连续氧化铝纤维增强铝基复合材料的新进展

合集下载

颗粒增强铝基复合材料的研究现状

颗粒增强铝基复合材料的研究现状

颗粒增强铝基复合材料的研究现状杨佳;曹风江;谭建波【摘要】复合材料是一种重要的工程材料,具有优异的力学性能.颗粒增强铝基复合材料是众所周知的复合材料之一,具有优异的性能,如高强度、硬度、刚度、耐磨性和耐疲劳性,因此成为了20世纪最具有发展前途的材料之一.本文综述了颗粒增强铝基复合材料的研究现状,从基体、增强颗粒的选择,复合材料的制备方法、影响复合材料制备的因素及解决方法等方面进行了详细阐述,并且针对目前面对的问题,提出了以后的发展方向.【期刊名称】《铸造设备与工艺》【年(卷),期】2017(000)005【总页数】5页(P69-72,78)【关键词】铝基复合材料;基体;增强颗粒;制备方法;润湿性【作者】杨佳;曹风江;谭建波【作者单位】河北科技大学材料科学与工程学院,河北石家庄050018;沧州职业技术学院,河北沧州061000;河北科技大学材料科学与工程学院,河北石家庄050018【正文语种】中文【中图分类】TB333复合材料是将两种或两种以上不同性质的材料通过物理或化学的方法在宏观或微观上复合而成的具有优良性能的新材料,新材料具有组成材料的互补性能[l]。

根据复合材料的基体不同,复合材料可以分为:陶瓷基复合材料、金属基复合材料和树脂基复合材料[l]。

根据复合材料的增强相不同可分为:颗粒增强复合材料和纤维增强复合材料[l]。

其中颗粒增强铝基复合材料是2l世纪最具有发展前途的先进材料之一。

该种复合材料具有高比强度、高比刚度、高比模量、低密度以及良好的高温性能,并且颗粒增强铝基复合材料耐磨、耐疲劳、热膨胀系数低、导热性能良好[2~4]。

与纤维增强铝基复合材料相比,颗粒增强铝基复合材料价格低,并且各向同性、克服了纤维损伤、微观组织不均匀和纤维与纤维接触反应带大等问题[5]。

目前常用的颗粒增强铝基复合材料的基体有纯铝和铝合金[l],常用的增强颗粒有 SiC、Al2O3、TiC、Si3N4、B4C、石墨等[6,7]。

氧化铝纤维增强氧化铝基复合材料研究进展

氧化铝纤维增强氧化铝基复合材料研究进展

第42卷第11期2023年11月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.11November,2023氧化铝纤维增强氧化铝基复合材料研究进展孙敬伟1,王洪磊1,2,周新贵1(1.国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙㊀410073;2.中南大学轻质高强结构材料重点实验室,长沙㊀410083)摘要:与传统金属材料相比,氧化铝纤维增强氧化铝基(Al 2O 3/Al 2O 3)复合材料因具有比强度高㊁密度低㊁耐高温和抗氧化等特点,已经成为新一代备受国内外学者关注的航空航天热结构复合材料㊂本文介绍了目前常用的氧化铝纤维及其基本性能,总结了Al 2O 3/Al 2O 3复合材料中常用的界面相及其对复合材料性能的影响规律,归纳了Al 2O 3/Al 2O 3复合材料的制备工艺及性能,指出了该材料未来的发展趋势,旨在为国内Al 2O 3/Al 2O 3复合材料的研究提供借鉴和参考,促进Al 2O 3/Al 2O 3复合材料在航空航天领域热端高温部件上的广泛应用㊂关键词:氧化铝;复合材料;纤维;界面相;制备工艺中图分类号:TQ174㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)11-4092-21Research Progress of Al 2O 3Fiber Reinforced Al 2O 3Matrix CompositesSUN Jingwei 1,WANG Honglei 1,2,ZHOU Xingui 1(1.Science and Technology on Advanced Ceramic Fibers and Composites Laboratory,College of Aerospace Science andEngineering,National University of Defense Technology,Changsha 410073,China;2.National Key Laboratory of Scienceand Technology on High-Strength Structural Materials,Central South University,Changsha 410083,China)Abstract :Compared with traditional metal material,Al 2O 3fiber reinforced Al 2O 3matrix (Al 2O 3/Al 2O 3)composites have become a new generation of thermos-structured composites for aerospace that have attracted much attention from scholars all over the world due to their high specific strength,low density,high temperature resistance and oxidation resistance.This paper introduces the commonly used Al 2O 3fibers and their basic properties,summarizes the frequently used interfacial phases in Al 2O 3/Al 2O 3composites and their influence on performance of composites,summarizes the preparation process of Al 2O 3/Al 2O 3composites and their properties,and points out the future development trend of this material,aiming toprovide a reference for the research of Al 2O 3/Al 2O 3composites in China and promote the widespread application of Al 2O 3/Al 2O 3composites in high-temperature components at the hot side of aerospace industry.Key words :Al 2O 3;composite;fiber;interfacial phase;manufacturing process 收稿日期:2023-06-02;修订日期:2023-08-03基金项目:中南大学轻质高强结构材料重点实验室开放课题基金(SYSJJ202104)作者简介:孙敬伟(2000 ),男,硕士研究生㊂主要从事陶瓷基复合材料方面的研究㊂E-mail:sunjingwei0120@通信作者:王洪磊,博士,副教授㊂E-mail:honglei.wang@ 0㊀引㊀言连续纤维增强陶瓷基复合材料具有低密度㊁高强度㊁高模量㊁耐高温和抗磨损等特点[1-4],已被应用于航空航天发动机热端等关键部件[5-7]㊂在发动机实际工况下,高温燃气中的水蒸气会加速航空发动机热端复合材料部件的氧化[8-10],从而减弱复合材料的力学性能和可靠性[11-14]㊂氧化铝纤维增强氧化铝复合材料(简称Al 2O 3/Al 2O 3复合材料)相较于其他陶瓷基复合材料具有较好的抗水蒸气氧化性能[14-17],有效解决了陶瓷基复合材料在特定环境下易氧化的问题,极大拓宽了陶瓷基复合材料在航空航天等领域的应用[16,18-19]㊂目前Al 2O 3/Al 2O 3复合材料作为航空航天领域热端高温部件的新兴候选材料受到了国内外学者的广泛关注[17,20-21]㊂国外对Al 2O 3/Al 2O 3复合材料的研究起步较早,现已对Al 2O 3/Al 2O 3复合材料的制备技术㊁微观结构及第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4093㊀性能展开了系统的基础研究,并进入了工程应用阶段[22-24]㊂美国CHI(Composites Horizons)公司制备的Al2O3/Al2O3复合材料中心锥㊁混合器和核心整流罩部件成功应用到了GE-passport20发动机中,是Al2O3/ Al2O3复合材料在商用航空发动机中最早的应用㊂美国在CLEEN项目[22]中成功制备了Al2O3/Al2O3复合材料中心锥和喷管部件,组成了航空发动机排气部件(中心锥宽1.14m㊁高2.34m,喷管直径1.60m),是迄今为止尺寸最大的Al2O3/Al2O3复合材料航空发动机部件,该部件已完成装机测试,达到TRL(Technology Readiness Level)7水平,进入了最终完善阶段㊂此外美国的罗㊃罗AE3007发动机[25]㊁F414发动机等也都装配了Al2O3/Al2O3复合材料部件㊂德国在HiPOC项目[24,26]成功制备了Al2O3/Al2O3复合材料燃烧室衬套,完成了模拟发动机推力90%的测试,衬套整体保持完整㊂在此基础上,德国DLR[23,27]制备了WHIPOX-Al2O3/ Al2O3复合材料燃烧室衬套,该衬套经10h模拟环境考核后出现裂纹,但部件整体完整,没有出现灾难性破坏㊂同时,Al2O3/Al2O3复合材料也被广泛应用于民用工业领域㊂德国WPS公司[28-29]在Al2O3/Al2O3复合材料部件的工业开发与应用制造方面具有丰富的经验,制备了高温炉部件㊁汽车排气系统㊁陶瓷紧固件和太阳能吸收器等一系列复杂形态Al2O3/Al2O3复合材料部件,其中高温炉部件经500~780ħ的温差热震试验循环107次后未失效,同时,太阳能吸收器热部件的直径可达2.5m,是目前最大的Al2O3/Al2O3复合材料部件㊂受限于高性能Al2O3纤维原材料,我国对Al2O3/Al2O3复合材料的研究起步较晚,虽然近年来在Al2O3/ Al2O3复合材料应用领域取得了一定进展,但仍处于基础研究阶段,尚有许多应用问题需要解决[30-32]㊂本文从氧化铝纤维㊁界面相和复合材料制备工艺的角度出发,重点介绍了Al2O3/Al2O3复合材料制备技术及性能,指出了这一领域未来的发展趋势,期望为国内Al2O3/Al2O3复合材料研究领域的发展提供一些参考㊂1㊀氧化铝连续纤维氧化铝连续纤维的研究始于20世纪70年代,目前只有美国㊁日本㊁德国和中国等国家掌握了其制造技术[33]㊂美国3M公司在1974年首次通过溶胶-凝胶法制备了氧化铝纤维,经过不断优化,推出了Nextel系列氧化铝纤维,其中Nextel610纤维和Nextel720纤维是目前应用最广泛的氧化铝纤维[11,34-35]㊂1.1㊀Nextel610氧化铝纤维Nextel610氧化铝纤维的主要成分为α-Al2O3,含有低于1%(质量分数,下同)的Fe3O4和SiO2,为单相多晶氧化铝纤维㊂在纤维制备过程中,Fe3O4有效提高了α-Al2O3的形核率,降低了α-Al2O3的相变温度, SiO2有效减小了α-Al2O3晶粒的生长速率㊂在Fe3O4和SiO2的共同作用下,氧化铝纤维的烧结温度显著降低且致密度明显上升㊂Nextel610氧化铝纤维是目前室温拉伸强度和拉伸模量最高的氧化铝纤维,但高温处理后纤维中α-Al2O3晶粒迅速长大,纤维缺陷增多,力学性能明显下降㊂Nextel610氧化铝纤维的基础性能如表1所示㊂表1㊀Nextel610氧化铝纤维的基础性能Table1㊀General properties of Nextel610Al2O3fiberTrademark Component Diameter/μm Density/(g㊃cm-3)Tensilestrength/GPaTensilemodulus/GPaFracturestrain/%Nextel61099.0%α-Al2O30.7%Fe3O40.3%SiO210~12 3.90 3.103800.50在高温条件下,Nextel610氧化铝纤维晶粒会显著长大,晶粒生长速率受保温时间影响较大㊂Schmücker 等[36]对Nextel610氧化铝纤维在1300ħ热处理过程中的晶粒长大机制进行了详细研究,发现Nextel610氧化铝纤维中的掺杂元素在α-Al2O3晶界附近偏聚,使得α-Al2O3晶界迁移率降低,α-Al2O3晶粒生长速率较小㊂根据等温生长动力学计算公式(式(1))可得Nextel610氧化铝纤维的生长指数nʈ4,Nextel650和Nextel720氧化铝纤维的生长指数nʈ7㊂但由于Nextel610氧化铝纤维中没有第二相成分抑制晶粒生长, Nextel610氧化铝纤维相较于另外两种氧化铝纤维在高温条件下的晶粒生长速率受保温时间影响较大(如图1所示)㊂根据生长指数n㊁α-Al2O3的晶粒尺寸和温度的关系,计算出了Nextel610氧化铝纤维的晶粒生4094㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图1㊀氧化铝纤维1300ħ热处理后晶粒尺寸与保温时间的关系[36]Fig.1㊀Relationship between grain size and dwell time of Al 2O 3fibers heat-treated at 1300ħ[36]长活化能约为660kJ㊃mol -1㊂D n -D n 0=K (T )ˑt (1)式中:D 为热处理后晶粒尺寸,D 0为原始晶粒尺寸,K为反应常数,t 为热处理时间,n 为生长指数,理想状态下n 为2[37]㊂Nextel 610氧化铝纤维经高温处理后晶粒会显著长大,力学性能下降㊂姜如等[35]对Nextel 610氧化铝纤维在1000~1400ħ进行热处理后发现,纤维经1200ħ热处理后的表面晶粒尺寸明显增大;当热处理温度为1400ħ时,纤维表面缺陷明显增多,纤维经不同温度热处理后的表面形貌如图2所示㊂对不同温度热处理后的纤维进行拉伸强度测试发现,随着热处理温度的升高,纤维的拉伸强度逐渐降低㊂当热处理温度为1200ħ时,纤维的拉伸强度发生突变,强度保留率仅为71.15%㊂不同温度热处理后纤维的晶粒尺寸与拉伸强度关系如图3所示㊂图2㊀不同温度热处理后Nextel 610氧化铝纤维的表面形貌[35]Fig.2㊀Surface morphologies of Nextel 610Al 2O 3fibers heat-treated at different temperatures [35]Nextel 610氧化铝纤维的高温力学性能随测试温度变化显著㊂美国3M 公司[38]报道了Nextel 610氧化铝纤维的高温力学性能,如图4所示㊂由图4可知,Nextel 610氧化铝纤维在1200ħ之前强度较高,强度保留率在95%以上;1300ħ时强度下降明显,强度保留率降低至64%;1400ħ时的强度保留率仅为30.2%㊂这主要是因为Nextel 610氧化铝纤维是单相纤维,在较高的温度下晶粒快速长大,导致强度迅速下降㊂第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4095㊀图3㊀不同温度热处理后Nextel 610氧化铝纤维晶粒尺寸和拉伸强度关系[35]Fig.3㊀Relationship between grain size and tensile strength of Nextel 610Al 2O 3fiber heat-treated at different temperatures[35]图4㊀Nextel 系列氧化铝纤维的高温力学性能[38]Fig.4㊀High temperature mechanical properties of Nextel series Al 2O 3fiber [38]㊀Nextel 610氧化铝纤维的抗蠕变性能较差,在不同环境热处理后其蠕变性能有明显差异㊂Armain 等[39]研究了1100ħ时Nextel 610氧化铝纤维分别在空气和水汽气氛下的蠕变行为,发现当蠕变应力为100MPa 时,Nextel 610氧化铝纤维在两种气氛下的寿命都超过100h,水汽气氛下的蠕变应变为空气气氛下的5倍㊂而当蠕变应力为200~500MPa 时,水汽气氛下的蠕变应变略低于空气气氛下的蠕变应变,Nextel 610氧化铝纤维在不同气氛下的蠕变曲线如图5所示㊂水汽显著增加了Nextel 610纤维的蠕变速率,当蠕变应力为100~500MPa 时,纤维在水汽气氛下的蠕变速率较空气气氛下的蠕变速率高近一个数量级㊂图5㊀1100ħ下Nextel 610氧化铝纤维在不同气氛中的蠕变曲线[39]Fig.5㊀Creep curves of Nextel 610Al 2O 3fiber in different atmosphere at 1100ħ[39]1.2㊀Nextel 720氧化铝纤维Nextel 720氧化铝纤维主要含α-Al 2O 3和SiO 2,其中SiO 2的含量约为15%[35]㊂在纤维烧成过程中SiO 2与α-Al 2O 3反应生成莫来石,莫来石可在α-Al 2O 3晶界处聚集,形成莫来石包围α-Al 2O 3的结构,有效抑制了α-Al 2O 3晶粒的生长,明显提高了纤维的抗蠕变性能㊂Nextel 720氧化铝纤维的性能如表2所示㊂表2㊀Nextel 720氧化铝纤维的基础性能Table 2㊀General properties of Nextel 720A 2O 3fiberTrademark Component Diameter /μm Density /(g㊃cm -3)Tensile strength /GPa Tensile modulus /GPa Fracture strain /%Nextel 72085.0%α-Al 2O 315.0%SiO 210~12 3.40 2.102600.81与Nextel 610氧化铝纤维类似,高温热处理可使Nextel 720氧化铝纤维的晶粒长大,尤其在高于1600ħ的温度下,Nextel 720氧化铝纤维晶粒长大明显㊂Schmücker 等[36]在1500~1700ħ对Nextel 7204096㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图6㊀Nextel 720氧化铝纤维在1500~1700ħ热处理时晶粒尺寸与保温时间的关系[36]Fig.6㊀Relationship between grain size and dwell time of Nextel 720Al 2O 3fiber heat-treated at 1500~1700ħ[36]氧化铝纤维进行热处理,晶粒尺寸随时间的变化如图6所示㊂由图6可以看出,1600ħ以下的氧化铝纤维晶粒长大不明显,1600ħ以上氧化铝纤维晶粒显著长大㊂根据式(1)计算得到1600ħ以下莫来石晶粒的生长指数n ʈ12,1600ħ以上莫来石晶粒的生长指数n ʈ3,均在典型的陶瓷晶粒生长指数区间内[37]㊂因此当热处理温度低于1600ħ时,Nextel 720氧化铝纤维中的晶粒长大主要为α-Al 2O 3晶粒的生长,莫来石晶粒几乎不长大,并且由于莫来石的存在,α-Al 2O 3晶粒的生长受到抑制㊂当热处理温度高于1600ħ时,Nextel 720氧化铝纤维中晶粒长大主要来源于莫来石晶粒的生长㊂高温热处理会对Nextel 720氧化铝纤维的拉伸强度产生显著影响㊂郑周等[31]通过对Nextel 720氧化铝纤维热处理后发现,当热处理温度为1300ħ时,莫来石相由伪四方结构逐渐转变为斜方结构,氧化铝晶体从莫来石晶体中析出㊂观察纤维热处理后的表面形貌发现,1100ħ热处理后纤维表面由颗粒状α-Al 2O 3晶体和条状的莫来石晶体混杂形成,1300ħ热处理后的纤维表面颗粒状α-Al 2O 3晶体显著长大为块状晶体,与条状莫来石晶体镶嵌分布,不同温度热处理后的纤维表面形貌如图7所示㊂对不同温度热处理后的纤维拉伸强度进行测试后发现,随着热处理温度的升高,纤维的拉伸强度逐渐下降㊂1100ħ热处理后纤维室温拉伸强度下降明显,强度保留率为64.48%;1300ħ热处理后的纤维拉伸强度保留率降为54.10%㊂图7㊀不同温度热处理的Nextel 720氧化铝纤维表面形貌[31]Fig.7㊀Surface morphologies of Nextel 720Al 2O 3fiber heat-treated at different temperatures [31]Nextel 720氧化铝纤维的高温力学性能也随测试温度的升高而显著降低㊂美国3M 公司[38]报道了Nextel 720氧化铝纤维的高温力学性能,如图4所示㊂由图4可知,当测试温度低于1200ħ时,Nextel 720氧化铝纤维高温拉伸性能低于Nextel 610氧化铝纤维,这是因为在1200ħ前,Nextel 610氧化铝纤维晶粒长大不明显,纤维拉伸强度保留率较高;当测试温度高于1200ħ时,Nextel 610氧化铝纤维晶粒明显长大,拉伸强度明显下降,而Nextel 720氧化铝纤维晶粒长大不明显,导致Nextel 720氧化铝纤维在1200ħ以上高㊀第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4097温拉伸性能高于Nextel610氧化铝纤维㊂Nextel720氧化铝纤维的抗老化性能优于Nextel610氧化铝纤维㊂根据3M公司的报道[38],Nextel720氧化铝纤维在不同温度下暴露1000h后的拉伸强度和晶粒尺寸关系如图8所示㊂相较于Nextel610氧化铝纤维,Nextel720氧化铝纤维长时间高温暴露后的强度保留率较高,晶粒尺寸增长较缓慢㊂这得益于莫来石相减少了α-Al2O3的晶界滑移,且有助于 钉扎 晶粒,使Nextel720氧化铝纤维的抗热老化性能增强㊂图8㊀不同温度暴露1000h后Nextel720氧化铝纤维拉伸强度和晶粒尺寸[38]Fig.8㊀Tensile strength and grain size of Nextel720fiber exposured1000h at different temperatures[38] Nextel720氧化铝纤维的抗蠕变性能较好,但不同高温环境对Nextel720氧化铝纤维的蠕变性能的影响显著不同㊂Armain等[40]研究了Nextel720氧化铝纤维在空气和水汽气氛下不同温度时的蠕变行为,发现当蠕变应力为400MPa㊁热处理温度为1100ħ时,Nextel720氧化铝纤维在水汽气氛下的蠕变应变约为空气气氛下蠕变应变的2倍㊂当蠕变应力为200MPa㊁热处理温度为1200ħ时,水汽气氛下的蠕变应变为空气气氛下蠕变应变的4~7倍㊂Nextel720氧化铝纤维在不同气氛下的蠕变曲线如图9所示㊂水汽的存在显著增㊀㊀㊀图9㊀不同温度下Nextel720氧化铝纤维在不同气氛中的蠕变曲线[40]Fig.9㊀Creep curves of Nextel720Al2O3fiber in different atmosphere at different temperature[40]4098㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷加了Nextel 720纤维的蠕变速率,当蠕变应力为100~300MPa㊁热处理温度为1200ħ时,水汽气氛下的蠕变速率比空气气氛下的蠕变速率高近一个数量级㊂综上所述,Nextel 610氧化铝纤维成分单一,主要为α-Al 2O 3相,其室温和高温拉伸强度较高,但纤维的单相组成导致其力学性能受温度影响较明显,纤维的高温稳定性和抗蠕变性能差㊂为提高纤维的稳定性和抗蠕变性能,3M 公司在Nextel 610氧化铝纤维的基础上开发了Nextel 720氧化铝纤维㊂Nextel 720氧化铝纤维中主要含有α-Al 2O 3和莫来石两相,相较于Nextel 610氧化铝纤维,Nextel 720氧化铝纤维的室温和高温力学性能较差㊂但由于莫来石相的存在,Nextel 720氧化铝纤维在高温下的晶粒长大速率较小,稳定性和抗蠕变性能较好㊂Nextel 610氧化铝纤维和Nextel 720氧化铝纤维的优缺点如表3所示㊂表3㊀Nextel 610氧化铝纤维和Nextel 720氧化铝纤维的优缺点Table 3㊀Advantages and disadvantages of Nextel 610and Nextel 720Al 2O 3fibersAl 2O 3fiberAdvantage Disadvantage Nextel 610Single phase fiber;high tensile strength Mechanical properties are significantly affected by temperature Nextel 720Good stability;mechanical properties are not significantly affected by temperatureTwo phase fiber;low tensile strength 2㊀界面相在连续纤维增强陶瓷基复合材料中,界面是连接纤维与基体的桥梁,主要承担着传递载荷㊁偏转裂纹㊁消除热应力和阻挡元素扩散的作用,对复合材料的性能有重要影响[41-43]㊂界面相要与纤维和基体间有良好的物理和化学相容性,同时界面相与纤维和基体间的结合强度要适中,这是因为一方面界面相能防止界面结合强度过大导致复合材料发生脆性断裂,降低力学性能[44];另一方面界面相能防止界面结合强度过小导致载荷不能通过界面传递给纤维,减弱纤维的增强作用[45]㊂目前,Al 2O 3/Al 2O 3复合材料中常用的界面相主要为热解碳(PyC)[46-48]㊁氮化硼(BN)[49]和独居石(LaPO 4)[50-51]㊂2.1㊀热解碳(PyC )界面相PyC 具有特殊的层状结构,层与层之间通过范德瓦尔斯力结合,被广泛应用于复合材料界面相材料㊂PyC 与氧化物纤维相容性好,且能有效阻挡纤维和基体间的元素扩散㊂Wang 等[48]采用化学气相沉积(chemical vapor deposition,CVD)工艺于1300ħ在氧化铝纤维表面制备了厚度约为70nm 的PyC 涂层,涂层的微观形貌如图10所示㊂由图可知,PyC 涂层与纤维结合性良好,纤维表面产生了由缺陷和晶粒长大引起的凹凸表面㊂纤维和基体两个组分被约60nm 厚的均匀PyC 涂层分离,没有发生任何界面扩散和反应㊂PyC 涂层具有明显的层状结构,非常有利于裂纹偏转[52],提高复合材料的力学性能㊂PyC 涂层厚度会对纤维的力学性能产生较明显的影响㊂Wang 等[46]采用CVD 法在氧化铝纤维表面制备了不同厚度的PyC 涂层,纤维的截面形貌如图11所示,此外还研究了涂层厚度和结合强度对纤维力学性能的影响㊂结果表明,当涂层厚度较小(0.15μm)时,涂层能够愈合纤维表面缺陷[53],从而提高纤维的拉伸强度㊂随着涂层厚度的增加,纤维的拉伸强度逐渐降低㊂产生这一现象的原因是:1)涂层的柔软性对纤维拉伸强度的影响大于表面缺陷的愈合效果;2)涂层厚度增加需要更长的CVD 时间,长时间高温环境易使纤维强度下降;3)纤维和PyC 涂层的热膨胀系数不同(纤维为5.3ˑ10-6ħ-1,PyC 涂层为2.5ˑ10-6ħ-1),当涂层较厚时,纤维和涂层间出现间隙,界面结合强度较弱㊂受到外力时,裂纹不能偏转,导致应力集中于纤维表面,易使纤维发生断裂㊂PyC 涂层会对复合材料的力学性能产生明显影响㊂Geng 等[47]在氧化铝纤维编织件上制备了PyC 涂层,随后通过溶胶-凝胶法制备了莫来石/Al 2O 3复合材料,有无PyC 涂层的莫来石/Al 2O 3复合材料的断口形貌如图12所示㊂无PyC 涂层的复合材料断口平整,没有纤维拔出现象㊂这说明复合材料在断裂过程中,由于裂纹尖端应力集中导致裂纹直接穿过氧化铝纤维,纤维的增韧机制没有得到发挥㊂有PyC 涂层的复合材料的断口纤维大量拔出,纤维拔出机制吸收了大部分能量,并且在断裂过程中产生沿纤维轴向扩展的裂纹,有效阻止了复合材料发生脆性断裂㊂㊀第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4099图10㊀PyC涂层纤维的微观结构[48]Fig.10㊀Microstructure of PyC coated fiber[48]图11㊀不同厚度PyC涂层纤维的截面形貌[46]Fig.11㊀Cross-section morphologies of PyC coated fibers with different thickness[46]2.2㊀氮化硼(BN)界面相BN具有与PyC类似的层状结构,在复合材料中引入该结构界面相后,当复合材料受到外力时,裂纹可沿界面层间扩展,起到保护纤维和提高复合材料力学性能的作用㊂相较于PyC涂层,BN的抗氧化性能较好,但在高于850ħ的氧化环境下,BN可与O2发生反应生成具有挥发性的B2O3,从而导致界面相消失㊂4100㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图12㊀莫来石/Al2O3复合材料的微观结构[47]Fig.12㊀Microstructure of mullite/Al2O3composites[47]高温热处理会对BN涂层的结晶度产生显著影响㊂Sun等[49]通过CVD工艺在氧化铝纤维表面制备了BN涂层,BN涂层的微观结构如图13所示㊂图13(a)为700ħ下沉积的BN涂层,由图可知涂层与纤维结合良好,BN呈非晶结构㊂图13(b)和13(c)为700ħ下沉积后经1300ħ热处理后的BN涂层,由图可知热处理后的BN涂层结晶度显著提高,具有明显的层状结构,为六方相氮化硼(h-BN)㊂对比图13(a)~(c)可知,高温热处理可以提高BN涂层的结晶度,使其由非晶相BN涂层转变为六方相BN涂层㊂图13㊀BN涂层纤维的微观结构[49]Fig.13㊀Microstructure of BN coated fibers[49]BN涂层的沉积温度会对涂层厚度和涂层纤维的力学性能产生明显影响㊂Sun等[49]以单源氨硼烷为前驱体,采用低温CVD工艺(700~900ħ)在氧化铝纤维表面制备了BN涂层,BN涂层纤维截面的微观形貌如图14所示㊂由图可知,在不同温度下沉积的BN涂层与纤维结合良好,且随着沉积温度的升高,BN涂层的厚度逐渐增加㊂对涂层纤维进行拉伸强度测试后发现,随着沉积温度的升高,涂层纤维的拉伸强度逐渐下降㊂700ħ下沉积涂层后的氧化铝纤维强度保持率为94.9%,900ħ下沉积涂层后的氧化铝纤维强度保持率迅速下降到54.8%㊂纤维拉伸强度下降的原因为:1)涂层沉积过程中的高温使纤维晶粒长大,导致纤维力学性能下降;2)BN涂层和氧化铝纤维的热膨胀系数不同,涂层和纤维在不同的沉积温度下有不同的收缩速率,从而产生残余热应力㊂残余热应力随着沉积温度的升高而升高,从而导致涂层纤维的力学性能随着沉㊀第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4101积温度的升高而下降㊂图14㊀不同温度沉积BN涂层后的纤维截面形貌[49]Fig.14㊀Cross-section morphologies of fibers after deposition of BN coating at different temperatures[49]上述PyC㊁BN两种界面相均起到阻挡元素扩散㊁传递载荷和偏转裂纹等作用,是复合材料中较为常用的界面相,但抗氧化性能较差,在Al2O3/Al2O3复合材料中的应用受到一定限制㊂为解决这一问题,研究人员把目光投向了具有较强抗氧化性的多孔稀土-磷酸盐类材料上,其中应用最广泛的为独居石(LaPO4)界面相㊂2.3㊀独居石(LaPO4)界面相LaPO4的熔点高㊁硬度低,与氧化物纤维和基体相容性好,同时与氧化物纤维和基体结合强度适中,已被用于氧化物/氧化物复合材料中的界面相材料[54]㊂在受到外力时,LaPO4可以通过滑移㊁解离和孪晶等机制有效偏转裂纹,提升复合材料的力学性能㊂LaPO4在高温下会在表面形成一层连续致密的反应层,保护纤维不被高温侵蚀,提高复合材料的稳定性㊂Zhang等[50]以La2O3和磷酸为原料,通过化学共沉淀法和闪烧法制备了LaPO4涂层,该涂层导热系数较低,在1000ħ时的导热系数为1.41W/(m㊃K);稳定性较好,在1400ħ保温100h涂层不受破坏;耐蚀性能好,在700~900ħ的V2O5熔盐中腐蚀4h的腐蚀产物主要为La(P,V)O4,涂层的微观结构变化不大,在1000ħ的V2O5熔盐中腐蚀4h会生成少量的LaVO4,但腐蚀产物仍主要为La(P,V)O4㊂LaPO4涂层的微观结构会对涂层纤维的力学性能产生明显影响㊂Xu等[51]将硝酸镧与植酸混合得到LaPO4前驱体溶液(编号PA f),将硝酸镧与磷酸和柠檬酸混合制备了另一种LaPO4前驱体溶液(编号CA f),采用非匀相沉淀法在35和90ħ下将LaPO4前驱体沉积在氧化铝纤维表面,经600ħ高温处理后得到厚度为500~800nm的LaPO4涂层,涂层纤维的微观形貌如图15所示㊂研究了不同前驱体和沉积温度对纤维强度的影响,分析了涂层纤维的强度退化机理㊂结果表明,在35ħ下沉积的前驱体可以在纤维表面转化为致密的LaPO4涂层,该致密涂层阻止了高温下生成的有害气体排出,导致纤维强度下降[55-56];而采用植酸前驱体可在90ħ获得颗粒细小且堆叠松散的LaPO4涂层,该结构的孔洞分布均匀,有利于有害气体的逸出,使涂层纤维具有最高的拉伸强度㊂通过单纤维拔出测试(示意图如图16所示)发现,90ħ下由柠檬酸前驱体和植酸前驱体在纤维表面制备LaPO4涂层后,纤维与基体间的界面结合强度分别下降了32.5%和46.7%,纤维与基体实现弱界面结合,有助于提高复合材料的力学性能㊂图15㊀LaPO 4涂层纤维的截面形貌[51]Fig.15㊀Cross-section morphologies of LaPO 4coated fibers[51]图16㊀单纤维拔出测试示意图[51]Fig.16㊀Schematic diagram of single fiber pull-out test [51]LaPO 4涂层的厚度会对涂层编织件的稳定性有显著影响㊂Tao 等[54]以LaNO 3和P 2O 5为原料制备了LaPO 4前驱体溶液,采用反复浸渍烧结法在氧化物纤维编织件中制备了厚度为80~300nm 的LaPO 4涂层,涂层的微观形貌如图17所示㊂研究了LaPO 4涂层㊁SiC-SiO 2涂层和LaPO 4-SiC-SiO 2涂层对氧化物纤维编织件柔韧性的影响,其典型力-挠度曲线和氧化物纤维编织件测试前后的照片如图18所示㊂研究发现,具有LaPO 4涂层的氧化物纤维编织件刚度有所增加,但增加的程度很小㊂这说明LaPO 4涂层对氧化物纤维编织件的柔韧性没有明显影响,且对氧化物纤维编织件的高温脆性有一定的缓解作用㊂LaPO 4涂层对高温处理后复合材料的力学性能有明显影响㊂Keller 等[57]制备了Nextel 610/LaPO 4/Al 2O 3复合材料,探究了LaPO 4涂层对高温处理后的复合材料力学性能的影响㊂研究发现,不含LaPO 4涂层的复合材料在1200ħ热处理5h 后拉伸强度下降约70%,复合材料断口几乎没有纤维拔出现象;而含LaPO 4涂层的复合材料经热处理后的拉伸强度下降约36.7%,复合材料断口处有明显的纤维拔出现象(见图19),同时发现纤维拔出现象主要出现在涂层㊁纤维/涂层和涂层/基体界面,这说明LaPO 4涂层与纤维和基体结合力较弱㊂综上所述,PyC 涂层和BN 涂层均具有层状结构,是复合材料中常用的界面相㊂当复合材料受到外力时,PyC 涂层和BN 涂层可通过滑移㊁解离等机制有效偏转裂纹,提高复合材料的力学性能[44,52]㊂但涂层制备工艺复杂且抗氧化性能较差,PyC 涂层在空气中的温度高于400ħ即可被氧化,BN 涂层在空气中的温度高于850ħ即被氧化,限制了涂层在Al 2O 3/Al 2O 3复合材料中的应用㊂LaPO 4涂层与氧化物纤维和基体相容性好,制备工艺简单㊁抗氧化性能较好,被广泛用在Al 2O 3/Al 2O 3复合材料中㊂不同涂层的优缺点如表4所示㊂。

氧化铝纤维的生产和应用

氧化铝纤维的生产和应用

"
氧化铝纤维的生产工艺
氧化铝纤维一般是采用化学 “ 胶体法” 制取的, 是按形成单一晶体—— — 莫来石 ( 进行 1’( ! ) " 、 0+,) ! ) 化学配方的 。其原理是将可溶性铝、 硅制成具有一 定粘度的胶体溶液,用常规方法对液体甩丝,再经 高温热处理完成晶相转变,制得多晶氧化铝纤维。 所制得的纤维棉 ( 散状)可作高温部位夹层的填充 料,将散棉用湿法真空成形可制得混配纤维系列品 种, 如板、 毡、 砖、 标异预制件、 模块、 组合部件等。 目前国外已有很多公司生产各种型号的高性 能氧化铝纤维。美国 232 公司采用卜内门法生产商 品 名为 +455,( 的 氧 化 铝短 纤 维, 其 使用 温 度 可达 $ 0%% - $ .%%/ ,已开始应用在工业烧结炉的衬里 上。美国 16 公司通过溶胶 * 凝胶法生产 789:8( 系
! 上接第 ;< 页 = !" ! 增强复合材料 由于氧化铝纤维与金属基体的浸润性良好,界 面反应较小, 其复合材料的力学性能、 耐磨性、 硬度 均有提高, 热膨胀系数降低。目前, 氧化铝纤维增强 的金属基复合材料已在汽车活塞槽部件中得到应 用。另外,氧化铝纤维增强金属基复合材料还可用 于高负荷的机械零件和高温高速旋转零件以及由 于轻量化而要求的高功能构件,如汽车连杆、传动 轴、 刹车等零件及直升飞机的传动装置等。 由于氧化铝纤维与树脂基体结合良好,比玻璃 纤维弹性大,比碳纤维强度高,正逐步在一些领域 取代玻璃纤维和碳纤维。特别是在文体用品方面, 可制成各种颜色的高强度钓鱼杆、高尔夫球、滑雪 板、网球拍等。氧化铝长纤维增强金属基复合材料 主要应用于高负荷的机械零件和高温高速旋转零 件以及有轻量化要求的高功能构件,例如汽车连 杆、传动杆、刹车片等零件及直升飞机的传动装置 等。最近,也有研究人员开始将其用于热核反应堆 冷却换热装置的衬里。 !" # 耐化学腐蚀材料 氧化铝纤维由于其良好的耐化学腐蚀性能,可 用于环保和再循环技术领域。如焚烧电子废料的设 备,历经多年运转,氧化铝纤维仍显示出其优良的 抗炉内各种有害物的腐蚀性能,可用于汽车废气设 备上作陶瓷整体衬, 其特点是结构稳定。 +/66#8 氧化 铝纤维可用于铝合金活塞,它的优点是当温度上升 时膨胀较小,比纯合金减少约 <>? ,使活塞和汽缸 之间吻合好, 可节省燃料。 氧化铝纤维由于具有许多优良的性能,广泛应 用于各领域。我国研究和开发氧化铝纤维无论在国 防军工还是工业领域都具有重要的意义。

氧化铝晶须增强铝基复合材料的应用前景

氧化铝晶须增强铝基复合材料的应用前景

应温 度高 , 条件 苛 刻 , 规模 生 产 难 以实 现 , 得 价 大 使
格 昂贵 , 极少得 到 实际应 用 。近年 来 , 水热技 术 的发 展 为在较 低温 度和 较温 和条 件下 制备 氧化 铝 晶须提
供 了可 能 。
对简 单 、 活 多样等 优点 。 灵
在现 有 用 于增 强 铝 合 金 的填 充 材 料 中 , 晶须 由 于 晶体结 构 完 整 、 学 强 度 高 、 貌 和 大 小 易 于 控 力 形 制 , 认 为是理 想 的增 强 铝 合 金 的 材料 。特 别 是 氧 被
化铝 晶须 , 与铝合 金 之 间 的 相 容性 优 于其 它 的晶须 材料 , 因此 被 认 为 是铝 基 复 合 材 料 最 佳 增 强 材 料 。 然而 , 目前 氧化 铝 晶须通 常采 用气 相沉 积法 制备 , 反
越高 的要 求 。重量 轻 、 强度 高 的材 料 越 来越 受到 人
达 到 4 0W 时产 生裂纹 , 随 着激 光 输 出功 率 的增 0 并 加 而逐 渐扩 展 ; 光输 出功 率高 于 1 0 时 , 激 0W 8 损伤
sse J.Naa E gnesJunl19 ,0 ( ) 151 7 yt mE] vl n i r ra,9 3 153 :0—1 . e o E ]C o R, b r n .T en v ’ ihe eg sr 3 okJ Alet eJR h a y Shg n ryl e i a
we po y t m . SPI , 997,29 8: 6 27 a n s se E 1 8 2 4— 0.
区 中心 的涂 层材料 熔 化 , 并在 激 光 热 冲 击作 用 下推
挤 到 四周 而 形成 凹坑 , 即涂 层被 击穿 。

纤维增强复合材料及其结构研究进展

纤维增强复合材料及其结构研究进展

1、应力-应变关系:通过实验和模拟方法,研究者们研究了纤维增强复合材 料的应力-应变曲线和本构关系。研究发现,纤维增强复合材料的应力-应变关系 具有非线性、各向异性和屈服后强化等特征。
2、疲劳特性:由于纤维增强复合材料在复杂载荷条件下的疲劳行为较为复 杂,因此研究者们通过不同方法研究了材料的疲劳特性。研究发现,材料的疲劳 寿命受载荷类型、纤维类型和基体类型等因素影响,通过优化设计和制备工艺可 以显著提高材料的疲劳寿命。
引言
纤维增强金属基复合材料是由金属基体和增强纤维组成的复合材料。由于具 有高强度、高刚度和耐高温等优点,因此在航空航天、汽车、能源等领域得到了 广泛的应用。本次演示将介绍纤维增强金属基复合材料的研究进展,旨在为相关 领域的研究提供参考和借鉴。
研究现状
随着纤维增强金属基复合材料的广泛应用,研究者们不断探索新的制备方法 和技术,以获得具有优异性能的材料。目前,纤维增强金属基复合材料的制备方 法主要包括:溶胶-凝胶法、粉末冶金法、液相浸渍法、气相沉积法等。此外, 研究者们还致力于研究新型的增强纤维,如碳化硅纤维、氮化硅纤维、氧化铝纤 维等。
引言
混凝土结构是现代工程中不可或缺的一部分,其加固直接影响到工程的安全 性和耐久性。传统的混凝土结构加固方法主要有增大截面、粘贴钢板、置换混凝 土等,但这些方法往往需要耗费大量的人力和物力,且对结构外观和功能产生一 定的影响。因此,寻求一种更有效的加固方法成为研究的热点。纤维增强复合材 料(FRP)
玄武岩纤维增强复合材料的物理和化学性质与原材料的组成和制备工艺密切 相关。一般情况下,玄武岩纤维增强复合材料的密度较低,强度和韧性较高,耐 腐蚀性优异。此外,该材料还具有良好的电磁屏蔽性能和抗老化性能,可在复杂 环境下长期保持稳定性能。

纤维增强铝基复合材料在输电导线中的应用

纤维增强铝基复合材料在输电导线中的应用
地 区, 网输 电 能力 不 足 的问 题 十分 突 出 , 电 由 于过 负荷 造 成 的停 电 、 电故 障频 频 发 生 , 断 电 力 传 输 成 为 电力 工业 发 展 的 “ 颈 ” 各 国 均 在 瓶 , 研 究 新 型 架 空 输 电用 导 线 , 取 代 传 统 的 钢 芯 以
Ke r s: l mi i m ti o o ie ;r i f r e i e ;r n mi so i e y wo d a u n u ma rx c mp s t s e n o c d fb r t s s in ln a
0 前 言
随着 我 国 国 民 经 济 的 快 速 增 长 , 力 的 需 电 求 不 断 增 加 , 其 是 在 经 济 发 达 、 口稠 密 的 尤 人
华 北 电 力 技 术
N R H C I A E E T I O R O T H N L C R C P WE
2 9

新技 术应 用 ・
纤 维 增 强 铝基 复合 材 料 在 输 电导 线 中 的应 用
李 寅 雪
( 国 电 力科 学研 究 院 , 京 1 2 0 ) 中 北 0 4 1
概 述 了纤 维增 强 金 属 基 复 合 材 料 的 制备 方 法 、 能特 点 、 性 发展 现 状 等 。
关 键 词 : 基 复 合 材 料 ; 维 增 强 ; 电 导 线 铝 纤 输 中 图分 类 号 : M7 1 T 5 文 献 标 识码 : B 文 章 编 号 :0 39 7 ( 0 9) 80 2 —4 10 —1 1 2 0 0 —0 9 0
铝绞线 。
化 陶 瓷 纤 维 包 埋 在 含 铝 基 体 中 的 新 型 复 合 材
料芯。

连续氧化铝纤维增韧陶瓷基复合材料

连续氧化铝纤维增韧陶瓷基复合材料

连续氧化铝纤维增韧陶瓷基复合材料随着科技的不断进步,复合材料的应用越来越广泛。

在各种领域中,复合材料都具有很高的应用价值。

其中,连续氧化铝纤维增韧陶瓷基复合材料是一种很有潜力的材料,具有杰出的性能特点。

本文将深入探讨这种复合材料的结构特点、制备工艺、性能表现等方面,希望能够帮助读者更好地了解连续氧化铝纤维增韧陶瓷基复合材料。

一、连续氧化铝纤维增韧陶瓷基复合材料的结构特点连续氧化铝纤维增韧陶瓷基复合材料是以氧化铝纤维为增强相,陶瓷基体为基体相,通过一定的工艺方法将两者复合而成的一种复合材料。

这种材料的最大特点就是氧化铝纤维是连续排列的,使得整个材料的增强效果更加显著。

同时,陶瓷基体又具有很高的硬度和抗压性,使得整个复合材料具有很好的综合性能。

二、连续氧化铝纤维增韧陶瓷基复合材料的制备工艺1.原料准备制备这种复合材料需要准备氧化铝纤维、陶瓷基体原料,同时还需要一些添加剂来提高复合材料的成型性能和性能表现。

2.工艺流程首先,将氧化铝纤维按照一定的比例进行排列,然后将陶瓷基体原料和添加剂混合搅拌均匀。

接着,将混合好的陶瓷基体原料浇注到氧化铝纤维上,并通过加压成型的方法将两者紧密结合在一起。

最后,进行烧结处理,使得整个材料具有更好的力学性能和热稳定性。

三、连续氧化铝纤维增韧陶瓷基复合材料的性能表现1.力学性能由于氧化铝纤维的连续排列和陶瓷基体的高硬度,使得整个复合材料具有很高的抗拉强度和抗压强度。

在一些高温高压的环境下,其力学性能表现尤为突出。

2.热稳定性氧化铝纤维和陶瓷基体都具有很好的热稳定性,因此整个复合材料在高温环境下也能够保持良好的性能表现。

这使得这种材料在航空航天、核工业等领域具有很大的应用潜力。

3.耐磨性能由于陶瓷基体的高硬度,使得整个复合材料具有很好的耐磨性能。

在一些对磨损要求较高的场合,这种材料也能够发挥出很好的作用。

四、连续氧化铝纤维增韧陶瓷基复合材料的应用前景由于其显著的性能优势,这种复合材料在航空航天、核工业、汽车制造等领域都具有很广阔的应用前景。

连续纤维增强金属基复合材料的制备方法[发明专利]

连续纤维增强金属基复合材料的制备方法[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201811516058.6(22)申请日 2018.12.12(71)申请人 中国航空制造技术研究院地址 100024 北京市朝阳区八里桥北东军庄1号(72)发明人 刘文祎 侯红亮 曲海涛 赵冰 王耀奇 (51)Int.Cl.B32B 9/00(2006.01)B32B 9/04(2006.01)B32B 15/02(2006.01)B32B 15/14(2006.01)B32B 7/12(2006.01)B32B 37/10(2006.01)B32B 37/06(2006.01)D03D 15/00(2006.01)D03D 15/02(2006.01) (54)发明名称连续纤维增强金属基复合材料的制备方法(57)摘要本发明涉及连续纤维增强金属基复合材料的制备方法。

该方法包括:将连续增强体纤维与基体金属丝材交替织布,均匀编制成纤维和金属的混杂纤维布,并通过压缩空气将丙酮胶液喷洒于混杂纤维布上,将纤维固定;将纤维固定好的n层的混杂纤维布与n+1层基体金属箔材交替叠层的排布方式进行铺层,其中n≧1,获得多层结构的预制坯,该预制坯的最上层和最下层均为基体金属箔层;将预制坯置于真空加热炉中,升温至丙酮胶液的蒸发温度,使混杂纤维布中的丙酮胶液受热蒸发而除胶;在除胶后,快速升温至混杂纤维布与基体金属箔材的复合温度,并加压后保温保压,使纤维和金属的混杂纤维布与基体金属箔材复合,获得连续纤维增强金属基复合材料。

权利要求书1页 说明书4页 附图1页CN 109572091 A 2019.04.05C N 109572091A1.连续纤维增强金属基复合材料的制备方法,其特征在于,所述制备方法包括:编布,将连续增强体纤维与基体金属丝材交替织布,均匀编制成纤维和金属的混杂纤维布,并通过压缩空气将丙酮胶液喷洒于所述混杂纤维布上,将纤维固定;铺层,将纤维固定好的n层的混杂纤维布与n+1层基体金属箔材交替叠层的排布方式进行铺层,其中n≧1,获得多层结构的预制坯,该预制坯的最上层和最下层均为基体金属箔层;除胶,将预制坯置于真空加热炉中,以预定温速升温至丙酮胶液的蒸发温度,使混杂纤维布中的丙酮胶液受热蒸发而除胶;复合,在除胶后,快速升温至混杂纤维布与基体金属箔材的复合温度,并加压至预定的复合压强后保温保压,使纤维和金属的混杂纤维布与基体金属箔材复合,获得连续纤维增强金属基复合材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档