光通信技术发展趋势 PPT课件
合集下载
光通信技术简介-PPT课件
光谱特性
紫外 Invisible
可见
红外 wavelength
Invisible
850 nm
980 nm 1310 nm
1480 nm
1550 nm
1625 nm
光通信频带范围
光纤通信波长范围目前利用 850, 1310nm和1550nm三个窗口
光纤结构
coating n cladding n core cladding core n cladding n core
E/OConversion
Optical Transmission
O/E Conversion
Electrical transmission
electrical signal processing
Fiber as transmission medium
依据国际标准进行电子信号处理。 将信号转换为光波频带可以利用后来发展起来的光纤 传输的优势。
红外吸收在长波方向限制传输。OH吸收峰在 1400nm附近。 造成三个传输窗口:850, 1310nm和1550nm 。
弯曲下光纤损耗
attenuation coefficient / dB/km -->
3,0 宏弯光纤 2,0
微弯光纤 未弯曲光纤
1,0
0,0 1000 1100 1200 1300 1400 1500 1600 1700 wavele网络示意(2)
干线网 层1
STM-4 STM-16 STM-1 Exchange
干线网 层2
Local Exchange
FlexMux
用户 接入
Mux 64/2M
复用技术
•目前PDH、SDH等技术均采用时分复用(TDM)技术。
光纤通信原理和技术PPT课件
波长(µm) 系统类型
0.85
IM/DD
光纤 多模
BL(Gb/s·km) 年代
2
1978
1.3
IM/DD
单模
第1章 绪论
1.1 光通信发展史 1.2 国内外光纤通信技术发展概况 1.3 光纤通信系统的基本构成
第1章 绪论
1.1 光通信发展史
1.1.1 现代通信的发展
人类社会出现后,人与人之间就需要信息交流。原始社会 人们可以靠声音(语言)、肢体动作(肢体语言)或面部表情 等交流信息,这就是原始的通信,是人们面对面的交流。
60年代最好的光纤传输衰减为1000dB/km,即传输1km, 光功率降到原来的1/10100≈0,因而这种光纤不可能用作通 信媒质。当时没有人相信光纤可以用于通信,也没有人从 事光纤用于通信的研究。英藉华人学者高锟博士的贡献在 于理论上证明这样大的传输衰减是由于光纤中杂质吸收和 散射引起的。如将光纤提纯,则传输衰减可以降到可在通 信中实用的程度(最初提出的指标是20dB/km)[1].这一贡 献具有深远意义,完全改变了通信容量不适应社会发展的 需求,推动了信息社会更快地到来。由于这一贡献,高锟 博士获得了2009年诺贝尔物理学奖。
第1章 绪论
2.半导体激光器性能的突破
1960年发明的第一个激光器是红宝石(固体)激光器,不久 (1961年)半导体激光器研制成功,但当时需要在低温(液氮) 下脉冲工作。后来采用异质结技术使激光器可在常温下连续 工作,但开始只有数小时甚至数分钟的寿命,由于寿命极短 不能实用化。经过一段时间的努力,才研制成功可实用的半 导体激光器。现在的半导体激光器的性能有了极大的提高, 其寿命可达106小时,甚至达108小时,功率可达10 毫瓦量级 (泵浦激光器可达几百毫瓦),可调谐范围几百GHz,线宽低到 1―10MHz(外腔激光器能达几十kHz),适用于各种光通信系统, 为光纤通信实用化打下了基础。激光器价格也在不断下降, 干线通信系统所用激光器已降到千美元量级;几十美元,甚 至几美元的半导体激光器可用于接入网系统。
数字光纤通信系统课件
光接收机
将光信号转换为电信号,实现 信息的接收。
数字信号处理单元
对电信号进行调制和解调处理 ,以及实现信号的编解码等功
能。
02
数字光纤通信系统关键 技术
调制技术
调相技术
调频技术
通过改变光载波的相位信息承载信号,常 见有二进制相位移位键控(BPSK)和四进 制相位移位键控(QPSK)。
利用光载波的频率变化携带信息,常见有 最小频移键控(MSK)和偏移四相相位移 位键控(OQPSK)。
05
数字光纤通信系统发展 趋势与挑战
超高速率与超长距离传
总结词
随着数据需求的爆炸式增长,超高速率和超长距离传输成为数字光纤通信系统的 重要发展方向。
详细描述
目前,商用数字光纤通信系统的传输速率已经达到Tbps级别,同时,超长距离传 输技术也在不断发展,以满足大规模数据中心和跨国网络之间的连接需求。
传输距离
总结词
传输距离是数字光纤通信系统覆盖范围的直接体现,它决定了系统的服务范围和应用场景。
详细描述
传输距离是指数字光纤通信系统在保证一定通信质量的前提下,光信号能够传输的最大距离。传输距离受到光纤 损耗、光信号衰减、中继器性能等多种因素的影响。长传输距离的系统可以提供更广泛的网络覆盖,满足不同地 区和领域的通信需求。
误码率与Q因子
要点一
总结词
误码率与Q因子是衡量数字光纤通信系统传输质量的指标 ,它们反映了系统传输二进制位错误的概率。
要点二
详细描述
误码率是指数字光纤通信系统在传输过程中,接收端接收 到的二进制位中出现错误的概率,是评估系统传输质量的 重要参数。Q因子是另一种衡量系统传输质量的参数,它 综合考虑了系统的误码率和信号质量,能够更全面地反映 系统的性能。低误码率和高的Q因子意味着系统传输质量 更高,信息传递更准确。
光纤通信发展概述PPT(共-54张)
1973 年,美国贝尔(Bell)实验室的光纤损耗降低到2.5dB/km。1974 年降低到1.1dB/km。 1976 年,日本电报电话(NTT)公司将光纤损耗降低到0.47 dB/km(波长1.2μm)。 在以后的 10 年中,波长为1.55 μm的光纤损耗: 1979 年是0.20 dB/km,1984年是0.157 dB/km,1986 年是0.154 dB/km, 接近了光纤最低损耗的理论极限。
Business
WDM
25.6 Tb/s (3.2 bits/Hz)
Single Mode Fiber
DFB Laser
Optical Amplifier
AWG
TDM
WDM
PSK Multi-Level
Coherent OFDM
第一波, 1996-2001年 密集波分复用技术大发展。传输距离虽不长,一条光纤中的复用波长却越来越多,以2001年日本NEC公司的10.92Tbps系统,复用273个波长, 波长间隔0.4ns, 每波长 40Gb/s,使用S, C, L三个波段为高峰。 第二波,2002年-2005年 超长距离光纤技术大发展。在波长不多的系统中试验各种延长中继段和系统总长度的技术。以美国Tyco公司的11,000~ 13,100km太平洋海底光缆系统为代表。使用掺铒光纤放大器(EDFA)、喇曼放大器(RFA)及其结合,利用光DPSK和光QPSK来提高带宽效率。
在大气光通信受阻之后,人们将研究的重点转入到地面光波通信的实验,先后出现过反射波导和透镜波导等地面通信的实验。
早期的光通信
由于没有找到稳定可靠和低损耗的传输介质, 对光通信的研究曾一度走入了低潮。
早期的光通信
早期的光通信 光纤通信主要部件的发展 光纤通信系统的发展 国内外光纤通信发展现状和趋势
Business
WDM
25.6 Tb/s (3.2 bits/Hz)
Single Mode Fiber
DFB Laser
Optical Amplifier
AWG
TDM
WDM
PSK Multi-Level
Coherent OFDM
第一波, 1996-2001年 密集波分复用技术大发展。传输距离虽不长,一条光纤中的复用波长却越来越多,以2001年日本NEC公司的10.92Tbps系统,复用273个波长, 波长间隔0.4ns, 每波长 40Gb/s,使用S, C, L三个波段为高峰。 第二波,2002年-2005年 超长距离光纤技术大发展。在波长不多的系统中试验各种延长中继段和系统总长度的技术。以美国Tyco公司的11,000~ 13,100km太平洋海底光缆系统为代表。使用掺铒光纤放大器(EDFA)、喇曼放大器(RFA)及其结合,利用光DPSK和光QPSK来提高带宽效率。
在大气光通信受阻之后,人们将研究的重点转入到地面光波通信的实验,先后出现过反射波导和透镜波导等地面通信的实验。
早期的光通信
由于没有找到稳定可靠和低损耗的传输介质, 对光通信的研究曾一度走入了低潮。
早期的光通信
早期的光通信 光纤通信主要部件的发展 光纤通信系统的发展 国内外光纤通信发展现状和趋势
光纤通信原理-(全套)PPT课件
为了描述光纤中传输的模式数目,在
此引入一个非常重要的结构参数,即光纤
的归一化频率,一般用V表示,其表达式 如下:
V k 0 n m a2 2 0n m a2 C n m a2
1. 多模光纤
顾明思义,多模光纤就是允许多个模 式在其中传输的光纤,或者说在多模光纤 中允许存在多个分离的传导模。
光纤的作用是为光信号的传送提供传 送媒介(信道),将光信号由一处送到另一 处。
中继器分为电中继器和光中继器(光放 大器)两种,其主要作用就是延长光信号的 传输距离。
1.3.2 光纤通信系统的分类
根据调制信号的类型,光纤通信系统 可以分为模拟光纤通信系统和数字光纤通 信系统。
根据光源的调制方式,光纤通信系统 可以分为直接调制光纤通信系统和间接调 制光纤通信系统。
1.2 光纤通信的主要特性
1.2.1 光纤通信的优点
1. 光纤的容量大
光纤通信是以光纤为传输媒介,光波为载 波的通信系统,其载波—光波具有很高的 频率(约1014Hz)损耗低、中继距离长
目前,实用的光纤通信系统使用的光 纤多为石英光纤,此类光纤在1.55μm波长 区 的 损 耗 可 低 到 0 . 1 8 dB/km, 比 已 知 的 其 他通信线路的损耗都低得多,因此,由其 组成的光纤通信系统的中继距离也较其它 介质构成的系统长得多。
图2.2 光纤的折射率分布
光纤的折射率变化可以用折射率 沿半径的分布函数n(r)来表示。
n r n n 1 2
r a r a
2. 按传输模式的数量分类
按光纤中传输的模式数量,可以将光 纤分为多模光纤(Multi-Mode Fiber,MMF) 和单模光纤(Single Mode Fiber,SMF)。
下一代光通信技术的发展趋势 45页PPT文档
一、国内外光通信技术的发展现状
韩国
WDM技术的进展:
90年代中期:速率:10Gb/s╳10波道 距离:320km 2019年: 速率:1.6Tb/s╳10波道 距离:2000km
速率:42.8Gb/s╳40波道 距离:511km
基于波分的全光交叉技术,可重构型光分插复用器(ROADM)
一、国内外Leabharlann 通信技术的发展现状一、国内外光通信技术的发展现状
日本 1、日本国家信息与通信技术研究院:
实验室验证,160Gbit/s的高速光包交换
2、NTT:平面光波电路(PLC)滤波,核心网的光波
长路由器
3、NEC:光量子密码方式对通信系统的安全防范 4、KDDI实验室:全光信号处理
一、国内外光通信技术的发展现状
韩国 MOST:基础性研究 MOCIE:与产业相关的研究与开发 MIC:光通信系统的研究
四、光纤拉曼放大器的研究
光纤拉曼放大器原理:利用光纤中的受激拉曼散射现象。 受激拉曼散射现象: 经典理论: 量子理论
四、光纤拉曼放大器的研究
受激拉曼散射现象: 量子理论:入射光和介质分子相互作用时,光子吸收或发
射一个声子。 拉曼散射的光子可分为: 斯托克斯拉曼光子 反斯托克斯拉曼光子
hs hph has hph
2019年, u—Korea BCN:基础技术开发 ETRI:最大的IT研发机构
一、国内外光通信技术的发展现状
韩国
宽带接入网技术的进展:
2019年,ADSL: 2019年,VDSL: 2019年,VDSL: 2019年,FTTH
速率2Mb/s 速率20Mb/s 速率50Mb/s 速率100Mb/s
(3)单纵模激光器 波段:1.55μ m 速率:2.5-10Gb/s 距离:60-70km
《光通信OCDMA技术》课件
光通信OCDMA技术
目录
• OCDMA技术概述 • OCDMA技术原理 • OCDMA技术优势与挑战 • OCDMA技术应用案例 • 总结与展望
01 OCDMA技术概述
OCDMA技术的定义
• 定义:OCDMA(Optical Code Division Multiple Access)是一种光通信中的多址接入技术,通过给每一个 用户分配一个独特的地址码,实现多个用户在同一光频带 内共享信道资源,同时进行相互独立的通信。
成本较高
由于OCDMA技术涉及到的光子编码 和解码器件较为复杂,导致其成本相 对较高。
兼容性问题
目前OCDMA技术还未能与现有的光 通信系统完全兼容,需要进一步解决 兼容性问题。
传输距离受限
由于OCDMA技术的特性,其传输距 离受到一定限制,需要在中短距离内 使用才能发挥最佳效果。
OCDMA技术的发展趋势
网络等。1 02
编码方式
OCDMA技术采用扩频码对光信号进行编码,扩频码具有高度的互异性 ,使得不同用户的光信号在通信过程中能够相互混淆,实现多用户复用 。
编码过程
编码器将原始光信号与扩频码进行调制,生成具有特定扩频码的光信号 ,这些信号在光通信网络中传输。
应用拓展
未来,OCDMA技术有望在 5G/6G移动通信、物联网、云计 算等领域得到更广泛的应用,为 大数据、人工智能等新兴技术的 发展提供强大的信息传输支持。
研究方向
针对OCDMA技术的安全性、稳 定性和可扩展性等关键问题,未 来研究将更加注重算法优化、系 统仿真和实验验证等方面的工作 ,推动OCDMA技术的理论和应 用研究取得更大的突破。
3
传输特性
OCDMA信号在传输过程中具有良好的抗干扰性 能和低噪声放大特性,能够实现高速、大容量的 光通信传输。
目录
• OCDMA技术概述 • OCDMA技术原理 • OCDMA技术优势与挑战 • OCDMA技术应用案例 • 总结与展望
01 OCDMA技术概述
OCDMA技术的定义
• 定义:OCDMA(Optical Code Division Multiple Access)是一种光通信中的多址接入技术,通过给每一个 用户分配一个独特的地址码,实现多个用户在同一光频带 内共享信道资源,同时进行相互独立的通信。
成本较高
由于OCDMA技术涉及到的光子编码 和解码器件较为复杂,导致其成本相 对较高。
兼容性问题
目前OCDMA技术还未能与现有的光 通信系统完全兼容,需要进一步解决 兼容性问题。
传输距离受限
由于OCDMA技术的特性,其传输距 离受到一定限制,需要在中短距离内 使用才能发挥最佳效果。
OCDMA技术的发展趋势
网络等。1 02
编码方式
OCDMA技术采用扩频码对光信号进行编码,扩频码具有高度的互异性 ,使得不同用户的光信号在通信过程中能够相互混淆,实现多用户复用 。
编码过程
编码器将原始光信号与扩频码进行调制,生成具有特定扩频码的光信号 ,这些信号在光通信网络中传输。
应用拓展
未来,OCDMA技术有望在 5G/6G移动通信、物联网、云计 算等领域得到更广泛的应用,为 大数据、人工智能等新兴技术的 发展提供强大的信息传输支持。
研究方向
针对OCDMA技术的安全性、稳 定性和可扩展性等关键问题,未 来研究将更加注重算法优化、系 统仿真和实验验证等方面的工作 ,推动OCDMA技术的理论和应 用研究取得更大的突破。
3
传输特性
OCDMA信号在传输过程中具有良好的抗干扰性 能和低噪声放大特性,能够实现高速、大容量的 光通信传输。
光通信技术发展趋势优秀课件
IP
WDM
OXC
OXC
OXC
WDM
WDM
WDM
WDM
WDM
WDM
WDM
WDM
WDM
SDH
WDM
WDM
OADM
OADM
WDM
WDM
OADM
OADM
ATM
SDH
IP
ATM
SDH
ATM
IP
ATM
IP
SDH
SDH
IP
SDH
IP
ATM
IP
OXC:光交叉连接设备
光通信技术发展趋势优秀课件
光通信技术发展趋势
新技术和新系统
光通信技术发展趋势优秀课件
用户网络光接口
数据是光网络的用户 开放的接口增强互通性 随着光网络的发展保持稳定 基于SDH接口
Data
运营者 X
Data
Optical Network
运营者 Z
运营者 Y
O-UNI
O-UNI
光通信技术发展趋势优秀课件
对客户信号的适配
减小对客户层的依赖 对客户信号进行适配
光通信技术发展趋势优秀课件
新型光纤的发展
WDM的特性(1550nm窗口多信道传输)造成普遍使用光纤换代。 常规光纤G652色散过大,在1550nm为20/ps/km。 色散位移光纤G653在1550nm色散为零,整个1550nm频段色散太小,容易形成非线性光信号损伤。 理想的传送WDM信号的光纤:色散较小可以保证信号传送相当远的距离,但又满足不形成非线性效应的较大色散的要求。
减少电路交换投资; 增加高速数据包/信元交换投资。
Time
Traffic Volume
WDM
OXC
OXC
OXC
WDM
WDM
WDM
WDM
WDM
WDM
WDM
WDM
WDM
SDH
WDM
WDM
OADM
OADM
WDM
WDM
OADM
OADM
ATM
SDH
IP
ATM
SDH
ATM
IP
ATM
IP
SDH
SDH
IP
SDH
IP
ATM
IP
OXC:光交叉连接设备
光通信技术发展趋势优秀课件
光通信技术发展趋势
新技术和新系统
光通信技术发展趋势优秀课件
用户网络光接口
数据是光网络的用户 开放的接口增强互通性 随着光网络的发展保持稳定 基于SDH接口
Data
运营者 X
Data
Optical Network
运营者 Z
运营者 Y
O-UNI
O-UNI
光通信技术发展趋势优秀课件
对客户信号的适配
减小对客户层的依赖 对客户信号进行适配
光通信技术发展趋势优秀课件
新型光纤的发展
WDM的特性(1550nm窗口多信道传输)造成普遍使用光纤换代。 常规光纤G652色散过大,在1550nm为20/ps/km。 色散位移光纤G653在1550nm色散为零,整个1550nm频段色散太小,容易形成非线性光信号损伤。 理想的传送WDM信号的光纤:色散较小可以保证信号传送相当远的距离,但又满足不形成非线性效应的较大色散的要求。
减少电路交换投资; 增加高速数据包/信元交换投资。
Time
Traffic Volume
光通信技术PPT课件
光通信在中国的发展
光通信在中国的发展
光纤网络的分类
SST终ST终MSTM终端ST端MS-终T1-终端MST1终6M-端ST6M1终端S-T6端M1S-终T1-终6端MST1终6M-端ST6M1终端S-T6端M1S-终T1-终6端MST1终6M-端ST6M1终端-T6端M1-终1-6端M16-端61-616光光中(光3中(光R继3中(光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器R)继3中(器R)继3器R)继器)器光光中(光3中(光R继3中(光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器R)继3中(器R)继3器R)继器)器
光光中(光3中R继中)继器继器器 (光3(光R3中(光R)3中(光R)继3中(光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中(器光R)继3中器R)继中器)继器继器器 (光3(R3中R) )继器 (3R)
SST终ST终MSTM终S端TSM端终-T终1-SM端T终1M6-S端TM6终1S端-TSM端6终1-T终1-SM端6T终1M6-S端TM6终1S端-TSM端6终1-T终1-SM端6T终1M6-S端TM6终1端-TM端6终1-1-M端616-端61-616
G.655
20 10
G.653
0 -10 -20
1300
1400
波长(nm)
1500
1600
1700