辅助角公式的推导

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辅助角公式sin cos )a b θθθϕ+=+的推导

在三角函数中,有一种常见而重要的题型,即化sin cos a b θ

θ+为一个角

的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学

生记忆和掌握这种题型的解答方法,教师们总结出公式

sin cos a b θθ+

)θϕ+或sin cos a b θθ+

cos()θϕ-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个学

期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法

教学中常见的推导过程与方法如下 1.引例 例1

α+cos α=2sin (α+

6π)=2cos (α-3

π). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出结

论: 可见

,

α+cos α可以化为一个角的三角函数形式.

一般地,asin θ+bcos θ 是否可以化为一个角的三角函数形式呢 2.辅助角公式的推导 例2 化sin cos a b θ

θ+为一个角的一个三角函数的形式.

解: asin θ+bcos θ

sin θ

θ),

=cos ϕ

ϕ,

则asin θ+bcos θ

=θcos ϕ+cos θsin ϕ)

=

θ+ϕ),(其中tan ϕ=

b a

)

=sin ϕ

=cos ϕ,则

asin θ+bcos θ

θsin ϕ+cos θcos ϕ

)=θ-ϕ)

,(其中tan ϕ=

a b

) 其中ϕ的大小可以由sin ϕ、cos ϕ的符号确定ϕ的象限,再由tan ϕ的值求出.或由tan ϕ=

b

a

和(a,b)所在的象限来确定. 推导之后,是配套的例题和大量的练习.

但是这种推导方法有两个问题:

一是为什么要令

=cos ϕ

ϕ让学生费解.二是这种 “规定”式的推导,

学生难记易忘、易错! 二.让辅助角公式sin cos a b θ

θ+

)θϕ+来得更自然

能否让让辅助角公式来得更自然些这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法.

首先要说明,若a=0或b=0时,sin cos a b θθ+已经是一个角的一个三角

函数的形式,无需化简.故有ab ≠0.

1.在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b)如图1所示,则总有一个角ϕ,它的终边经过点P .设

由三角函数的定义知

sin ϕ=

b r

,

cos ϕ

=a r

=

.

所以asin θ+bcos θ

==

ϕ sin θ

ϕcos θ

=

)θϕ+.(其中tan ϕ=b

a

)

2.若在平面直角坐标系中,以b 为横坐标,以a 为纵坐标可以描点P(b,a),如图2所示,则总有一个角ϕ的终边经过点P(b,a),设OP=r,则

r=由三角函数的定

义知

sin ϕ=a

r

cos ϕ=b

r

asin θ+bcos θ

sin cos ϕθϕθ+

s()θϕ-. (其中tan ϕ=a

b

)

例3

cos θθ+为一个角的一个三角函数的形式.

解:在坐标系中描点

P(,1),设角

ϕ

的终边过点P,则OP

ϕ=

1

2

,cos ϕ=2.

∴cos θθ+=2cos ϕsin θ+2sin ϕcos θ=2sin(θϕ

+).tan ϕ=3

.

26

k π

ϕπ=

+,cos θθ+=2sin(6

π

θ+

).

经过多次的运用,同学们可以在教师的指导下,总结出辅助角公式 asin

θ

+bcos

θ

=

(

sin

θ

+

cos

θ

)=

)θϕ+,(其中tan ϕ=b

a

).或者

asin

θ

+bcos

θ

=

(

sin

θ

+

cos

θ

)=

)θϕ-,(其中tan ϕ=a

b

)

我想这样的推导,学生理解起来会容易得多,而且也更容易理解asinθ+bcosθ

sinθ

θ)的道理,以及为什么只有两种

形式的结果.

例4

化sinαα

-为一个角的一个三角函数的形式.

解法一:点

(1,-)在第四象限.OP=2.设角ϕ过P点.

sin

2

ϕ=-,

1

cos

2

ϕ=.满足条件的最小正角为

5

3

π,

5

2,.

3

k k Z

ϕππ

=+∈

1

sin2(sin cos)2(sin cos cos sin)

22

55

2sin()2sin(2)2sin().

33

k

αααααϕαϕ

αϕαππαπ

∴-=-=+

=+=++=+

解法二:点

P(-,1)在第二象限,OP=2,设角ϕ过P点.则

1

sin

2

ϕ=

,cos

2

ϕ=-.满足条件的最小正角为

5

6

π,

5

2,.

6

k k Z

ϕππ

=+∈

1

sin2(sin cos)2(sin sin cos cos)

22

55

2cos()2cos(2)2cos().

66

k

αααααϕαϕ

αϕαππαπ

∴-=-=+

=-=--=-

三.关于辅助角的范围问题

由sin cos)

a b

θθθϕ

+=+中,点P(a,b)的位置可知,终边

过点P(a,b)的角可能有四种情况(第一象限、第二象限、第三象限、第四象限).

设满足条件的最小正角为

1

ϕ,则

1

2k

ϕϕπ

=+.由诱导公式(一)知

相关文档
最新文档