举例说明快速排序不是一个稳定的排序算法

举例说明快速排序不是一个稳定的排序算法

举例说明快速排序不是一个稳定的排序算法

快速排序伪代码[1]:

QUICKSORT(A,p,r)

1if p

2then q ←PARTITION(A,p,r)

3QUICKSORT(A,p,q-1)

4QUICKSORT(A,q+1,r)

为排序一个完整的数组A,最初的调用是QUICKSORT(A,1,length[A])。

快速排序算法的关键是PARTITION过程,它对子数组A[p..r]进行就地重排:

PARTITION(A,p,r)

1x←A[p]

2i←p-1

3for j←p+1to r

4do if A[j]≤x

5then i←i+1

6exchange A[i]←→A[j]

7exchange A[i+1]←→A[r]

8return i+1[2]

举例:使用每组数的第一个数作为划分依据,非降序排列6个数:4 3 5 42 1 2,相同的数中,蓝色是开始排前面的,绿色是开始排后面的,下面有横线的数是还没排好的数。

开始:4 3 5 42 1 2

第一趟:2 1 2 3 4 5 4//排好4

第二趟:1 22 3 44 5//排好2,5

第三趟:1 2 2 3 44 5//排好1,2,4

第四趟:1 2 2 3 44 5//排好3

此时排序完成,可以看到,两个2在排序后位置已经互换了,而两个4没有,所以快速排序不是一个稳定的排序算法。

1/ 1

数据结构课程设计报告 各种排序算法性能比较

课程设计报告 课程设计题目:各种排序算法性能比较 学生姓名: 学号: 专业:信息管理与信息系统 班级: 指导教师: 2012年06 月23 日

目录 CONT E NT S 一、课程设计目的 (2) 二、课程设计题目概述 (2) 三、数据定义 (2) 四、各种排序的基本原理及时间复杂度分析 (3) 五、程序流程图 (6) 六、程序源代码 (6) 七、程序运行与测试 (15) 八、实验体会………………………………………………………… 九、参考文献…………………………………………………………

一、课程设计目的 课程设计为学生提供了一个既动手又动脑,独立实践的机会,将课本上的理论知识和实际有机的结合起来,锻炼学生的分析解决实际问题的能力。提高学生适应实际,实践编程的能力。 二、课程设计题目概述 排序的方法很多,但是就其全面性能而言,很难提出一种被认为是最好的方法,每一种方法都有各自的优缺点,适合在不同的环境下使用。如果排序中依据的不同原则对内部排序方法进行分类,则大致可分为直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序等六类排序算法。 本实验是对直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序这几种内部排序算法进行比较,用不同的测试数据做测试比较。比较的指标为关键字的比较次数和关键字的移动次数。最后用图表数据汇总,以便对这些内部排序算法进行性能分析。 三、数据定义 输入数据: 由于大多数排序算法的时间开销主要是关键字之间的比较和记录的移动,算法的执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。所以对于输入数据,我们采用由用户输入记录的个数(以关键字的数目分别为20,100,500为例),测试数据由随机数产生器生成。 输出数据: 产生的随机数分别用直接插入排序;直接选择排序;起泡排序;Shell排序;快速排序;堆排序这些排序方法进行排序,输出关键字的比较次数和移动次数。

稳定排序和不稳定排序

稳定排序和不稳定排序 这几天笔试了好几次了,连续碰到一个关于常见排序算法稳定性判别的问题,往往还是多选,对于我以及和我一样拿不准的同学可不是一个能轻易下结论的题目,当然如果你笔试之前已经记住了数据结构书上哪些是稳定的,哪些不是稳定的,做起来应该可以轻松搞定。本文是针对老是记不住这个或者想真正明白到底为什么是稳定或者不稳定的人准备的。 首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。 其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。 回到主题,现在分析一下常见的排序算法的稳定性,每个都给出简单的理由。 (1)冒泡排序 冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。 (2)选择排序 选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。 (3)插入排序 插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。 (4)快速排序 快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_index]。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

数据结构各种排序算法的时间性能

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能学生姓名 学生学号 专业班级 指导老师李晓鸿 完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略 二、概要设计

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

常用排序算法比较与分析报告

常用排序算法比较与分析 一、常用排序算法简述 下面主要从排序算法的基本概念、原理出发,分别从算法的时间复杂度、空间复杂度、算法的稳定性和速度等方面进行分析比较。依据待排序的问题大小(记录数量 n)的不同,排序过程中需要的存储器空间也不同,由此将排序算法分为两大类:【排序】、【外排序】。 排序:指排序时数据元素全部存放在计算机的随机存储器RAM中。 外排序:待排序记录的数量很大,以致存一次不能容纳全部记录,在排序过程中还需要对外存进行访问的排序过程。 先了解一下常见排序算法的分类关系(见图1-1) 图1-1 常见排序算法 二、排序相关算法 2.1 插入排序 核心思想:将一个待排序的数据元素插入到前面已经排好序的数列中的适当位置,使数据元素依然有序,直到待排序数据元素全部插入完为止。 2.1.1 直接插入排序 核心思想:将欲插入的第i个数据元素的关键码与前面已经排序好的i-1、i-2 、i-3、… 数据元素的值进行顺序比较,通过这种线性搜索的方法找到第i个数据元素的插入位置,并且原来位置的数据元素顺序后移,直到全部排好顺序。 直接插入排序中,关键词相同的数据元素将保持原有位置不变,所以该算法是稳定的,时间复杂度的最坏值为平方阶O(n2),空间复杂度为常数阶O(l)。

Python源代码: 1.#-------------------------直接插入排序-------------------------------- 2.def insert_sort(data_list): 3.#遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始 4.for x in range(1, len(data_list)): 5.#将该元素与已排序好的前序数组依次比较,如果该元素小,则交换 6.#range(x-1,-1,-1):从x-1倒序循环到0 7.for i in range(x-1, -1, -1): 8.#判断:如果符合条件则交换 9.if data_list[i] > data_list[i+1]: 10.temp= data_list[i+1] 11.data_list[i+1] = data_list[i] 12.data_list[i] = temp 2.1.2 希尔排序 核心思想:是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。 希尔排序时间复杂度会比O(n2)好一些,然而,多次插入排序中,第一次插入排序是稳定的,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,所以希尔排序是不稳定的。 Python源代码: 1.#-------------------------希尔排序------------------------------- 2.def insert_shell(data_list): 3.#初始化step值,此处利用序列长度的一半为其赋值 4.group= int(len(data_list)/2) 5.#第一层循环:依次改变group值对列表进行分组 6.while group> 0: 7.#下面:利用直接插入排序的思想对分组数据进行排序 8.#range(group,len(data_list)):从group开始 9.for i in range(group, len(data_list)): 10.#range(x-group,-1,-group):从x-group开始与选定元素开始倒序比较,每个比较元素之间间隔group 11.for j in range(i-group, -1, -group): 12.#如果该组当中两个元素满足交换条件,则进行交换 13.if data_list[j] > data_list[j+group]: 14.temp= data_list[j+group] 15.data_list[j+group] = data_list[j] 16.data_list[j] = temp 17.#while循环条件折半 18.group= int(group/ 2) 2.2 选择排序

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

各种排序法比较

各种排序法的比较 按平均时间将排序分为四类: (1)平方阶(O(n2))排序 一般称为简单排序,例如直接插入、直接选择和冒泡排序; (2)线性对数阶(O(nlgn))排序 如快速、堆和归并排序; (3)O(n1+£)阶排序 £是介于0和1之间的常数,即0<£<1,如希尔排序; (4)线性阶(O(n))排序 如桶、箱和基数排序。 各种排序方法比较: 简单排序中直接插入最好,快速排序最快,当文件为正序时,直接插入和冒泡均最佳。 影响排序效果的因素: 因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法 应综合考虑下列因素: ①待排序的记录数目n; ②记录的大小(规模); ③关键字的结构及其初始状态; ④对稳定性的要求; ⑤语言工具的条件; ⑥存储结构; ⑦时间和辅助空间复杂度等。 不同条件下,排序方法的选择 (1)若n较小(如n≤50),可采用直接插入或直接选择排序。 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。 (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜; (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。 快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短; 堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。 若要求排序稳定,则可选用归并排序。从单个记录起进行两两归并,排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。

几种排序算法的分析与比较--C语言

一、设计思想 插入排序:首先,我们定义我们需要排序的数组,得到数组的长度。如果数组只有一个数字,那么我们直接认为它已经是排好序的,就不需要再进行调整,直接就得到了我们的结果。否则,我们从数组中的第二个元素开始遍历。然后,启动主索引,我们用curr当做我们遍历的主索引,每次主索引的开始,我们都使得要插入的位置(insertIndex)等于-1,即我们认为主索引之前的元素没有比主索引指向的元素值大的元素,那么自然主索引位置的元素不需要挪动位置。然后,开始副索引,副索引遍历所有主索引之前的排好的元素,当发现主索引之前的某个元素比主索引指向的元素的值大时,我们就将要插入的位置(insertIndex)记为第一个比主索引指向元素的位置,跳出副索引;否则,等待副索引自然完成。副索引遍历结束后,我们判断当前要插入的位置(insertIndex)是否等于-1,如果等于-1,说明主索引之前元素的值没有一个比主索引指向的元素的值大,那么主索引位置的元素不要挪动位置,回到主索引,主索引向后走一位,进行下一次主索引的遍历;否则,说明主索引之前insertIndex位置元素的值比主索引指向的元素的值大,那么,我们记录当前主索引指向的元素的值,然后将主索引之前从insertIndex位置开始的所有元素依次向后挪一位,这里注意,要从后向前一位一位挪,否则,会使得数组成为一串相同的数字。最后,将记录下的当前索引指向的元素的值放在要插入的位置(insertIndex)处,进行下一次主索引的遍历。继续上面的工作,最终我们就可以得到我们的排序结果。插入排序的特点在于,我们每次遍历,主索引之前的元素都是已经排好序的,我们找到比主索引指向元素的值大的第一个元素的位置,然后将主索引指向位置的元素插入到该位置,将该位置之后一直到主索引位置的元素依次向后挪动。这样的方法,使得挪动的次数相对较多,如果对于排序数据量较大,挪动成本较高的情况时,这种排序算法显然成本较高,时间复杂度相对较差,是初等通用排序算法中的一种。 选择排序:选择排序相对插入排序,是插入排序的一个优化,优化的前提是我们认为数据是比较大的,挪动数据的代价比数据比较的代价大很多,所以我们选择排序是追求少挪动,以比较次数换取挪动次数。首先,我们定义我们需要排序的数组,得到数组的长度,定义一个结果数组,用来存放排好序的数组,定义一个最小值,定义一个最小值的位置。然后,进入我们的遍历,每次进入遍历的时候我们都使得当前的最小值为9999,即认为每次最小值都是最大的数,用来进行和其他元素比较得到最小值,每次认为最小值的位置都是0,用来重新记录最小值的位置。然后,进入第二层循环,进行数值的比较,如果数组中的某个元素的值比最小值小,那么将当前的最小值设为元素的值,然后记录下来元素的位置,这样,当跳出循环体的时候,我们会得到要排序数组中的最小值,然后将最小值位置的数值设置为9999,即我们得到了最小值之后,就让数组中的这个数成为最大值,然后将结果数组result[]第主索引值位置上的元素赋值为最小值,进行下一次外层循环重复上面的工作。最终我们就得到了排好序的结果数组result[]。选择排序的优势在于,我们挪动元素的次数很少,只是每次对要排序的数组进行整体遍历,找到其中的最小的元素,然后将改元素的值放到一个新的结果数组中去,这样大大减少了挪动的次序,即我们要排序的数组有多少元素,我们就挪动多少次,而因为每次都要对数组的所有元素进行遍历,那么比较的次数就比较多,达到了n2次,所以,我们使用选择排序的前提是,认为挪动元素要比比较元素的成本高出很多的时候。他相对与插入排序,他的比较次数大于插入排序的次数,而挪动次数就很少,元素有多少个,挪动次数就是多少个。 希尔排序:首先,我们定义一个要排序的数组,然后定义一个步长的数组,该步长数组是由一组特定的数字组成的,步长数组具体得到过程我们不去考虑,是由科学家经过很长时间计算得到的,已经根据时间复杂度的要求,得到了最适合希尔排序的一组步长值以及计算

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

分治算法实验(用分治法实现快速排序算法)

算法分析与设计实验报告第四次附加实验

while (a[--j]>x); if (i>=j) { break; } Swap(a[i],a[j]); } a[p] = a[j]; //将基准元素放在合适的位置 a[j] = x; return j; } //通过RandomizedPartition函数来产生随机的划分 template vclass Type> int RandomizedPartition(Type a[], int p, int r) { int i = Random(p,r); Swap(a[i],a[p]); return Partition(a,p,r); } 较小个数排序序列的结果: 测试结果 较大个数排序序列的结果:

实验心得 快速排序在之前的数据结构中也是学过的,在几大排序算法中,快速排序和归并排序尤其是 重中之重,之前的快速排序都是给定确定的轴值,所以存在一些极端的情况使得时间复杂度 很高,排序的效果并不是很好,现在学习的一种利用随机化的快速排序算法,通过随机的确 定轴值,从而可以期望划分是较对称 的,减少了出现极端情况的次数,使得排序的效率挺高了很多, 化算法想呼应,而且关键的是对于随机生成函数,通过这一次的 学习终于弄明白是怎么回事了,不错。 与后面的随机实 验和自己的 实验得分助教签名 附录: 完整代码(分治法) //随机后标记元素后的快速排序 #i nclude #in elude #inelude #include using namespacestd; template < class Type> void S &x,Type &y); // 声明swap函数 inline int Random(int x, int y); // 声明内联函数 template < class Type> int Partition(Type a[], int p, int r); // 声明 Partition 函数template int RandomizedPartition(Type a[], int p, int r); // 声明 RandomizedPartition 函数 int a[1000000]; //定义全局变量用来存放要查找的数组 更大个数排序序列的结果:

排序算法比较实验报告

信息学部算法分析 上机报告 学号0901******** 姓名陈龙 指导老师秦明 时间2011.11.1~11.23

一.上机实验题目 实验1 比较归并排序和快速排序的区别。 实验2 利用贪心算法对背包问题进行求解。 二.算法设计思路 归并排序: 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列,设定两个指针,最初位置分别为两个已经排序序列的起始位置,比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置,重复步骤直到某一指针达到序列尾,将另一序列剩下的所 有元素直接复制到合并序列尾。 快速排序: 设置两个变量I、J,排序开始的时候:I=0,J=N-1;以第一个数组元素作为关键数据,赋值给key,即key=A[0];从J开始向前搜索,即由后开始向前搜索(J=J-1),找到第一个小于key的值A[J],并与key交换;从I开始向后搜索,即由前开始向后搜索(I=I+1),找到第一个大于key的A[I],与key交换;重复第3、4、5步,直到I=J;(3,4步是在程序中没找到时候j=j-1,i=i+1,直至找到为止。找到并交换的时候i,j指针位置不变。另外当i=j这过程一定正好是i+或j-完成的最后另循环结束。) 背包问题: 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 。可以压缩空间,f[v]=max{f[v],f[v-c[i]]+w[i]}

三. 源程序 归并排序 #include #include # define N 50 int b[N],a[N]; int n,i; void Merge (int low, int mid,int high) //合并 { int i; int l=low,h=mid+1,k=l; while ((l<=mid) && (h<=high)) //部分合并 { if (a[l]<=a[h]) b[k++]=a[l++]; else b[k++]=a[h++]; } if(l>mid) while (h<=high) b[k++]=a[h++]; //转储剩余部分 else while(l<=mid) b[k++]=a[l++]; for (i=0;i<=high;i++) //将b数组转储到a a[i]=b[i]; } int Merge2 (int l,int h) //分类 { for (i=0;i

数据结构-各类排序算法总结

数据结构-各类排序算法总结 原文转自: https://www.360docs.net/doc/9f1012551.html,/zjf280441589/article/details/38387103各类排序算法总结 一. 排序的基本概念 排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素 某个项值有序的序列。 有n 个记录的序列{R1,R2,…,Rn},其相应关键字的序列是{K1,K2,…,Kn},相应的下标序列为1,2,…,n。通过排序,要求找出当前下标序列1,2,…,n 的一种排列p1,p2,…,pn,使得相应关键字满足如下的非递减(或非递增)关系,即:Kp1≤Kp2≤…≤Kpn,这样就得到一个按关键字有序的记录序列{Rp1,Rp2,…,Rpn}。 作为排序依据的数据项称为“排序码”,也即数据元素的关键码。若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可

能不唯一。实现排序的基本操作有两个: (1)“比较”序列中两个关键字的大小; (2)“移动”记录。 若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。 二.插入类排序 1.直接插入排序直接插入排序是最简单的插入类排序。仅有一个记录的表总是有序的,因此,对n 个记录的表,可从第二个记录开始直到第n 个记录,逐个向有序表中进行插入操作,从而得到n个记录按关键码有序的表。它是利用顺序查找实现“在R[1..i-1]中查找R[i]的插入位置”的插入排序。

分治法实现快速排序与两路合并排序

实验报告 (2015 / 2016 学年第二学期) 课程名称 实验名称分治法实现快速排序与两路合并排序 实验时间年月日指导单位计算机学院计算机科学与技术系 指导教师 学生姓名班级学号 学院(系) 专业 实验报告

三、实验原理及内容 实验原理: 分治法:即分而治之。将问题分解为规模较小,相互独立,类型相同的问题进行求解。对于无序数组的有序排序也就是按某种方式将序列分成两个或多个子序列,分别进行排序,再将已排序的子序列合并成一个有序序列。 实验内容: 两路合并排序算法的基本思想是:将待排序元素序列一分为二,得到两个长度基本相等的子序列,其过程类似于对半搜索;然后将子序列分别排序,如果子序列较长,还可以继续细分,知道子序列长度不超过1为止。 以上的实现由下列代码执行: void SortableList::MergeSort() { MergeSort(0,n-1); } void SortableList::MergeSort(int left,int right) { if (left

数据结构各种排序算法的时

数据结构各种排序算法的时间性能.

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能 学生姓名 学生学号 专业班级

指导老师李晓鸿完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略

快速排序算法(论文)

1 绪论 快速排序(quicksort)是分治(divide and conquer)法的一个典型例子。快速排序(Quicksort)是对冒泡排序的一种改进。由C. A. R. Hoare在1962 年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 快速排序算法具有良好的平均性能,因此它在实际中常常是首选的排序算法。本次任务主要以快速排序算法实现对任意数字序列的排序,并解决书本P59页 2-26问题: O n n 试说明如何修改快速排序算法,使它在最坏情况下的计算时间为(log) 所选编程语言为C语言。

2 快速排序算法 2.1快速排序算法简介 快速排序算法是基于分治策略的排序算法。即对于输入的子数组a[p:r],按以下三个步骤进行排序。 (1)分解:以a[p]为基准元素将a[p:r]划分成3段a[p:q-1],a[q]和a[q+1:r],使a[p:q-1]中任何一个元素小于等于a[q],而a[q+1:r]中任何一个元素大于等于a[q]。下标q在划分过程中确定。 (2)递归求解:通过递归调用快速排序算法分别对a[p:q-1]和a[q+1:r]进行排序。 (3)合并:由于对a[p:q-1]和a[q+1:r]的排序是就地进行的,所以在a[p:q-1]和a[q+1:r]都已排好的序后,不需要执行任何计算,a[p:r]就已排好序。

2.2 图1 快速排序算法流程图

2.3快速排序算法的算法实现 第一趟处理整个待排序列,选取其中的一个记录,通常选取第一个记录,以该记录的关键字值为基准,通过一趟快速排序将待排序列分割成独立的两个部分,前一部分记录的关键字比基准记录的关键字小,后一部分记录的关键字比基准记录的关键字大,基准记录得到了它在整个序列中的最终位置并被存放好,这个过程称为一趟快速排序。第二趟即分别对分割成两部分的子序列再进行快速排序,这样两部分子序列中的基准记录也得到了最终在序列中的位置并被存放好,又分别分割出独立的两个子序列。这是一个递归的过程,不断进行下去,直至每个待排子序列中都只有一个记录是为止,此时整个待排序列已排好序,排序算法结束。 快速排序的过程: (1)初始化。取第一个记录作为基准,设置两个整型指针i,j,分别指向将要与基准记录进行比较的左侧记录位置和右侧记录位置。最开始从右侧比较,当发生交换操作后,再从左侧比较。 (2)用基准记录与右侧记录进行比较。即与指针j指向的记录进行比较,如果右侧记录的关键字值大,则继续与右侧前一个记录进行比较,即j减1后,再用基准元素与j所指向的记录比较,若右侧的记录小,则将基准记录与j所指向的记录进行交换。 (3)用基准记录与左侧记录进行比较。即与指针i指向的记录进行比较,如果左侧记录的关键字值小,则继续与左侧后一个记录进行比较,即i加1后,再用基准记录与i指向的记录比较,若左侧的记录大,则将基准记录与i指向的记录比较。 (4)右侧比较与左侧比较交替重复进行,直到指针i与j指向同一位置,即指向基准记录最终的位置。 可实现的快速排序算法如下: void QuickSort(int a[],int p,int r) { i f(p

相关文档
最新文档