
含水率因不同来源的湿泥(可能来自几个不同的污水处理厂)、脱水机的运行不正常(机械故障、机械效率降低、更换蓄凝剂或改变添加量)等原因,可能出现波动。当波动幅度超过一定范围时,就可能对干化的安全性形成威胁。
按照能源的成本,从低到高,分列如下:
烟气:
来自大型工业、环保基础设施(垃圾焚烧炉、电站、窑炉、化工设施)的废热烟气是零成本能源,如果能够加以利用,是热干化的最佳能源。温度必须高,地点必须近,否则难以利用。
燃煤:
非常廉价的能源,以烟气加热导热油或蒸汽,可以获得较高的经济可行性。尾气处理方案是可行的。
热干气:
相关文档
最新文档