第6章-分子动力学方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章分子动力学方法
经典分子动力学方法无疑是材料,尤其是大分子体系和大体系模拟有效的方法之一。分子动力学可以用于NPT,NVE,NVT等不同系综的计算,是一种基于牛顿力学确定论的热力学计算方法。与蒙特卡罗法相比在宏观性质计算上具有更高的准确度和有效性,可以广泛应用于物理,化学,生物,材料,医学等各个领域。本章在介绍分子动力学的基本概念的基础上,简单介绍了分子动力学的基本思想,势函数分类和基本方程。然后介绍了分子动力学的常用系综和典型的NPT,NVE,NVT系综基本方程。结合材料建模中的基本简化方法和技巧,阐述了边界条件和时间积分的数值处理技巧。最后,利用统计力学的基本概念给出分子动力学的计算信息的解析方式。并且结合Materials Explore软件计算分析了CNT的几何结构稳定性。
6.1引言
分子动力学方法(Molecular Dynamics, MD)方法是一种按该体系部的禀动力学规律来计算并确定位形的变化的确定性模拟方法。首先需要在给定的外界条件下建立一组粒子的运动方程,然后通过直接对系统中的一个个粒子运动方程进行数值求解,得到每个时刻各个分子的坐标与动量,即在相空间的运动轨迹,再利用统计力学方法得到多体系统的静态和动态特性,从而获得系统的宏观性质。可以看出,分子动力学方法中不存在任何随机因素,这个也是分子动力学方法和后文要提到的蒙特卡洛方法的区别之一。在分子动力学方法的处理过程中,方程组的建立是通过对物理体系的微观数学描述给出的。在这个微观的物理体系中,每个分子都各自服从经典的牛顿力学定律(或者是拉格朗日方程)。每个分子运动的禀动力学是用理论力学上的哈密顿量或者拉格朗日函数来描述,也可以直接用牛顿运动方程来描述。确定性方法是实现玻尔兹曼的统计力学途径。这种方法可以处理与时间有关的过程,因而可以处理非平衡态问题。但是分子动力学方法的计算机程序相对蒙特卡罗较复杂,其计算成本较高。
分子动力学方法发展历史改革经历了近60年,分子动力学方法是20世纪50年代后期由Alder B J 和Wainwright T E创造发展的。Alder和Wainwright在1957年利用分子动力学模拟,发现了“刚性球组成的集合系统会发生由其液相到结晶相的相转变”,后来人们称这种相变为Alder相变。其结果表明,不具有引力的粒子系统也具有凝聚态。到20世纪70年代,产生了刚性体系的动力学方法,成功地被应用于水和氮等分子性溶液体系的处理;1972年,Less A W和 Edwards S F 等发展了该方法并扩展到了存在速度梯度,即处于非平衡状态的系统。之后,此方法被 Ginan M J等推广到了具有温度梯度的非平衡系统,从而构造并形成了所谓的非平衡分子动力学方法体系。进人20世纪80年代之后,出现了在分子部对一部分自由度施加约束条件的新的分子动力学方法,从而使分子动力学方法可适用于类似蛋白质等生物大分子的解析与设计。分子动力学方法真正作为材料科学领域的一个重要研究方法,开始于由Andersen, Parrinello和Rahman等创立恒压分子动力学方法和Nǒse 等完成恒温分子动力学方法的建立及在应用方面的成功。后来,针对势函数模型化比较困难的半导体和金属等,1985 年人们又提出了将基于密度泛函理论的电子论和分子动力学方法有机统一起来的所谓Car-Parrinello 方法,亦即第一性原理分子动力学方法。这样,分子动力学的方法进一步得到发展和完善,它不仅可以处理半导体和金属的间题,同时还可应用
于处理有机物和化学反应。关于Car-Parrinello 分子动力学方法将在第7章重点学习讨论。本章重点讨论经典分子动力学方法的基本原理和计算方法。
6.2 分子动力学的计算框架
6.2.1 基本思想
分子动力学方法是沿用牛顿运动方程或拉格朗日方程、哈密顿方程,通过考察粒子的运动来研究多粒子系统的物理性质。在处理孤立粒子或原子团簇(不考虑与其他粒子的相互作用)时,单纯地对牛顿运动方程进行积分求解就行了;而在处理凝聚系统时,可以认为将所考虑的N 个粒子放入具有一定体积的容器中,在这样组成的封闭系中,建立直角坐标(x, y, z),每个粒子的位置就由三个坐标分量决定,通过求解3N 个联立方程组就可以得到保守系的总能量。分子动力学的基本思想在于通过设定原子之间的相互作用(势函数)和相关的系综(亦即作用对象和条件),确定其基本的模拟畴。在给定的牛顿方程、拉格朗日方程或者是哈密顿方程进行时间的迭代,在达到指定的力学收敛条件之后得到一个最终的位置坐标,然后通过相关的位形信息和运动的速度和加速度等信息通过热力统计学的方法,给出模拟体系的统计信息,主要包括复杂的光学,电学和一些其他的物理信息。其基本思想,总结如图6-1所示。
一次信息二次信息
动力学方程初始化条件
图 6-1 分子动力学的一般思想
6.2.2 计算流程
总体来说,分子动力学的基本计算有如下四个步骤: 1. 模型的设定,也就是势函数的选取
势函数的研究和物理系统中对物质的描述研究息息相关。分子动力学的模拟最早使用是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是Lennard-Jones 势函数,还有嵌入原子EAM 势函数,不同的物质状态描述用不同的势函数。模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。关于势函数选取将在6.4节进一步讨论。 2. 给定初始条件
运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如Verlet 算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。
一般意义上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为当模拟时间足够长时,系统就会忘掉初始条件(对于无记忆的体系而言)。当然,合理的初始条件可以加快系统趋于平衡的时间和步程,获得好的精度。
常用的初始条件可以选择为,令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令
3.趋于平衡计算
在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统能量,并且这个状态本身也还不是一个平衡态。为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,增加或者从系统中移出能量,直到持续给出确定的能量值,称此时系统已经达到平衡,达到平衡的时间称为弛豫时间。
分子动力学中,积分步程的大小选择十分重要,这决定了模拟所需要的时间。为了减小误差,步长要小,但过小系统模拟的弛豫时间就长。因此根据经验选择适当的步长。如,对一个具有几百个氩气分子的体系,采用Lennard-Jones势函数,发现取h为0.01量级,可以得到很好的结果。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s 的量级。如果模拟1000步,系统达到平衡,弛豫时间只有10-11s。
4.宏观物理量的计算
实际计算宏观的物理量往往是在模拟的最后阶段进行的,它是沿相空间轨迹求平均来计算得到的,根据各态历经假说,时间平均代替系综平均。关于各态历经假说将在第8章的蒙特卡洛方法中深入讨论。