岩土弹塑性力学PPT课件

合集下载

岩土弹塑性力学教学课件(共13章)第3章_应变状态

岩土弹塑性力学教学课件(共13章)第3章_应变状态

§3.1 应变状态11
• 三个刚性转动分量及6个应变分量合在一起,才全 面反映了物体变形
xyz x y z xy yz zx
B
B’’ 刚性转动
B’’’
B’
变形
A 刚性平动 A`
§3.1 应变状态12
• 工程应变: ln l0
l0
变形后长度 原始长度
不适用于大变形
• 自然应变/对数应变:
在塑性变形较大时,用-曲线不能真正代表加载和变形的状态。
x y z
• ——弹性体一点的体积改变量
• 引入体积应变有助于简化公式。
• 大于零表示体积膨胀,小于零体积压缩。
• 注意:土力学中塑性体应变符号约定相反。
§3.2 主应变与应变主方向8
应变Lode参数: 为表征偏量应变张量的形式,引入应变Lode参数:
22 3 1 3
1
(1.66)
如果两种应变状态με 相等,表明它们所对应的应变莫尔圆 相似,也即偏应变张量的形式相同。
Vz y
;
zx
Vz x
Vx z
;
§3.3 应变率张量 2
小变形情况下,应变速率分量与应变分量间存在如下关系:
x
Vx x
du x dt
d dt
u x
x
u x
y
Vy y
dv y dt
d v
dt
y
y
v y
z
Vz z
z
dw dt
d w dt z
z
w z
线应变速率
j
Vj,i )
(1.56)
§3.3 主应变与应变主方向 4
由于时间度量的绝对值对塑性规律没有影响,因

岩土塑性力学教学课件

岩土塑性力学教学课件

岩土塑性力学教学课件岩土塑性力学教学课件岩土塑性力学①岩土的抗剪强度和刚度随压应力的增大而增大,其抗剪强度不仅由粘结力产生,而且由内摩擦角产生。

②岩土为多相材料,在各相等压作用下,岩土能产生塑性体积变化,称岩土的等压屈服特性。

③岩土材料在剪应力作用下可产生塑性体积应变,称岩土的剪胀性。

④由于岩体中存在软弱结构面和夹层,而抗拉和抗压强度明显不同,因而具有较强的各向异性性质。

①岩土的抗剪强度和刚度随压应力的增大而增大,其抗剪强度不仅由粘结力产生,而且由内摩擦角产生。

②岩土为多相材料,在各相等压作用下,岩土能产生塑性体积变化,称岩土的等压屈服特性。

③岩土材料在剪应力作用下可产生塑性体积应变,称岩土的剪胀性。

④由于岩体中存在软弱结构面和夹层,而抗拉和抗压强度明显不同,因而具有较强的各向异性性质。

2.1 岩土类材料的特点岩土类材料是由颗粒材料堆积或胶结而成,属摩擦型材料。

摩擦材料的特点是抗剪强度中含有摩擦力项,它的抗剪强度随压应力的增大而增大,因而岩土材料的屈服条件与金属材料明显不同。

我们称此为岩土的压硬性,即随压应力的增大岩土的抗剪强度与刚度增大。

岩土为多相材料,岩土颗粒间有孔隙,因而在各向等压作用下,岩土颗粒中的水、气排出,就能产生塑性体变,出现屈服。

而金属材料在各向等压作用下是不会产生塑性体变的。

一般称此为岩土的等压屈服特性。

由于岩土是摩擦材料,岩土的体应变还与剪应力有关,即在剪应力的作用下岩土会产生塑性体变(剪胀或剪缩),一般称为岩土的剪胀性(含剪缩)。

这在力学上表现为球张量与偏张量的交叉作用,即球应力会产生剪变(负值),这也是压硬性的一种表现;反之,剪应力会产生体变。

显然,纯塑性金属材料是不具有这一特性的。

基于岩土是摩擦材料,因而必须采用摩擦型屈服条件,并考虑体变与剪胀性。

现代岩土塑性力学必须反映这些特点,显示出岩土塑性的本色。

5.结论(1)广义塑性力学消除了经典塑性力学中的传统塑性势假设、正交流动法则假设与不考虑应力主轴旋转的假设,从固体力学原理直接导出了广义塑性位势理论。

弹塑性力学绪论ppt课件

弹塑性力学绪论ppt课件
区别在于第三类方程
14
1.2 弹塑性力ቤተ መጻሕፍቲ ባይዱ发展历史
• 1678年胡克(R. Hooke)提出弹性体的变形和所 受外力成正比的定律。
• 19世纪20年代,法国的纳维(C. I. M. H. Navier )、柯西(A. I. Cauchy)和圣维南(A. J. C. B. de Saint Venant)等建立了弹性理论
• 从1970年前后至今岩土本构模型的研究十分活跃, 建立的岩土本构模型也很多。
• 1982年Zienkiewicz提出广义塑性力学的概念,指出 岩土塑性力学是传统塑性力学的推广。
17
1.3 塑性力学的主要内容
• (1)建立屈服条件。 • 对于给定的应力状态和加载历史,确定材料是否超出
弹性界限而进入塑性状态,即材料是否屈服 • (2)判断加载、卸载。 • 加载和卸载中的应力应变规律不同,需要建立准则进
5
1.1 基本概念
• 弹塑性力学是固体力学的一个重要分支,是 研究弹性和弹塑性物体变形规律的一门科学。 应用于机械、土木、水利、冶金、采矿、建 筑、造船、航空航天等广泛的工程领域。
• 目的:(1)确定一般工程结构受外力作用时 的弹塑性变形与内力的分布规律;(2)确定 一般工程结构物的承载能力;(3)为进一步 研究工程结构物的振动、强度、稳定性等力 学问题打下必要的理论基础。
弹塑性力学
1
课程安排
• 授课方式:讲座,讨论,练习 • 考试方式:闭卷
2
参考书目
• ≤应用弹塑性力学≥,徐秉业、刘信声、著, 北京:清华大学出版社,1995
• ≤岩土塑性力学原理≥,郑颖人、沈珠江、龚 晓南著,北京:中国建筑工业出版社,2002
• ≤弹塑性力学引论≥,杨桂通编著,北京:清 华大学出版社,2004

岩土弹塑性力学研究生课程教学课件U10

岩土弹塑性力学研究生课程教学课件U10

塑性应变增量偏张量和 应力偏张量相似且同轴
{ { 本构方程数学表达
d ii
1 2
E
d ii
deij deiej deipj
deiej
1 2G
dsij
deipj dSij
回忆:张量分解 球张量和偏张量分解
ij m ij sij
m
1 3
(
x
y
z)
yxx
xy y
xz yz
m
m
xy y m
xz yz
zx zy z 0 0 m zx
zy z m
ij m ij eij
m
1 3
( x
y
z)
ii x y z
yxx
xy y
xz yz
m
0
0 m
0 0
x yx
m
xy y m
xz yz
zx zy z 0 0 m zx
硕士研究生课程
岩土弹塑性力学
第十章 经典塑性理论
同济大学地下建筑与工程系
10.1 塑性全量理论 10.2 塑性增量理论 10.3 塑性位势理论
回忆:张量分解 球张量和偏张量分解
ij m ij sij
m
1 3
(
x
y
z)
yxx
xy y
xz yz
m
0
0 m
0 0
x yx
与Mises屈服条件相关连的流动法则
屈服条件
f
J2
2 s
0
Drucker公设确定方向
d
p ij
d f ij
d
J
2
ij
dsij
引入弹性应变

《岩土弹塑性力学》课件

《岩土弹塑性力学》课件

02
数值模拟的精度和稳 定性
数值模拟的精度和稳定性是评价数值 模拟技术的重要指标,需要不断改进 数值方法和模型参数,提高模拟结果 的可靠性和精度。
03
数值模拟的可视化和 后处理
可视化技术和后处理技术是数值模拟 的重要组成部分,能够直观地展示模 拟结果和进行结果分析,需要不断改 进和完善相关技术。
THANKS
感谢您的观看
弹塑性力学的未来发展
随着科技的不断进步和应用领域的拓展,弹塑性力学将进 一步发展并应用于更广泛的领域,如新能源、环保、生物 医学等。
Part
02
岩土材料的弹塑性性质
岩土材料的弹性性质
弹性模量
表示岩土材料在弹性范围内抵抗变形的能力,是 材料刚度的度量。
泊松比
描述材料横向变形的量,表示材料在单向受拉或 受压时,横向变形的收缩量与纵向变形的关系。
各向同性假设
假设材料在各个方向上具 有相同的物理和力学性质 ,即材料性质不随方向变 化而变化。
弹塑性力学的历史与发展
弹塑性力学的起源
弹塑性力学起源于20世纪初,随着材料科学和工程技术的 不断发展,人们对材料在复杂应力状态下的行为有了更深 入的认识。
弹塑性力学的发展
弹塑性力学经过多年的发展,已经形成了较为完善的理论 体系和研究方法,为解决工程实际问题提供了重要的理论 支持。
《岩土弹塑性力学》 PPT课件
• 弹塑性力学基础 • 岩土材料的弹塑性性质 • 岩土弹塑性本构模型 • 岩土弹塑性力学的应用 • 岩土弹塑性力学的挑战与展望
目录
Part
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
是一门研究材料在弹性变形和塑性变形共同作用下的力学行为的学科。

第1章 岩土弹塑性力学

第1章 岩土弹塑性力学
应力球形张量 应力偏斜张量
1 平均正应力: m ( x y z ) 3
1 Kronecker 符号: ij 0
在弹性理论和经典塑性理论中:
i j i j
应力球张量只产生体应变,即受力体只发生体积变化而不发生 形状变化; 应力偏张量则产生剪变形,即只引起物体形状变化而不发生体 积大小的变化。
法则,即塑性应变增量方向沿着屈服 面的梯度或外法线方向
粘性本构关系
材料的应力或应变随时间而变化
常常和弹性或塑性性质同时发生,因此,材料的粘性本构 方程分为 粘弹性
粘塑性
粘弹塑性 在工程中,常称材料的粘性性质为流变 常称应力下变形随时间的不断变化为材料的蠕变 常称应变下应力随时坏 破坏力学
2 1 22
2 J 2 3 8
与应力偏张量有关
Lode 角及其参数:
Lode 角及其参数:
平面上应力在x、y轴上的投影为:
x OP cos 30 P P cos 30 ( 1 3 ) 1 2 2 3 3 2

1 2
( 1 3 )
斜面上的剪应力
2 2 2 v px p2 p y z N
2 主应力与应力主方向
斜面ABC为主微分面,面上只有正应力σ 投影到坐标轴上
p y m
p x l
p z n
p x xl yx m zx n p y xy l y m zy n p z xz l yz m z n
弹性
岩石力学性质 塑性 粘性
体力和面 力Fi,Ti
平衡
位移ui 相容性 (几何)
本构关系
应力ij 应变ij

岩石弹塑性本构模型课件

岩石弹塑性本构模型课件
非线性弹性本构模型
考虑了应力和应变之间的非线性关系, 适用于大应变情况。
塑性本构模型
理想塑性本构模型 弹塑性本构模型
岩石材料的变形特性
01
02
03
岩石的弹性变形
岩石的塑性变形
岩石的破裂
03
岩石弹塑性本构模型的 建立
CHAPTER
基于物理基础的岩石本构模型
物质连续性假设
物理基础
弹性常数
经验本构模型
课程内容概述
包括岩石弹塑性本构模型的物理基础、数学模型建立、模型参数确定方法、模型在岩石工程中的应用及局限性等。 其中,重点讲解岩石弹塑性本构模型的数学模型建立方法和模型参数确定方法,同时介绍模型在岩石工程中的应 用案例及局限性。
02
岩石弹塑性本构模型的 基本概念
CHAPTER
弹性本构模型
线性弹性本构模型
04
岩石弹塑性本构模型的 参数确定和验证
CHAPTER
参数确定的方法
实验测定
通过室内实验和现场试验测定材 料的弹性模量、泊松比、屈服强
度等参数。
反演分析
利用已知的地质资料和工程数据, 采用反演分析方法确定模型参数。
数值模拟
利用数值模拟软件进行模型参数 的拟合和优化。
模型验证的方法和步骤
数据来源
基于实验数据
参数拟合 局限性
唯象本构模型
现象描述
材料常数
唯象本构模型主要基于实验现象的观 察和描述,对岩石的弹塑性行为进行 建模。
唯象本构模型的材料常数通常根据实 验测定,如剪切模量、体积模量等, 用于描述岩石的弹塑性行为。
屈服条件
唯象本构模型通常基于屈服条件,如 Mohr-Coulomb准则、DruckerPrager准则等,描述岩石的屈服行为。

高等土力学(李广信)2.5 土的弹塑性模型的一般原理ppt课件

高等土力学(李广信)2.5 土的弹塑性模型的一般原理ppt课件

[D]d
g
{d}
24
d
=Dd
D
g
A+
f
f
T
D
T
D
g
d
=D
D
g
f
T
D
A+ f
T
D
g
d
=Depd
25
Dep=D
D
g
f
T
D
A+
f
T
D g
不相适应fg
Dep=D
D
f
பைடு நூலகம்
f
T
D
A+
f
T
D
f
相适应 f=g
26
d
ijd
P ij
0
屈服面的外凸 与塑性应变增 量向量的正交
19
锥形屈服面与帽子屈服面 q
dpij
dpij
p
图2-43 与两种屈服面的正交的塑性应变
表现土的塑性剪胀与剪缩,锥形屈服面会使剪胀量过
大,一般采用不相适应的流动规则
20
2. 加工(应变)硬化定律 (strain-hardening law): 是确定在一定的应力增量作用下引起的塑性应变增
q
q
p p
图2-37 锥形屈服面与射线屈服轨11迹
2) 又由于土在各向等压条件下也会发生颗粒相对 运动,土变密实,所以出现各种“帽子”屈服 面(Cam-clay,;清华模型)
q
q
q
图2-38 帽子屈服面
p p
p
12
3)二者的联合形式
q
P-
图2-39 普遍形式的屈服面
13
5.土的屈服面与屈服轨迹的确定 1)假设屈服面与屈服函数 2)通过试验试加载勾画屈服轨迹 3)通过试验确定塑性应变增量的方向和Drucker 假说确定塑性势面=屈服轨迹

弹塑性力学讲稿课件

弹塑性力学讲稿课件
详细描述
金属材料的弹塑性分析主要关注金属在受力过程中发生的弹性变形和塑性变形。通过弹塑性分析,可以预测金属 在复杂应力状态下的行为,为金属材料的加工、设计和应用提供理论依据。
混凝土结构的弹塑性分析
总结词
混凝土结构在受到压力时会产生弹性变形和塑性变形,弹塑性分析是研究混凝土结构在受力过程中应 力和变形的变化规律。
总结词
复杂结构与系统的弹塑性行为研究是推动工程应用的重 要基础。
详细描述
在实际工程中,许多结构和系统的弹塑性行为非常复杂 ,如大型桥梁、高层建筑、航空航天器等,需要从整体 和局部多个角度进行研究,以揭示其力学行为和稳定性 规律,为工程安全和优化设计提供科学依据。
THANKS
感谢观看
VS
详细描述
复合材料的弹塑性分析主要关注复合材料 的组成材料和复合方式对弹塑性性能的影 响。通过弹塑性分析,可以预测复合材料 在不同环境下的力学性能,为复合材料的 应用和发展提供理论依据。
工程结构的弹塑性分析
总结词
工程结构在受到外力作用时会产生变形,弹 塑性分析是研究工程结构在外力作用下的应 力和应变的变化规律。
03
弹塑性力学的分析方法
有限元法
有限元法是一种将连续体离散化 为有限个小的单元体的集合,并 对每个单元体进行受力分析的方
法。
有限元法通过将复杂的结构或系 统简化为有限个简单的单元,使
得计算变得简单且精度较高。
有限元法广泛应用于各种工程领 域,如结构分析、热传导、流体
动力学等。
有限差分法
01
有限差分法是一种将偏微分方程 转化为差分方程的方法,通过离 散化空间和时间变量来求解问题 。
其他常见的弹塑性力学分析方法还包括有限体积法、无网格 法等。

弹塑性力学(浙大通用课件)通用课件

弹塑性力学(浙大通用课件)通用课件

塑性力学
研究材料在塑性状态下应 力和应变行为的科学。
塑性力学的基本假 设
塑性变形是连续的,且不改变物质的性质。 塑性变形过程中,应力和应变之间存在单值关系,且该关系是连续的。 塑性变形过程中,材料内部的应力状态是稳定的,不会出现应力振荡或波动。
塑性力学的基本方程
应力平衡方程
在塑性状态下,物体的内部应力场满 足平衡方程,即合力为零。
应变协调方程
本构方程
在塑性状态下,应力和应变之间的关 系由本构方程描述,该方程反映了材 料的塑性行为特性。
在塑性状态下,物体的应变状态满足 应变协调方程,即应变是连续的。
塑性力学的边值问题
01
塑性力学中的边值问题是指给定 物体的边界条件和初始条件,求 解物体内部的应力和应变状态的 问题。
02
边值问题可以通过求解微分方程 或积分方程来解决,具体方法取 决于问题的具体形式和条件。
04
材料弹塑性性质
材料弹性性质
弹性模量
材料在弹性变形阶段所表现出的 刚度,反映了材料抵抗弹性变形
的能力。
泊松比
描述材料在受到压力时横向膨胀 的程度,反映了材料在弹性变形
阶段的横向变形特性。
弹性极限
材料在弹性变形阶段所能承受的 最大应力,超过该应力值材料将
发生不可逆的塑性变形。
材料塑性性 质
屈服点
解析法的优点是精度高、理论严 谨,但缺点是适用范围较窄,对
于复杂问题难以得到解析解。
有限元法
有限元法是一种将连续的求解域离散化为有限个小的单元,通过求解这些小单元的 解来逼近原问题的求解方法。
它适用于各种复杂的几何形状和边界条件,能够处理大规模的问题,并且可以方便 地处理非线性问题。

岩土塑性力学原理PPT.

岩土塑性力学原理PPT.
第四个等级就是,客户想买车,但是不知道买什么样的车。他拿不定主意是买十万块钱左右的,还是买十万块钱以下的,或是十万块钱以上的,他自己的购车目的还不明确。除了 价钱没确定,品牌也没确定,他未确定的因素还有很多,但是他想买车,有买车的需求,至于买什么样的车自己还没定位,究竟哪一款车适合自己他不知道,他现在正处于调研阶 段,这种客户属于第四个等级,他可能需要一个月以上的时间才能决定购买。 会引起情绪变化。 看到高兴时哈哈大笑,看到悲 决定是否面试一位应聘者之前,首先要看其工作经历是否符合要求。 同学们提出的问题,也是老师想搞明白的问题,我们大家一起研究好吗? 这位同学表演的精彩吗?大家回想一下,刚才那位同学为什么会肚子疼? 生:下车后,如果想到马路对面去,不要在车前、车后突然横穿马路,车子开走以后,看清有无车辆行驶,再穿行;乘坐小型车时,要系好安全带;乘坐摩托车时,要戴好头盔等 。 (3)经口引起中毒者,在昏迷不清醒时不得引吐,如神志清醒者,应及早引吐、洗胃、导泄或对症使用解毒剂。 (4) 不要在烈日高温下锻炼。 小提示6:核实岗位要求是否已发生变化。
定期跟踪保有客户。这些保有客户也是我们开发客户的对象,因为保有客户的朋友圈子、社交圈子也是我们的销售资源。
12
岩土材料的试验结果
(2)真三轴:
土受应力路径的影响
b 2 3 1 3
b=0常理试验; 随b增大,曲线变陡,出现软化, 峰值提前,材料变脆。
13
岩土材料的试验结果
应力应变曲线:
硬化型:
➢ 建立和发展适应岩土材料变形机制的、系统的、严密的广义塑性力学 体系
➢ 理论、试验及工程实践相结合,通过试验确定屈服条件及其参数,以 提供客观与符合实际的力学参数
➢ 建立复杂加荷条件下、各向异性情况下、动力加荷以及非饱和土情况 下的各类实用模型

弹塑性力学PPT课件精选全文

弹塑性力学PPT课件精选全文
◆ 体力分量指向同坐标轴正向一致取正,反之负。
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.

岩土弹塑性力学(中南大学课件)共179页文档

岩土弹塑性力学(中南大学课件)共179页文档

➢经典塑性理论对材料性质的假设
(1)静水压力只产生弹性体积变化,不产生塑性体应变;因 此,材料屈服与静水压力无关。
(2)材料属于理想塑性材料或应变硬化塑性材料(即稳定性材料), 故不可能发生软化现象(不稳定性材料)
(3)抗拉屈服极限与抗压屈服极限相同 (4)材料具有Bauschinger效应 (5)塑性应变增量方向服从正交流动 法则,即塑性应变增量方向沿着屈服 面的梯度或外法线方向
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
第一章 岩土弹塑性力学
参考书
§1-1 概述
➢材料受力三个阶段: 弹性 → 塑性 → 破坏
弹性力学 塑性力学 破坏力学 断裂力学等
弹性阶段:内力与变形存在着完全对应的关系,外力 消除后变形就完全恢复。 应力与应变之间的关系是一 一对应的,知道了应力立即可求应变。这种应力和应 变之间能建上一一对应关系的称全量关系。
CD段:曲线下降,岩石开始解体,岩石强度从峰 值强度下降至残余强度,这种情况叫做应变软化 这是岩土类材料区别于金属材料的一个特点。在 软化阶段内,岩土材料成为不稳定材料,传统塑 性力学不适应
岩石类介质的压缩试验结果
围压对三轴应力应变曲线和岩体塑 性性质有明显影响。当围压低时. 屈服强度低,软化现象明显。随着 围压增大,岩石的峰值强度和屈服 强度都增高,塑性性质明显增加。
试验表明,在压力不太大的情况,体积应变实际上与静水压 力成线性关系;对于一般金属材料,可以认为体积变化基本上 是弹性的,除去静水压力后体积变形可以完全恢复,没有残余 的体积变形。因此,在传统塑性理论中常假定不产生塑性体积 变形.而且在塑性变形过程中,体积变形与塑性变形相比往往 是可以忽略的 。 Bridgman和其他研究人员的实验结果确认:在静水压力不大条 件下、静水压力对材料屈服极限的影响完全可以忽略。因此在 传统塑性力学中,完全不考虑体积变形对塑性变形的影响。

塑性力学第五章本构关系ppt课件

塑性力学第五章本构关系ppt课件

(5-2)
将三个正应变相加,得:
kk
kk
2G
3
E
mkk
1 2
E
kk
记:平均正应变
m
1 3
kk
体积弹性模量 K E / 3(1 2 )
则平均正应力与平均正应变的关系:
m 3K m
(5-4)
(5-2)式用可用应力偏量 sij 和应变偏量 eij 表示为
1 eij 2G sij
(5-5)
包含5个独立方程
利用Mises屈服条件
J 2
2 s
2 s
3,
可以得到
本构关系
d dijdij d 3d
2 J 2
2 s 2 s
将(5-41)式代回(5-39)式,可求出
(5-41)
sij
d ij d
2 sdij d
2 sdij 3d
(5-44)
在(5-39)式中,给定 sij 后不能确定 dij ,但反之却可由 dij
确定 sij 如下:
J 2
1 2
sij sij
1
2(d)2
dijdij ,
将(5-38)式与(5-41)式加以比较就发现:
dW p s d s d
(5-45)
对于刚塑性材料 dW dW p
3、实验验证
本构关系
理想塑性材料与Mises条件相关连的流动法则:
d
p ij
d sij
对应于π平面上,d与p 二S 向量在由坐标原点发出的同一条射线上。
sij
(5-5)
We
1 2G
J 2
1
2
1 G 2
2
1
2
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1958年Roscoe等人提出临界状态土力学,1963年提出 剑桥模型。岩土塑性力学建立。
. 9
岩土塑性力学及其本构模型发展方向
➢ 建立和发展适应岩土材料变形机制的、系统的、严 密的广义塑性力学体系
➢ 理论、试验及工程实践相结合,通过试验确定屈服 条件及其参数,以提供客观与符合实际的力学参数
➢ 建立复杂加荷条件下、各向异性情况下、动力加荷 以及非饱和土情况下的各类实用模型
岩土塑性力学原理 ——广义塑性力学
郑颖人 院士
中国人民解放军后勤工程学院
2020年6月1日
. 1
主要内容
概论 应力-应变及其基本方程 屈服条件与破坏条件 塑性位势理论 加载条件与硬化规律 广义塑性力学中的弹塑性本构关系 广义塑性力学中的加卸载准则 包含主应力轴旋转的广义塑性力学 岩土弹塑性模型
1 3
纯拉时, 230, 1s, 1, 30; 纯剪时, 20, 1, 3, 0, 0; 纯压时, 120, 3s, 1, 30;
. 20
洛德参数与受力状态
m (I1 )、q (J 2 ) 、 (J 3 )与 1 、 2 、
关系
2
主偏应力方程, S3J2SJ30
三角恒等式模拟,si3n4 3sin1 4si3n 0
• 塑性力学:
dpdQhdQ1dQ A
F H F A
H ipj ij
Q—塑性势函数、F—屈服函数;H—硬化函数。
. 7
岩土塑性力学的提出
➢传统塑性力学:基于金属材料的变形机制
①传统塑性位势理论: (给出应变增量的方向)
dipjdQijdFij
②屈服条件与硬化规律: (给出应变增量的大小)
d1AFijdij;
岩土塑性力学的提出
➢塑性力学与弹性力学的不同点: • 存在塑性变形 • 应力应变非线性 • 加载、卸载变形规律不同 • 受应力历史与应力路径的影响
. 5
. 6
岩土塑性力学的提出
➢力学要解决的问题:
• 已知应力矢量(方向与大小)
• 求应变矢量 (方向与大小)
• 弹性力学:
E
(单轴情况 )
• 与弹性力学理论及材料宏观试验参数有关
➢ 引入损伤力学、不连续介质力学、智能算法等新理 论,宏细观结合,开创土的新一代结构性本构模型
➢ 岩土材料的稳定性、应变软化、损伤、应变局部化
(应力集中)与剪切带等问题
. 10
岩土材料的试验结果
➢ 土的单向或三向固结压缩试验:土有塑性体变
初np
. 11
. 22
第2章 应力-应变及其基本方程
一点的应力状态
应力张量分解及其不变量
应力空间与平面上的应力分量
应力路径
应变张量分解
应变空间与应变平面
应力和应变的基本方程
. 23
一点的应力状态
x
x
z
z
zx zy
xz yz
xy
yx
yy
x xy xz
S ij yx
y
yz
zx zy z
基本力学特性:
➢压硬性
➢等压屈服特性
➢剪胀性
➢应变软化特性
➢与应力路径相关性
. 15
岩土塑性力学与传统塑性力学不同点
➢球应力与偏应力之间存在交叉影响;
➢考虑等向压缩屈服
➢屈服准则要考虑剪切屈服与体积屈服,剪切屈服中要考虑平 均应力;
v
p Kp
q Ks
p
q
G p Gs
K弹p,塑K性s,剪G切p,模G量s——弹塑性体积模量,剪缩模量,. 压硬模量, 16
AFHF
Hipj ij
传统塑性力学
应用于岩土材料 并进一步发展
岩土塑性力学
. 8
塑性力学发展历史
1864年Tresca准则出现,建立起经典塑性力学;
19世纪40年代末,提出Drucker塑性公论,经典塑性 力学完善;
1773年Coulomb提出的土质破坏条件,其后推广为 莫尔—库仑准则;
1957年Drucker提出考虑岩土体积屈服的帽子屈服面;
岩土材料的试验结果
➢土的三轴剪切试验结果:
(1)常规三轴
土有剪胀(缩)性; 土有应变软化现象;
. 12
岩土材料的试验结果
(2)真三轴:
土受应力路径的影响
b 2 3 1 3
b=0常理试验; 随b增大,曲线变陡,出现软化, 峰值提前,材料变脆。
. 13
岩土材料的试验结果
对应体
硬化型:变曲线
. 24
一点的应力状态
➢ 应力张量不变量
主应力方程: N 3I1N 2I2NI30
I1xyz
I2xy
yz
zx
x2y
y2z
2 zx
I3xyz 2xyyzzxxy2zyz2xzx2y
II121(12232331) I3123
应力张量第一 不变量 I 1 ,是平均应力p的三倍.。
25
应力张量分解及其不变量
应力应 双曲线
变曲线:
对应体
软化型: 变曲线
驼峰曲线
压缩型: 压缩剪胀型:先缩后胀 压缩剪胀型:先缩后胀
相应地,可 把岩土材料 分为3类
压缩型:如松砂、正常固结土
硬化剪胀型:如中密砂、弱超固结土
软化剪胀型:如岩石、密砂与超固结土
. 14
岩土材料的基本力学特点
岩土系颗粒体堆积或胶结而成的多相体,算多相 体的摩擦型材料。
. 2
第1章 概 论
岩土塑性力学的提出 岩土塑性力学及其本构模型发展方向 岩土材料的试验结果 岩土材料的基本力学特点 岩土塑性力学与传统塑性力学不同点 岩土本构模型的建立
. 3
岩土塑性力学的提出
➢材料受力三个阶段: 弹性 → 塑性 → 破坏
弹性力学 塑性力学 破坏力学 断裂力学等
. 4
1 2 3
2 3
q
s s s
in
in in
2
3
2
3
m m m
.
21
岩土本构模型建立
理论、实验(屈服面、参数)
要求符合力学与热力学理论,反映岩土实 际变形状况、简便
广义塑性理论为岩土本构模型提供了理论 基础,由试验确定屈服条件进一步增强了 岩土本构的客观性,从而把岩土本构模型 提高到新的高度
应力张量
球应力张量 偏应力张量
应力球张量不变量:I 1 、I 2 、 I 3 f (m)
m 0 0
0
m
0
mij
0 0 m
Sx xy xz Sij ij mij yx Sy yz
岩土塑性力学与传统塑性力学不同点
➢考虑摩擦强度; ➢考虑体积屈服; ➢考虑应变软化; ➢不存在塑性应变增量方向与应力唯一性; ➢不服从正交流动法则; ➢应考虑应力主轴旋转产生的塑性变形。
. 17
势面 屈服面
. 18
洛德参数与受力状态
. 19
洛德参数与受力状态
2
2 1
3 3
1
tg
相关文档
最新文档