基于fluent的甲烷燃烧二维模拟分析
FLUENT算例 (9)模拟燃烧.pptx

⑥ 在 Hydraulic Diameter 项输入燃烧筒直径 0.45
⑦ Species Mass Fractions 项均为常数,且在 O2 项输入 0.22 ⑧ 点击 OK
3
设定燃料进口边界条件
① 在 Zone 项选择 inlet_fuel ② 确定 Type 项为 velocity-inlet ,点击 Set,打开燃料速度入口边界设
② 确定在 Type 项为 velocity-inlet
③ 在 Velocity Magnitude 项输入空气入口速度 0.5 ④ 在 Turbulence Specification Method 项选 Intensity and Hydraulic
Diameter
⑤ 在 Turbulence Intensity 项输入 10
第 3 步 设置边界类型并输出文件
1
设置甲烷速度入口边界
① 在 Action 项为 Add
② 在 Name 项填入边界名 inlet-fuel
③ 在 Type 项选择 WELOCITY_INLET
④ 点击 Edges 右侧黄色区域
⑤ 按住 Shift 键点击 AC 线段
⑥ Apply
2
设置空气速度入口边界
③ 在 Thermal 选项卡中 Thermal Conditions 项 选择 Heat Flux
④ 在 Heat Flux 项保留默认的零值
⑤ 保留其他默认设置,点击 OK
第 5 步 初始化流场并求解
1 设置求解控制参数 ①打开求解控制参数设置对话框,在 Under-Relaxation Factors 项,设
学海无 涯
Fluent 是目前国际上比较流行的商用 CFD 软件包,在美国的市场占有率为 60%,凡 是和流体、热传递和化学反应等有关的工业均可使用。它具有丰富的物理模型、先 进的数值方法和强大的前后处理功能,在航空航天、汽车设计、石油天然气和涡轮 机设计等方面都有着广泛的应用。
第六章,FLUENT中的燃烧模拟

第六章,FLUENT中的燃烧模拟6.1 燃烧模拟的重要性●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等)●面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT燃烧模拟方法概要●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在燃烧模拟中的应用可如下图所示:●气相燃烧模型一般的有限速率形式(Magnussen 模型)守恒标量的PDF模型(单或二组分混合物分数)层流火焰面模型(Laminar flamelet model)Zimont 模型●离散相模型煤燃烧与喷雾燃烧●热辐射模型DTRM, P-1, Rosseland 和Discrete Ordinates模型●污染物模型NO x 模型,烟(Soot)模型6.3 气相燃烧模型6.3.1 燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间的反应时间尺度相差很大(10-9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:● 有限速率燃烧模型——>预混、部分预混和扩散燃烧● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃烧● 反应进度方法(Zimont 模型)——>预混燃烧● 混合物分数和反应进度方法的结合——>部分预混燃烧6.3.2一般的有限速率模型● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下:6-1其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率:6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。
fluent甲烷燃烧例子

fluent甲烷燃烧例子介绍甲烷是一种常见的天然气,也是一种重要的燃料。
在工业和家庭中,甲烷常被用于加热、烹饪和发电等用途。
了解甲烷的燃烧过程对于提高能源利用效率、减少环境污染具有重要意义。
Fluent是一种流体动力学软件,可以用于模拟和分析各种流体流动和燃烧过程。
在本文中,我们将使用Fluent来模拟甲烷的燃烧过程,并通过一个具体的例子来探讨甲烷燃烧的特点和影响因素。
模拟设置在Fluent中,我们需要提供一些基本参数来定义模拟场景。
对于甲烷燃烧例子,我们可以假设一个封闭的燃烧室,其中包含甲烷和空气。
具体的模拟设置包括:1.定义几何形状:燃烧室的几何形状可以是简单的长方体或圆柱体,具体大小和比例可以根据实际情况进行设定。
2.设定边界条件:燃烧室的各个边界需要定义不同的条件,例如进口边界可以设定为甲烷和空气的混合物,出口边界可以设定为燃烧产物的组合。
3.确定初始条件:模拟开始时,需要给定燃烧室内各个区域的初始温度、压力和组分分布等信息。
4.定义物理模型:在模拟中,需要选择适当的物理模型来描述甲烷的燃烧过程,例如湍流模型、燃烧模型等。
燃烧过程甲烷的燃烧过程可以简化为以下几个步骤:1.混合:甲烷和空气在燃烧室中混合,形成可燃混合物。
混合过程中需要考虑气体的扩散和对流等因素。
2.点火:在适当的条件下,混合物中的甲烷可以被点火,引发燃烧反应。
点火过程需要考虑点火源的位置和能量等因素。
3.燃烧:点火后,甲烷开始燃烧,产生燃烧产物和释放能量。
燃烧过程需要考虑燃烧速率、温度分布等因素。
4.燃烧产物:甲烷燃烧的主要产物包括二氧化碳、水蒸气和一氧化碳等。
燃烧产物的生成和分布对环境和能源利用具有重要影响。
影响因素甲烷的燃烧过程受到多种因素的影响,下面列举了一些主要的影响因素:1.温度:燃烧温度是影响燃烧速率和产物生成的重要因素。
较高的温度可以促进燃烧反应,但过高的温度会导致产物生成的变化。
2.氧气浓度:氧气是燃烧的必要条件,较高的氧气浓度可以提高燃烧速率。
甲烷燃烧温度随过剩空气系数变化数值模拟

甲烷燃烧温度随过剩空气系数变化数值模拟李振;李佳璇【摘要】采用Fluent软件的ED燃烧模型对不同过剩空气系数α下圆柱空腔内甲烷燃烧进行二维稳态模拟,得出其温度场的变化规律.圆柱空腔长2m,直径为0.6m,保持燃烧器额定功率230 kW不变,即保持燃气的喷射速度不变,保持燃气与空气的温度不变,使α在1.05~1.80范围内变化.结果表明:α对于甲烷燃烧的最高燃烧温度具有明显的影响,最高燃烧温度随α增大呈线性逐渐降低;改变α后最高燃烧温度均出现在x=1.2m左右,在此之前燃烧温度呈二次函数增长,在此之后燃烧温度呈线性缓慢减小并保持平稳,这表明α只影响炉膛内最高燃烧温度的值及高温区的范围,不能影响炉膛内温度的变化趋势.【期刊名称】《煤气与热力》【年(卷),期】2019(039)001【总页数】5页(P38-42)【关键词】过剩空气系数;圆柱空腔燃烧;温度场;二维稳态数值模拟【作者】李振;李佳璇【作者单位】山东省冶金设计院股份有限公司,山东济南250101;山东建筑大学热能工程学院,山东济南250101;山东济华燃气有限公司,山东济南250101【正文语种】中文【中图分类】TK224.11 概述目前,除了实验方法研究燃烧,还有一种比较好的方法,就是利用计算流体力学进行数值模拟。
计算流体力学(CFD)是在计算机上求解描述流体运动、传热和传质的偏微分方程组,并且对上述现象进行过程模拟。
CFD可用来进行流体力学的基础研究、复杂流动结构的工程设计,了解在燃烧过程中的化学反应,分析实验结果等[1-2]。
其基本特征是数值模拟和计算机实验。
Fluent是用于模拟具有复杂外形的流体流动以及热传导的计算机程序,是一种比较常用的CFD软件。
Fluent软件对预混及非预混等各种复杂的燃烧问题有比较好的研究效果,尤其是内置的化学反应模型自诞生以来一直占据着非常重要的地位[3-6]。
2 圆柱空腔燃烧的物理模型本数值模拟原本是三维几何模型,但是,考虑到以下原因:该三维模型为轴对称图形且具有旋转轴,Fluent软件提供了Axisymmetric Swirl的二维代替三维模拟的计算方式,二维模拟可以生成质量更高、数量更少的计算网格,我们采用二维对称轴旋转成三维的几何模型代替三维几何模型,获得了同等精度范围的模拟结果。
Fluent 模拟燃烧

3
混合状态
反应机制
甲烷在空CH4 +3O2 =2CO+4H2O 2CO +O2 = CO2
甲烷完全燃烧 甲烷不完全燃烧
模拟过程中,假设燃料完全燃烧成CO2和H2O
流动条件
甲烷在空气的燃烧
层流
· 各项参数(速度等)稳定 · 低雷诺数
湍流
· 局部参数脉动 · 高雷诺数
甲烷在空气的燃烧
混合状态
非预混火焰:
有限速率化学反应
求解过程中采用的方程为涡耗散模型
访谈结果与析
☞ 模拟结果
燃烧器内,甲烷从开始点燃到趋于稳定过程中温度的变化
☞ 模拟结果
空气:0.5m/s,300k
■
甲烷 :80m/s,300k
甲烷含量监测点
☞ 模拟结果
监测点处,甲烷浓度的变化值
总结与分析
实例概述
图中所示为甲烷火焰燃烧器,
主要用于处理污水厌氧过程中 产生的沼气. 甲烷燃烧器多为圆柱型,甲烷 从中间喷口进入.
模型建立
模拟 计算 区域
空气:0.5m/s,300k
甲烷 :80m/s,300k
网格模型
中间区域及左侧喷嘴附近的区域 在计算过程中需要较密的网格
☞ 模拟机理
1
反应机制
2
流动条件
甲烷燃烧器的优化
• 燃烧器尺寸的优化
不足
• 模拟过程中将燃烧器的桶壁考虑成 绝热,计算过程中,器内部温度要 大于实际过程中的温度.
•
进气速度的确定
谢谢!
fluent教程 第五章,燃烧模拟解析

©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
燃烧模拟
广泛应用与均相和非均相燃 烧过程模拟
燃烧炉 锅炉 加热器 燃气轮机 火箭发动机 流场流动特性及其混合特 性 温度场 组分浓度场 颗粒和污染物排放
Temperature in a gas furnace
求解内容
生成新的混合物. 改变已有混合物的物性/化学反应.
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
有限速率模型小节
优点:
可以应用于nonpremixed, partially premixed和premixed combustion 简单、直观 应用广泛 不适合混合速率与化学反应动力学时间尺度相当时候的化学反应 (要 求 Da >>1). 没有严格考虑湍流-化学反应之间的相互作用问题 不能考虑中间产物或组分、不能考虑分裂影响. 模型常数不确定, 特别是用于计算多个化学反应的时候尤为如此,模 型常数通用性较差。.
计算流体与传热传质
热科学与能源工程系 2003年10月
FLUENT中组分输运及化学反应 (燃烧)模拟
Temperature in a gas furnace
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
概要
应用 燃烧模拟简介 化学动力学 气相燃烧模型 稀疏相燃烧模型 污染物排放模拟 燃烧数值模拟步骤介绍
CO2 mass fraction
Stream function
©燃烧
计算流体与传热传质
FLUENT系列资料1之燃烧器内甲烷和空气的燃烧

燃烧器内甲烷和空气的燃烧问题描述这个问题在图1中以图解的形式表示出来。
此几何体包括一个简化的向燃烧腔加料的燃料喷嘴,由于几何结构对称可以仅做出燃烧室几何体的1/4模型。
喷嘴包括两个同心管,其直径分别是4个单位和10个单位,燃烧室的边缘与喷嘴下的壁面融合在一起。
图1:问题图示本题涉及到:一、利用GAMBIT建立燃烧器计算模型(1)在GAMBIT中画出燃烧器的图形;(2)对各条边定义网格节点的分布;(3)在面内创建网格;(4)定义边界类型;(5)为FLUENT5/6输出网格文件。
二、利用FLUENT-3D求解器进行求解(1)读入网格文件;(2)确定长度单位:mm;(3)确定流体材料及其物理属性;(4)确定边界类型;(5)计算初始化并设置监视器;(6)使用非耦合、隐式求解器求解;(7)利用图形显示方法观察流场、压力场与温度场。
一、利用GAMBIT建立计算模型启动GAMBIT。
第一步:选择一个解算器选择用于进行CFD计算的求解器。
操作:Solver -> FLUENT5/6第二步:生成两个圆柱体1、生成一个柱体以形成燃烧室操作:GEOMETR->VOLUME -> CREATE VOLUME R打开Create Real Cylinder窗口,如图2所示图2:生成圆柱对话框a)在柱体的Height中键入值1.2。
b)在柱体的Radius 1中键入值0.4。
Radius 2的文本键入框可留为空白,GAMBIT将默认设定为Radius1值相等。
c)选择Positive Z(默认)作为Axis Location。
d)点击Apply按钮。
2、按照上述步骤以生成一个Height =2,Radius 1 =1并以positive z为轴的柱体。
3、点击在Global Control工具栏左上部的FIT TO WINDOW命令按钮,去观察柱体的生成。
这两个柱体在图3中示出,按住鼠标左键并拖动它以观察视图的旋转。
管道内甲烷_空气预混爆炸燃烧的数值模拟fluent

应的输运方程为 :
99ρt +
9 (ρkvx) 9x
=
9 9x
[
(μ
+
μi σk
)
9k 9r
]
+
Gk
+
Gb
-
ρε-
YM
+ Sk
(4)
3 项目资助 :山西省留学人员科研资助项目 。
9 (ρε) 9t
+
9 (ρεvr) 9r
=
9 9r
[
(μ+
μt σε
)
99εx ] +
ε C1ε k ( Gk +
C3εGb)
(6)
初始时刻 t ( t0) = 0 ;初始速度 v ( t0) = 0 。
已燃区 : T = 2 000 K, P0 = 101 325 Pa , YCH4 = 0 , YO2 = 0 , YCO2 = 0. 151 4 , YH2O = 0. 123 9 。
未燃区 : T = 300 K, P0 = 101 325 Pa , YCH4 = 0. 055 , YO2 = 0. 22 , YCO2 = 0 , YH2O = 0 。
损失 ,因 此 假 设 壁 面 为 绝 热 。v ( R , t )
= 0,
9ρ( R , t) 9x
= 0,
9T( R , t) 9x= 0,Biblioteka 9Yi ( R , t) 9x
= 0;绝热壁面热流密度为零 ,即
qw
= 0 ,壁面无滑移 。
管道两端边界条件 :
x =0和
x = 800
mm ,0 ≤t ≤∞处 , v (0 , t)
Fluent验证案例25:非预混燃烧

Fluent验证案例25:非预混燃烧本案例利用Fluent的非预混燃烧模型计算燃烧器内甲烷燃烧过程,并利用实验值对计算结果进行验证。
计算模型如图所示,甲烷与空气从不同的入口进入燃烧室,并在燃烧室内混合燃烧,计算过程中考虑辐射换热。
计算参数如表所示。
本次计算采用稳态计算,利用Realizable k-epsilon湍流模型计算湍流。
采用DO辐射模型考虑燃烧过程中的辐射换热,利用非预混燃烧模型模拟燃烧。
1Fluent设置•以2D、Double Precision方式启动Fluent•利用菜单File → Read → Case…加载case文件1.1 General设置•双击模型树节点General,右侧面板如下图所示进行设置注:选择轴对称旋转,因为存在轴对称旋转边界1.2 Models设置•右键选择模型树节点Models > Energy,选择弹出菜单项On激活能量方程注:涉及到化学反应燃烧的问题,都要开启能量方程•右键选择模型树节点Models > Viscous,选择弹出菜单项Model > Realizable k-epsilon开启湍流模型注:Realizable k-epsilon湍流模型适合于射流模拟•鼠标双击模型树节点Radiation,弹出设置对话框,激活辐射模型Discrete Ordinates,采用默认模型参数注:DO模型适合于模拟所有光学厚度条件下的辐射问题。
在本案例中也可以选择使用P1模型。
1.3 Species模型设置•鼠标双击模型树节点Models > Species弹出设置对话框•激活选项Non-Premixed Combustion采用非预混燃烧模型•选择选项Chmical Equilibrium及Non-Aiiabatic,采用非绝热的化学平衡模型•切换到Boundary标签页,如下图所示设置Fuel中ch4为1,设置Oxid中的n2为0.78992,o2为0.21008•选择选项Mole Fraction注:可以自己通过点击Add按钮添加组分•切换到Table标签页,如下图所示设置参数,点击按钮Calculate PDF Table生成PDF表注:非预混燃烧模型属于典型的快速化学反应模型,其并不考虑燃烧化学反应细节,利用湍流混合的混合分数决定燃烧温度分布。
基于fluent的甲烷燃烧二维模拟分析

基于fluent 的甲烷燃烧二维模拟分析陈飞 1434422(同济大学汽车学院,上海)摘要: 目前,由于环境污染和排放法规的日趋严格,降低排放已经成为了汽车工业的重点,而寻求清洁的替代燃料是一种较为有效的解决办法。
甲烷属于可再生气体燃料,可以实现与空气的良好预混,利用fluent 进行甲烷燃烧的数值模拟进行仿真分析。
Fluent 提供了涡耗散模型用于求解燃料快速燃烧,整体反应速率由湍流控制的单步或双步总包燃烧反应。
根据模拟结果分析甲烷作为车用替代燃料的可行性。
关键词: 替代燃料;燃烧的数值模拟;甲烷燃烧;fluent 仿真1. 引言燃烧是燃料与氧化剂之间的发光发热的化学反应,根据反应前各组分的分布,可以分为预混燃烧,扩散燃烧和部分预混燃烧。
其中预混燃烧较多的应用于汽车工业的车用汽油发动机。
目前,由于环境污染和排放法规的日趋严格,降低排放已经成为了汽车工业的重点,而寻求清洁的替代燃料是一种较为有效的解决办法。
1.1. 燃烧的数值模拟燃烧的数值模拟是通过CFD 软件实现对实际燃烧过程的仿真模拟,求解流畅流动特性及其混合特性,温度场、组分浓度场以及颗粒和污染物排放等,从而提供实际燃烧过程的参考,对于产品研发,科学研究都有很大的意义。
燃烧的数值模型主要运用模拟软件根据燃烧模型进行仿真,目前可用于燃烧数值模拟的软件有FLUENT,STAR-CD,CHEMKIN,KIVA 等。
燃烧模型主要根据不同燃烧的特点设置求解参数,包括如下内容:稀疏相模型、输运控制方程、燃烧模型、辐射换热模型、污染物模型。
Fluent 提供了涡耗散模型用于求解燃料快速燃烧,整体反应速率由湍流控制的单步或双步总包燃烧反应。
其中对于反应r 中的物质i 的产生速率r i R ,由下面两个式子给出:⎪⎪⎭⎫ ⎝⎛=R w r R R R i w r i r i M v Y k A M v R ,',,',,min ερ (1.1) ∑∑=N j jw nr j p p i w r i r i M v Y k AB M v R ,,,',,ερ (1.2) 式中,p Y ——任何一种产物的质量组分;R Y ——某种产物的质量组分;A——经验常数4.0;B——经验常数0.5。
Fluent大作业

Fluent大作业——圆筒燃烧器内甲烷燃烧的数值模拟引言:根据公安部消防局的统计数据,2010年因火灾死亡的人数为1205人,其中多数人是因为火灾产生的有毒有害高温气体而死,因此研究火灾中有毒有害气体的分布有着重要意义。
下面以一个简单的模型,对一个圆筒燃烧器内的甲烷和空气的混合物的流动与燃烧过程进行研究,模拟其中的温度场、有害气体的分布情况。
问题描述:长为2m、直径为0.45m的圆筒燃烧器结构如下图所示,燃烧器壁上嵌有三块厚为0.005m,高0.05m的薄板,以利于甲烷与空气的混合。
燃烧火焰为湍流扩散火焰。
在燃烧器中心有一个直径为0.01m、长0.01m、壁厚为0.002m的小喷嘴,甲烷以60m/s的速度从小喷嘴注入燃烧器。
空气从喷嘴周围以0.5m/s的速度进入燃烧器。
总当量比约为0.76(甲烷含量超过空气约28%),甲烷气体在燃烧器中高速流动,并与低速流动的空气混合,基于甲烷喷口直径的雷诺数约为5.7X103。
图1燃烧器结构使用通用的finite-rate化学模型分析甲烷-空气混合与燃烧过程。
同时假定燃料完全燃烧并转换为CO2和H2O。
反应方程为CH4+2O2→CO2+2H2O反应过程是通过化学计量系数、形成焓和控制化学反应率的相应参数来定义的。
计算结果:图2采用恒定的Cp值(1000J/kg·K)计算的温度分布图3采用mixing-law计算的温度分布从上面两图可以看出,当Cp值恒定为1000J/kg·K时,最高温度超过2900K。
火焰温度的计算结果偏高,可以通过一个更真实的依赖于温度和组分热容模型来修正。
比热对温度和组分的依赖性将对火焰温度的计算结果有着明显的影响。
Mixing-law会得到基于全部组分质量分数加权平均的混合比热。
在Fluent中,还有一个Fluent物性数据库随温度变化的Cp(T)多项式,可以启动组分比热随温度的变化特性。
设置后的计算结果如图2,可以看出最高温度已经降低到大约2200K。
FLUENT算例 (15)

计算流体力学作业FLUENT 模拟燃烧
一、模拟对象描述
圆柱型火焰燃烧器的结构图1所示。
火焰是湍流扩散火焰,在进口的中心处有一个小喷嘴。
甲烷以80m/s的速度从小喷嘴中射入,周围空气以0.5m/s 的速度流入燃烧器,过量空气系数为1.28。
在甲烷和空气之间用一层外墙隔开。
甲烷流动的雷诺数为5700.甲烷与空气的反应采用最常见的单步总包反应,而且认为反应是扩散控制的,因此使用涡耗散模型对其进行模拟。
图1 二维湍流扩散燃烧器中甲烷空气燃烧
二、实例操作步骤
1.利用GAMBIT建立计算区域和指定边界条件类型。
2.利用FLUENT求解器求解
步骤1:网格的相关操作
启动二维FLUENT,在菜单中点击File-Read-Case…,在相应目录中,找到自己生成的gascomb.msh。
点击Grid-Check,检查网格。
点击Grid-Scale…,设定网格尺寸,将网格改为按毫米生成。
点击Grid-Check,检查一下计算域是否正确:X的最大值是1.8,Y的最大值是0.225.然后关闭对话框。
点击Display-Grid…显示网格
步骤2:模型的设定
步骤3:材料属性设定
步骤4边界条件的设定
步骤5:设定初始条件和其他求解控制参数设置
残差随迭代逐渐收敛情况步骤6:结果显示
温度等值线云图。
基于FLUENT对惰性多孔介质中湍流预混燃烧的模拟

文 章编 号:10 .3 3(0 7 20 9 .6 0 72 7 2 0 )0.0 40
基于 F U N L E T对惰性 多孔介质 中湍流预混燃烧的模 拟
王 恩宇 ,吴晋湘 ,刘联胜 ,刘连 军
(. 1 河北工 业大学 能源与 环境工程 学院 ,天津 303i2 天 津市红桥 区房产供 热公 司,天津 303 ) 0 12 . 0 10
( .Sh o o E e y n E v o met E gne n , eeU i r to T cn l y i j 0 12 h a 2 o g i D si 1 co l f nr a d n i n n l n ie i H b i n es f eh o g ,T n n3 0 3 ,C i ; .H n q o i r t g r a rg v i y o ai n a tc
摘要
采用 了多孔介质 气固间局部 热平衡假定 , 建立 了二维的多孔介质 中湍流燃烧模型.通过用户 自定义函数在
F UE T 61的多孔介质模型 中引入 湍流和辐射 的作 用,对 多孔介 质 中甲烷. L N . 空气预混燃烧的特性进行 了数值模
拟.得 到的多孔介质 中的计算流场更加合理 ,流速均 匀且消除 了多孔 区近壁 面速度 高而中心低的不合 理速度 场. 计算结果显 示多孔介质 中温度 分布 均匀,壁面温度和 中心温度相差很 小,比 F UE L NT软件不考虑 多孔介质辐射 的结果更加合 理.通 过计算 甲烷. 空气 的两步反 应 ,得到 了多孔介质 中速度 场、温度 场和 浓度场 的分布理论预示
l g c 1 Ote wie t ev l ct e dwo l eo v o syi o ia : h g eo i e r h l a d l w eo i e o ia . h r s , h e o i f l u db b i u l l g c l i h v l ct n a ewal n o v l c t i t yi l y t ynh
FLUENT算例 (9)模拟燃烧教学内容

计算流体力学作业FLUENT 模拟燃烧问题描述:长为2m、直径为0.45m的圆筒形燃烧器结构如图1所示,燃烧筒壁上嵌有三块厚为0.0005 m,高0.05 m的薄板,以利于甲烷与空气的混合。
燃烧火焰为湍流扩散火焰。
在燃烧器中心有一个直径为0.01 m、长为0.01 m、壁厚为0.002 m的小喷嘴,甲烷以60 m/s的速度从小喷嘴注入燃烧器。
空气从喷嘴周围以0.5 m/s的速度进入燃烧器。
总当量比大约是0.76(甲烷含量超过空气约28%),甲烷气体在燃烧器中高速流动,并与低速流动的空气混合,基于甲烷喷嘴直径的雷诺数约为5.7×103。
假定燃料完全燃烧并转换为:CH4+2O2→CO2+2H2O反应过程是通过化学计量系数、形成焓和控制化学反应率的相应参数来定义的。
利用FLUENT的finite-rate化学反应模型对一个圆筒形燃烧器内的甲烷和空气的混合物的流动和燃烧过程进行研究。
1、建立物理模型,选择材料属性,定义带化学组分混合与反应的湍流流动边界条件2、使用非耦合求解器求解燃烧问题3、对燃烧组分的比热分别为常量和变量的情况进行计算,并比较其结果4、利用分布云图检查反应流的计算结果5、预测热力型和快速型的NO X含量6、使用场函数计算器进行NO含量计算一、利用GAMBIT建立计算模型第1步启动GAMBIT,建立基本结构分析:圆筒燃烧器是一个轴对称的结构,可简化为二维流动,故只要建立轴对称面上的二维结构就可以了,几何结构如图2所示。
(1)建立新文件夹在F盘根目录下建立一个名为combustion的文件夹。
(2)启动GAMBIT(3)创建对称轴①创建两端点。
A(0,0,0),B(2,0,0)②将两端点连成线(4)创建小喷嘴及空气进口边界②连接AC、CD、DE、DF、FG。
(5)创建燃烧筒壁面、隔板和出口②将H、I、J、K、L、M、N向Y轴负方向复制,距离为板高度0.05。
③连接GH、HO、OP、PI、IJ、JQ、QR、RK、KL、LS、ST、TM、MN、NB。
基于Fluent的预混燃烧分析

基于Fluent 的预混燃烧分析郭军华1高海宇23(1.上海捷新动力电池系统有限公司,上海200000; 2.同济大学汽车学院,上海201804)摘要:随着能源稀缺和环境恶化状况日趋严重,合理选择发动机燃料,合理组织燃料的燃烧,对提高发动 机的动力性、经济性具有十分重要的意义。
本文分析甲烷-空气预燃混合气及氢气-空气预燃混合气在高温燃 烧器内燃烧时的燃烧压力、温度云图和产物分布图等,阐述燃空当量比、初始温度和初始压力对它们的影响,并 利用已有试验数据进行了验证。
关键词:高温燃烧器有限元校核F l u e n t 燃烧模拟汽车工业的发展,使石油等能源的消耗量急剧增多, 带来了世界能源的严峻形势[1]。
此外,汽车尾气中的C0、 C02、叽等对大气环境带来了巨大污染,引发并加剧了雾霾、 温室效应等[^。
本文研制的高温燃烧器原理类似于定容燃 烧弹,是一种发动机燃烧模拟试验装置。
该装置是一种介 于理论分析和实际应用之间的良好研宄载体。
它可以结合 发动机试验、模拟计算等手段,对燃烧过程进行全面的研 宄分析。
它的主要功能是模拟发动机活塞在上止点附近时 气缸中的燃烧,特点是结构比较简易,可以方便改变热力 参数(包括空燃比、压力和温度)、点火参数(火花塞位置、 点火能量)等。
通过改变某一参数,可以研宄该参数对燃 烧过程的影响,方便模拟不同发动机喷油或点火时缸内的 气体状态。
本文选用Fluent软件的燃烧模块,模拟高温燃 烧器内部的燃烧情况。
1甲烷-空气混合气的预混燃烧模拟1.1建立燃烧模型(1)在对高温燃烧器进行燃烧模拟前,利用ICEM CFD 进行网格划分。
本文将高温燃烧气的燃烧空间简化为一个 圆柱体,然后利用ICEM CFD 15.0对高温燃烧器的燃烧空 间进行髙质量的网格划分。
图1导入燃烧室模型(2) 模型设置。
开启能量方程;Viscous粘性模型选择大涡模拟,然后选择次网格模型为默认设置,壁面普朗 特数和P D F 普朗特数为默认设置0.85,模型种类选择部分 预混燃烧模型,预混选项为默认设置C 方程;在边界物质中, CH4处输入1,其余保持默认设置;计算并显示P D F 表格。
fluent燃烧案例

fluent燃烧案例
一个典型的fluent燃烧案例可以是用于模拟内燃机燃烧过程。
内燃机通过燃烧混合气体(通常是汽油或柴油)来产生动力。
利用FLUENT软件,可以模拟燃烧室内燃烧过程的流动和热
学性质,以及燃烧产物的生成和分布。
在该案例中,首先需要建立内燃机的几何模型。
这可以通过CAD软件绘制出引擎的各个部分,包括气缸、活塞、阀门等。
然后,将模型导入FLUENT中,并设置适当的边界条件和初
始条件。
接下来,需要定义燃烧模型。
根据燃料的类型和燃烧室的设计,可以选择适当的燃烧模型,如预混合燃烧模型、不完全燃烧模型等。
还需要输入燃料的物理性质参数,如燃烧温度、燃烧速率等。
然后,设置求解器和数值方法。
FLUENT提供了多种求解器
和数值方法,用于求解Navier-Stokes方程、能量守恒方程、
物质守恒方程等。
根据具体情况,选择合适的求解器和数值方法。
最后,进行模拟计算并进行后处理。
通过求解器和数值方法,可以得到燃烧室内流场、温度场和燃烧产物分布。
利用后处理工具,可以对这些结果进行可视化、统计和分析,以评估燃烧过程的效率和性能。
总之,上述案例展示了利用FLUENT进行内燃机燃烧过程模
拟的一般流程。
通过模拟和分析,可以优化燃烧室的设计,并预测燃烧产物的生成和分布,从而提高内燃机的燃烧效率和排放性能。
fluent甲烷燃烧模拟.

内容: 1,选择物理模型,物性,给定边界条件以及混合及化学反应 2,初始化流动场,计算(非耦合求解器) 3,比较比热为常数和变化时对计算结果影响 4,检查反应流动计算结果 5,计算Nox排放的热机理和快速机理 6,用用户场函数进一步处理计算结果
H+O2+M=>HO2+M
CH4/6.5/ H2O/6.5/ CO2/1.5/ CO/0.75/ O2/0.4/ N2/0.4/
H+HO2=>OH+OH 1004.H+HO2=>H2+O2
OH+HO2=>H2O+O2
CO+OH=>CO2+H
CO2+H=>CO+OH
CH4=>CH3+H
2.3E+38
CH3+H=>CH4
OH+OH+M=>H2O2+M
9.86E+14
0.00
CH4/6.5/ H2O/6.5/ CO2/1.5/ CO/0.75/ O2/0.4/ N2/0.4/
H2O2+OH=>H2O+HO2
1.E+13
0.00
H2O+HO2=>H2O2+OH
2.86E+13
0.00
OH+H+M=>H2O+M
2.2E+22
各组分分子量
定常比热温度场
非定常比热温度场
Skeletal25
ELEMENTS OHCN END SPECIES H2 O2 O H OH H2O HO2 CO CO2 CH4 CH3 CH2O HCO CH3O H2O2 N2 N END THERMO END
FLUENT中的燃烧模拟

FLUENT中的燃烧模拟第六章,FLUENT中的燃烧模拟6.1 燃烧模拟的重要性●⾯向实际装置(如锅炉、内燃机、⽕箭发动机、⽕灾等)●⾯向实际现象(如点⽕、熄⽕、燃烧污染物⽣成等)6.2 FLUENT燃烧模拟⽅法概要●FLUENT可以模拟宽⼴范围内的燃烧(反应流)问题。
然⽽,需要注意的是:你必须保证你所使⽤的物理模型要适合你所研究的问题。
FLUENT在燃烧模拟中的应⽤可如下图所⽰:●⽓相燃烧模型⼀般的有限速率形式(Magnussen 模型)守恒标量的PDF模型(单或⼆组分混合物分数)层流⽕焰⾯模型(Laminar flamelet model)Zimont 模型●离散相模型煤燃烧与喷雾燃烧●热辐射模型DTRM, P-1, Rosseland 和Discrete Ordinates模型●污染物模型NO x 模型,烟(Soot)模型6.3 ⽓相燃烧模型6.3.1 燃烧的化学动⼒学模拟实际中的燃烧过程是湍流和化学反应相互作⽤的结果,燃烧的化学反应速率是强⾮线性和强刚性的。
通常的化学反应机理包含了⼏⼗种组分和⼏百个基元反应,⽽且这些组分之间的反应时间尺度相差很⼤(10-9~102秒),因此在实际问题的求解过程中计算量和存储量极⼤,⽬前应⽤尚不现实。
在FLUENT 中,针对不同的燃烧现象,采⽤了不同的化学动⼒学处理⼿段,以减少计算成本,如下:●有限速率燃烧模型——>预混、部分预混和扩散燃烧●混合物分数⽅法(平衡化学的PDF 模型和⾮平衡化学的层流⽕焰⾯模型)——>扩散燃烧●反应进度⽅法(Zimont 模型)——>预混燃烧●混合物分数和反应进度⽅法的结合——>部分预混燃烧6.3.2⼀般的有限速率模型●化学反应过程⼀般采⽤总包机理(即简化化学反应,如单步反应)进⾏描述●求解组分的输运⽅程,得到每种组分的时均质量分数值,如下:6-1其中组分j 的反应源项为所有K 个反应中,组分j 的净⽣成速率:6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的⽅法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于fluent 的甲烷燃烧二维模拟分析
陈飞 1434422
(同济大学汽车学院,上海)
摘要: 目前,由于环境污染和排放法规的日趋严格,降低排放已经成为了汽车工业的重点,而寻求清洁的替代燃料是一种较为有效的解决办法。
甲烷属于可再生气体燃料,可以实现与空气的良好预混,利用fluent 进行甲烷燃烧的数值模拟进行仿真分析。
Fluent 提供了涡耗散模型用于求解燃料快速燃烧,整体反应速率由湍流控制的单步或双步总包燃烧反应。
根据模拟结果分析甲烷作为车用替代燃料的可行性。
关键词: 替代燃料;燃烧的数值模拟;甲烷燃烧;fluent 仿真
1. 引言
燃烧是燃料与氧化剂之间的发光发热的化学反应,根据反应前各组分的分布,可以分为预混燃烧,扩散燃烧和部分预混燃烧。
其中预混燃烧较多的应用于汽车工业的车用汽油发动机。
目前,由于环境污染和排放法规的日趋严格,降低排放已经成为了汽车工业的重点,而寻求清洁的替代燃料是一种较为有效的解决办法。
1.1. 燃烧的数值模拟
燃烧的数值模拟是通过CFD 软件实现对实际燃烧过程的仿真模拟,求解流畅流动特性及其混合特性,温度场、组分浓度场以及颗粒和污染物排放等,从而提供实际燃烧过程的参考,对于产品研发,科学研究都有很大的意义。
燃烧的数值模型主要运用模拟软件根据燃烧模型进行仿真,目前可用于燃烧数值模拟的软件有FLUENT,STAR-CD,CHEMKIN,KIVA 等。
燃烧模型主要根据不同燃烧的特点设置求解参数,包括如下内容:稀疏相模型、输运控制方程、燃烧模型、辐射换热模型、污染物模型。
Fluent 提供了涡耗散模型用于求解燃料快速燃烧,整体反应速率由湍流控制的单步或双步总包燃烧反应。
其中对于反应r 中的物质i 的产生速率r i R ,由下面两个式子给出:
⎪⎪⎭⎫ ⎝⎛=R w r R R R i w r i r i M v Y k A M v R ,',,',,min ε
ρ (1.1) ∑∑=N j j
w n
r j p p i w r i r i M v Y k AB M v R ,,,',,ερ (1.2) 式中,p Y ——任何一种产物的质量组分;
R Y ——某种产物的质量组分;
A——经验常数4.0;
B——经验常数0.5。
1.2.甲烷性质介绍
甲烷在自然界的分布很广,甲烷是最简单的有机物,是天然气,沼气,坑气等的主要成分,俗称瓦斯。
也是含碳量最小(含氢量最大)的烃,也是天然气、沼气、油田气及煤矿坑道气的主要成分。
它可用来作为燃料及制造氢气、炭黑、一氧化碳、乙炔、氢氰酸及甲醛等物质的原料,属于可再生能源。
表1 甲烷气体物理性质
甲烷属于气体燃料,燃烧时较易与空气充分混合,因此燃烧的热效率较高,从而较少污染物排放。
2.甲烷燃烧仿真模型搭建
本文计算的案例如下图所示:
火焰石湍流扩散火焰,在进口处甲烷以80m/s的速度从喷嘴射入,周围空气以0.5m/s的速度射入燃烧器,过量空气系数为 1.28。
在甲烷与空气之间用一层外墙隔开。
甲烷的雷诺数为5700。
甲烷与空气的反应采用最常见的单步总包反应,而且认为反应是扩散控制的,因此使用涡耗散模型对其进行模拟。
0.005m 甲烷: 80m/s, 300k
1.8m
图1 二维湍流扩散燃烧器中的甲烷燃烧
运用fluent进行甲烷燃烧的二维仿真模拟,需要设置诸如求解器,边界条件等计算参数,详细设置如下:
2.1.选择求解模型
求解器是求解网格方程的方案。
FLUENT的求解器分为分离式和耦合式两种。
分离式求解器适用于不可压和微可压流动,耦合式求解器用于高速可压流动。
本研究涉及的喷射压力下,流体处于不可压和微可压状态,故选用分离式求解器。
该方法是顺序地、逐一地求解关于u、v、w、p等的方程。
即先在全部网格上逐个解出每个方程。
由于控制方程式是非线性的,且相互之间是耦合的,因此,在计算得到收敛结果之前要经过多轮迭代。
本文采用压力基求解器。
因为本例流动入口处雷诺数达到了5700,为湍流,又是简单的突扩流动,所以选用标准k-epsilon模型,避免函数法。
采用涡耗散模型组分运输和化学反应的模型。
2.2.定义材料
采用fluent自带数据库中的甲烷即可,但是根据模型的简化,需要选择不可压缩理想气体,并且设置比热为混合物平均,并且随温度变化而改变,各个组分的比热也要设置为随温度变化,
2.3.设置边界条件
边界条件是对网格边界的约束,并设定流体进入计算区域时的状态。
本文选择压力进出口边界。
压力边界条件用于定义流动入口的压力以及其它标量属性。
它即可以适用于可压缩流,也可以用于不可压缩流。
压力边界条件可用于压力已知但是流动速度和速率未知的情况。
这一情况可用于很多实际问题,比如浮力驱动的流动。
压力边界条件也可用来定义外部或无约束流的自由边界。
在有可能出现回流的情况下,使用压力出口边界条件来代替其他出口条件常常有更好的收敛速度。
在使用各种k-ε模型对湍流进行计算时,需要给定进口边界上k和ε的估算值。
目前没有理论上的精确计算这两个参数的公式,要么通过试验得到,要么通过近似公式来估算。
对于没有任何已知条件的情况,可根据湍动强度I和特征长度L,由下式粗略估计进口的k和ε分布:
上述各项式中为水力直径DH计算得到的Reynolds数,对于圆管,水力直径DH等于圆管直径;It为湍流强度;L为关联尺寸,对于充分发展的湍流,可取L等于水力直径;l为湍流长度尺度;为平均速度;k为湍动能;Cu为经验常数取0.09;ε为湍动能耗散率。
分别进行空气入口处、燃料入口处、压力出口处、壁面边界处边界条件的设定。
空气入口速度大小为0.5,湍流强度为0.1,水力直径为0.44,默认温度为300k,氧气浓度为0.23。
燃料入口速度大小为80,湍流强度为0.1,水力直径为0.01,默认温度为300k,甲烷浓度为1。
压力出口表压力为0,湍流强度为0.1,水力直径为0.45,默认温度为300k,氧气浓度为0.23。
壁面边界壁温恒定为300k。
2.4.设置求解控制参数
为了更好地控制求解过程,需要在求解器中进行某些设置。
主要包括离散格式、设置欠松弛因子和初始化场变量。
FLUENT为控制方程中的对流项提供了多种不同的离散格式,在默认情况下,当使用分离式求解器时,所有对流项均用一阶迎风格式离散;当使用耦合求解器时,流动方程采用二阶精度格式,其它方程采用一阶精度格式。
一般来讲,一阶精度格式下的计算容易收敛,但精度较差。
本文中因为选用的分离式求解器,所以采用一阶迎风格式。
欠松弛因子是分离式求解器所使用的一个加速收敛的参数,用于控制每个迭代步所计算的场变量更新,除耦合方程之外的所有方程,包括耦合隐式求解器中的非耦合方程(如湍流方程),均有与之相关的欠松弛因子。
如果开始计算后,残差曲线逐渐上升,趋向发散,则需要适当减小欠松弛因子,以保证计算的收敛性。
3.甲烷燃烧分析
根据设置的残差值在迭代362步之后结果收敛,如下图所示:
图2 残差随迭代收敛情况
温度云图如下图所示:
图3 温度等值线图
可以看到,随着燃烧的进行,燃烧器的温度不断上升,且在中间区域温度最高,达2310k。
在甲烷刚刚射入燃烧器时,由于没有充分扩散,温度升高的区域主要集中在燃烧器下部分,之后由于甲烷与空气的充分混合,使得燃烧器整体温度都上升了。
定压比热等值线图如下:
图4 定压比热等值线图
可以看到,混合物比热随着反映的进行呈现下降趋势,在甲烷射入入口处比热最高,随着反应的进行,温度不断升高,混合物比热也不断下降。
甲烷的质量分数等值线图如下图所示:
图5 甲烷质量分数等值线图
可以看到,甲烷射入燃烧器后便急速燃烧,由于气体燃料与空气混合充分迅速,因此燃烧快速完全,在燃烧器中部便全部燃烧。
氧气的质量分数等值线图如下图所示:
图6 氧气质量分数等值线图
可以看到,随着甲烷燃烧的消耗,氧气的质量分数随着反映的进行不断降低,并且在甲烷的射流区域氧气的质量分数为零,因为射流压力较大,氧气无法与甲烷充分混合,只能和接触的甲烷燃烧,因此也验证了扩散燃烧的本质。
4.结论
甲烷作为一种可再生气体料,具有很好的燃烧特性,能够实现很高的热效率,在燃烧过程中能够与空气实现快速充分的混合,从而达到燃烧快速,彻底的效果,是一种很好地燃料,不过由于技术等原因,目前只较多应用于天然气、工厂等地方,对于汽车工业还没有应用,不过甲烷燃料的优点可以给我们寻找新的替代燃料以启示。
5.参考文献
[1]于勇,张俊明,姜连田. Fluent入门与进阶教程[M]. 北京:北京理工大学出版社2008.9.
[2]唐家鹏. Fluent14.0超级学习手册[J].北京:人民邮电出版社,2013.4.
[3] 王凯楠,侯献军,闫少杰,余其旺,徐楠楠. 基于Fluent的天然气燃烧特性研究[J]. 汽车科技2011(3): 12-14.
[4] 孙石,李文姬. FLUENT在动力机械中的应用[J]. 长春工程学院学报:自然科学版,2010(4): 46-48.
6.致谢
谢谢我的导师吴志军教授。