高中数学新课标人教A版高中数学选修不等式知识点总结

合集下载

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式
1
年销售收入为 150% 32 3- t+1 + 3 + 2t.
首 页
探究一
探究二
J 基础知识 Z 重点难点
ICHU ZHISHI
探究三
由题意,生产 x 万件化妆品正好销完,
由年利润=年销售收入-年生产成本-促销费,
-t2 +98t+35
得年利润 y=
(t≥0).
2(t+1)
-t2 +98t+35
1 2x+y 2
1
(x,y∈R+)中,用的是不等式链中的
其变形去解题,如 xy= ×(2x)y≤
2
2
2
2
1 (2x+y)
1
a+b 2
(x,y∈R+)也可以,这两种解法比较,
.但是 xy= ×(2x)y≤ ×
ab≤
2
2
2
2
可以发现,求得的最值不一样,这说明选择不同的重要不等式的变形形式,求
得的值或范围是不同的,所以我们在选择重要不等式的变形形式时,要使
论有关的不等关系,得出有关理论参数的值.
(4)作出问题结论:根据③中得到的理论参数的值,结合题目要求得出问
题的结论.
J 基础知识 Z 重点难点
首 页
ICHU ZHISHI
HONGDIAN NANDIAN
1
1.下列各式中,最小值等于 2 的是(
x
A.
y
y
+
x
B.
1
C.tanθ+θ
2
3
S 随堂练习
1
的最大值,转化为求 (2x)y 的最大值,即

高三选修基本不等式知识点总结

高三选修基本不等式知识点总结

高三选修基本不等式知识点总结高中数学中,基本不等式是一项重要的内容,也是学习不等式的基础。

掌握基本不等式的知识,对于解决解析几何和一元二次函数的相关问题以及应对高考数学题目都有着重要的作用。

本文将对高三选修基本不等式的知识点进行总结,以帮助同学们更好地理解和掌握这一内容。

一、不等式的基础概念在掌握基本不等式之前,我们首先要明确不等式的基础概念。

不等式是一种数学关系,通过不等于号(>、<、≥、≤)来表示数之间的大小关系。

在解不等式时,我们需要找到使不等式成立的数的范围,这个范围就是不等式的解集。

解不等式的方法包括图像法、试位法、代入法等,具体的解法要根据具体的不等式形式进行选择。

二、基本不等式的形式和证明1. 平均值不等式平均值不等式是基本不等式的核心内容之一。

设有n个正数a₁,a₂,...,aₙ,则它们的算术平均数不大于它们的几何平均数,即(a₁+a₂+...+aₙ)/n ≥ √(a₁a₂...aₙ)。

这一不等式的证明可通过构造不等式链进行完成,具体证明过程略。

2. 开平方不等式开平方不等式是基于二次函数的求解加以证明的不等式。

设函数f(x) = x²为所考察不等式的左侧,即 f(x) > 0。

我们通过研究函数f(x)的图像,得到不等式的解集。

3. 其他常用基本不等式除了平均值不等式和开平方不等式之外,以下这些基本不等式也是我们在高中数学中经常会遇到的,同学们需要注意这些不等式的性质并掌握其应用方法。

- Cauchy-Schwarz不等式- AM-GM不等式- Jensen不等式- Muirhead不等式- Schur不等式- Holder不等式三、基本不等式的应用了解基本不等式的形式和证明只是学习的一部分,我们还需要应用这些不等式解决实际问题。

以下是一些典型的基本不等式应用示例。

1. 解决最值问题通过利用基本不等式,我们可以解决一些求最值的问题。

例如,求证当a+b+c=3时,有(a²+3)(b²+3)(c²+3) ≥ 64。

高中不等式全套知识点总结

高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。

一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。

2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。

3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。

二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。

2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。

3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。

三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。

2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。

四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。

2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。

高三选修不等式知识点

高三选修不等式知识点

高三选修不等式知识点不等式是高中数学中的一个重要内容,它在数学建模、优化问题以及各种实际应用中都起着重要的作用。

在高三数学的选修课中,不等式是必不可少的内容之一。

本文将详细介绍高三选修不等式的知识点,包括不等式的基本概念、性质和解法等。

一、不等式的基本概念不等式是数学中用不等号连接的数字或者表达式的关系式。

与等式不同,不等式所表示的是一种不严格的大小关系。

不等式可以分为严格不等式和非严格不等式两种形式。

严格不等式使用“<”和“>”表示,而非严格不等式使用“≤”和“≥”表示。

不等式的基本概念为后续的解法提供了基础。

二、不等式的性质1. 加减性质:对于不等式两边同时加减一个相同的数,不等号的方向保持不变,即若a < b,则a + c < b + c;若a > b,则a - c >b - c。

2. 乘除性质:对于不等式两边同时乘除一个正数,不等号的方向保持不变,即若a < b(或a > b),c > 0,则ac < bc(或ac > bc);若a < b(或a > b),c < 0,则ac > bc(或ac < bc);若a >b(或a < b),c > 0,则ac > bc(或ac < bc);若a > b(或a < b),c < 0,则ac < bc(或ac > bc)。

3. 倒置性质:若不等式两边的不等号互换,则不等式的方向也需要互换,即若a < b,则b > a;若a > b,则b < a。

三、不等式的解法1. 图像法:对于给定的一元不等式,可以通过绘制相关函数的图像来确定不等式的解集。

通过观察图像上的位置可以得到不等式的解集。

2. 区间法:对于一元一次不等式或二次不等式,可以将解集表示为一个或多个区间的交集或并集的形式。

高中数学新人教A版选修4-5 绝对值三角不等式

高中数学新人教A版选修4-5  绝对值三角不等式

(1)利用绝对值不等式求函数最值,要注意利用绝对 值的性质进行转化,构造绝对值不等式的形式. (2)求最值时要注意等号成立的条件,它也是解题的 关键.
3. 若 a, b∈R, 且|a|≤3, |b|≤2, 则|a+b|的最大值是________, 最小值是________.
解析:∵|a|-|b|≤|a+b|≤|a|+|b|, ∴1=3-2≤|a+b|≤3+2=5.
解:∵a<|x+1|-|x-2|对任意实数恒成立, ∴a<(|x+1|-|x-2|)min. ∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3, ∴-3≤|x+1|-|x-2|≤3. ∴(|x+1|-|x-2|)min=-3. ∴a<-3.即 a 的取值范围为(-∞,-3).
“应用创新演练”见“课时跟踪检测(四)” (单击进入电子文档)
|A|+|B| 2 1 2 2 = (| A | + | B | +2|A||B|) 4 2
|A|+|B| 1 ≥ (2|A||B|+2|A||B|)=|A||B|,∴2lg ≥lg|A||B|. 4 2 |A|+|B| 1 ∴lg ≥ (lg|A|+lg|B|),④正确. 2 2 答案:A
解析:∵|a+b|=|(b-a)+2a|≤|b-a|+2|a| =|a-b|+2|a|,∴|a+b|-2|a|≤|a-b|,①正确; ∵1>|a-b|≥|a|-|b|,∴|a|<|b|+1,②正确; 1 1 |x| 2 ∵|y|>3,∴ < .又∵|x|<2,∴ < ,③正确; |y| 3 |y| 3
②若|a|<|b|, 左边>0,右边<0,∴原不等式显然成立. ③若|a|=|b|,原不等式显然成立. 综上可知原不等式成立.

最新人教版高中数学选修4-5《绝对值不等式》教材梳理

最新人教版高中数学选修4-5《绝对值不等式》教材梳理

庖丁巧解牛知识·巧学一、绝对值三角不等式1.定理1 如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理1的等号成立的情况具体来说,当a=0或b=0时,或a>0、b>0时,或a<0,b<0时,等号都是成立的,即有|a+b|=|a|+|b|.除此之外,就是|a+b|<|a|+|b|了.如果把定理1中的实数a,b分别替换为向量a,b,则定理1的形式仍旧成立.即有|a+b|≤|a|+|b|成立,当且仅当向量a,b不共线时,有|a+b|<|a|+|b|成立.联想发散根据定理1,我们可以得到许多正确的结论.其中比较常用的结论有:(1)如果a,b是实数,那么|a|-|b|≤|a±b|≤|a|+|b|.(2)|a1+a2+a3+…+a n|≤|a1|+|a2|+|a3|+…+|a n|(n∈N*).2.绝对值三角不等式所谓绝对值三角不等式就是指把定理1中的实数a,b分别替换为向量a,b,且向量a,b不共线时,所成立的不等式|a+b|<|a|+|b|.绝对值三角不等式即向量不等式|a+b|<|a|+|b|的几何意义就是三角形的两边之和大于第三边(如下图所示).记忆要诀由于绝对值三角不等式其形式与定理1是完全类似的,所以只要记住定理1,那么这个绝对值三角不等式也就记住了.3.定理2 如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.对于定理2,同学们不但要记住它的形式,还应注意它的特点,尤其要注意它的不等号左边没有字母b,只有右边才有.学法一得要注意|a-c|可以变形为|(a-b)+(b-c)|,熟悉这种变形,那么在具体解题时就可以通过变形来巧妙地利用定理2了.二、绝对值不等式的解法要熟记简单绝对值不等式的解法,它是解较复杂的绝对值不等式的基础,即要记住:一般地,如果a>0,则有:|x|<a⇔-a<x<a,因此,不等式|x|<a的解集是(-a,a);|x|>a⇔x<-a或x>a,因此,不等式|x|>a的解集是(-∞,-a)∪(a,+∞).1.|ax+b|≤c和|ax+b|≥c型不等式的解法.求解这类绝对值不等式,只要将ax+b看成一个整体,然后套用|x|<a或|x|>a的不等式的解法即可.2.|x-a|+|x-b|≤c和|x-a|+|x-b|≥c型不等式的解法.求解这类绝对值不等式,主要的方法有如下三种:(1)利用绝对值的几何意义;(2)分区间讨论法;(3)构造函数利用函数的图象求解.求解这类绝对值不等式时,可根据题目的不同而适时选用不同的方法求解.误区警示解绝对值不等式切勿盲目地套用某一类解法,一定要注意不等式的形式,要针对不同的形式对号入座采取相应的方法来求解.典题·热题知识点一: 与定理1、2相关的绝对值不等式的判断与证明例1 若|x-a|<m,|y-a|<n ,则下列不等式一定成立的是( )A.|x-y|<2mB.|x-y|<2nC.|x-y|<n-mD.|x-y|<n+m思路分析:注意观察比较|x-y|与|x-a|,|y-a|之间的关系,不难发现通过适当变形就可运用定理1及已知条件来巧妙求解此题了,具体解题过程为:|x-y|=|x-a-(y-a)|≤|x -a|+|y-a|<m+n,故选D.答案:D巧解提示对某些式子进行适当的变形,以便创造条件利用某些定理、公式来解题,这是一种常用的技巧,如此题求解过程中的|x-y|=|x-a-(y-a)|就是变形,而变形的基础是必须要熟悉公式. 例2 已知a 、b 、c 、d 都是实数,且a 2+b 2=m 2,c 2+d 2=n 2(m>0,n>0),求证:|ac+bd|≤222n m +. 思路分析:证明此题时,可将ac 、bd 分别看成整体,那么就可以套用定理1来证明了. 证明:∵a 、b 、c 、d ∈R ,∴|a c+bd|≤|ac|+|bd|≤222222d b c a +++ =222222222r R d c b a +=+++, ∴|ac+bd|≤222R r +. 误区警示如果利用ab≤222b a +来证明此题,就容易出现似是而非的证法,而利用较严格的公式|ab|≤222b a +来证明就不易出错了.因此同学们要注意公式的适时选用. 知识点二: 绝对值不等式的解法例3 解关于x 的不等式|2x-1|<2m-1(m ∈R ).思路分析:要注意对2m-1的正负情况进行讨论.解:若2m-1≤0,即m≤21,则|2x-1|<2m-1恒不成立,此时,原不等式无解;若2m-1>0,即m>21,则-(2m-1)<2x-1<2m-1,所以1-m<x<m. 由上可得:当m≤21时,原不等式的解集为∅, 当m>21时,原不等式的解集为:{x|1-m<x<m}. 方法归纳对于不等号右侧是含有参数的式子的这类绝对值不等式,在求解时一定要通过对参数式子的正、负、零三种情况的讨论来求解.例4 解不等式3≤|x -2|<4.思路分析:此题的不等式属于绝对值的连不等式,求解时可将其化为绝对值的不等式组再求解.解:原不等式等价于⎩⎨⎧<-≥-)2.(4|2|)1(,3|2|x x 由(1)得x-2≤-3或x-2≥3,∴x≤-1,或x≥5.由(2)得-4<x-2<4,∴-2<x<6.如上图所示,原不等式的解集为{x|-2<x≤-1或5≤x<6}.误区警示有些同学求解这类问题时,为了图省事,往往不爱通过画图来寻找解集,总爱耍点小聪明,这是造成求解出错的主要原因.例5 解不等式|x+7|-|x-2|≤3.思路分析:解含有绝对值的不等式,总的思路是同解变形为不含绝对值的不等式,但要根据求解不等式的结构,选用恰当的方法.此题中有两个绝对值符号,故可用绝对值的几何意义来求解,或用分区间讨论法求解,还可构造函数利用函数图象求解.图1解:[方法一] |x+7|-|x-2|可以看成数轴上的动点(坐标为x)到-7对应的点的距离与到2对应的点的距离的差,先找到这个差等于3的点,即x=-1(如图1所示).从图易知不等式|x+7|-|x-2|≤3的解为x≤-1,即x ∈(-∞,-1].[方法二] 令x+7=0,x-2=0得x=-7,x=2.①当x<-7时,不等式变为-x-7+x-2≤3,∴-9≤3成立,∴x<-7.图2②当-7≤x≤2时,不等式变为x+7+x-2≤3,即2x≤-2,∴x≤-1,③当x>2时,不等式变为x+7-x+2≤3,即9≤3不成立,∴x ∈∅.∴原不等式的解集为(-∞,-1].[方法三] 将原不等式转化为|x+7|-|x-2|-3≤0,构造函数y=|x+7|-|x-2|-3,即y=⎪⎩⎪⎨⎧>≤≤-+-<-.2,6;27,22;7,12x x x x .作出函数的图象(如图2),从图可知,当x≤-1时,有y≤0,即|x+7|-|x-2|-3≤0,所以,原不等式的解集为(-∞,-1].巧妙变式针对此题,我们可以进行各种不同的题目变式.如:可以将两个绝对值里面的运算符号改变、可以将两个绝对值之间的运算符号改变、可以将“≤”改变为“≥”,还可以将不等号右边的数改成字母等等.变式后题目的求解还是用上述的几种解法.问题·探究误区陷阱探究问题1 对此题“写出不等式|2x-1|<3的解集并化简”,某同学的错解如下:不等式|2x-1|<3的解集是{x||2x-1|<3}={x|2x-1<3}∪{x|2x-1>-3}={x|x<2}∪{x|x>-1}={x|-1<x<2}.探究过程:这位同学解得的结果是正确的,但解法不对.解法中有两处错误,但却歪打正着得出了正确的结果.首先是把绝对值不等式的解法搞错了.这位同学写的求解过程中的两个集合{x|2x-1<3}与{x|2x-1>-3}的中间不应当用并的符号“∪”,而应改为“∩”.这两个集合是应该取交集的.另外,按照这位同学错写的两集合“并”来运算时又解错了.{x|x<2}∪{x|x>-1}的结果应为{x|-∞<x<+∞},而不是{x|-1<x<2}.探究结论:如果按照这位同学的思路求解,可以修改为:不等式|2x-1|<3的解集是: {x||2x-1|<3}={x|2x-1<3}∩{x|2x -1>-3}={x|x<2}∩{x|x>-1}={x|-1<x<2}.不过,更简单的解法应是:不等式|2x-1|<3的解集是:{x||2x-1|<3}={x|-3<2x-1<3}={x|-1<x<2}.思维发散探究问题2 已知a 、b 、c 是实数,函数f(x)=ax 2+bx+c ,g(x)=ax+b ,当-1≤x≤1时,|f(x)|≤1,试探究当x ∈[-1,1]时,|g(x)|≤2.探究过程:这是一个通过关联二次函数、一次函数考查不等式的变换能力的问题,因此在证明中要注意合理应用绝对值不等式的性质定理,由于g(x)是一次函数,可将|g(x)|≤2转化为g(-1)与g(1)与2的关系加以证明,也可挖掘g(x)与f(x)的隐含关系,构造函数模型,寻求整体突破.探究结论:[方法一] 当a>0时g(x)=ax+b 在[-1,1]上是增函数,∴g(-1)≤g(x)≤g(1),∵|f(x)|≤1(-1≤x≤1),∴|c|=|f(0)|≤1,∴g(1)=a+b=f(1)-c≤|f(1)|+|c|≤2,g(-1)=-a+b=-f(-1)+c≥-(|f(-1)|+|c|)≥-2,当a<0时,g(x)=ax+b 在[-1,1]上是减函数, ∴g(1)≤g(x)≤g(-1),∵|f(x)|≤1(-1≤x≤1),∴|c|=|f(0)|≤1,∴g(-1)=-a+b=-f(-1)+c≤|f(-1)|+|c|≤2,g(1)=a+b=f(1)-c≥-(|f(-1)|+|c|)≥-2,∴|g(x)|≤2.当a=0时,g(x)=b ,f(x)=bx+c ,∵-1≤x≤1,∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.综上所述,当x ∈[-1,1]时,|g(x)|≤2.[方法二] ∵x=4)1()1(22--+x x , ∴g(x)=ax+b=a [(21+x )2-(21-x )2]+b(21+x -21-x ) =a [(21+x )2+b(21+x )+c ]-[a(21-x )2+b(21-x )+c ] =f(21+x )-f(21-x ). 当-1≤x≤1时,有0≤21+x ≤1,-1≤21-x ≤0, ∴|g(x)|=|f(21+x )-f(21-x )|≤|f(21+x )|+|f(21-x )|≤2,∴|g(x)|≤2.。

数学高中不等式知识点总结

数学高中不等式知识点总结

数学高中不等式知识点总结高中不等式是数学中的重要内容,在数学学习中有着重要的地位。

不等式作为数学中的一个概念,与等式类似,是数学中一种重要的推理等式。

不等式能够用来描述数的大小关系,包含等于、大于、小于、不等于等关系。

高中不等式的知识点主要包括:不等式的定义、解不等式的方法、不等式的性质、不等式方程的解法以及不等式的应用等。

1.不等式的定义:不等式是数学中用不等号表示的一种数的大于或小于关系。

不等式中的”不等号“主要包括大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)、不等于号(≠)等。

2.不等式的解法:解不等式的方法主要有图形法和代数法两种。

(1)图形法:可以借助图形来得到不等式的解集。

如在数轴上标明不等式的解集。

(2)代数法:借助数学运算的性质,对不等式进行等价变形,得出不等式的解集。

解不等式时常用的运算性质有:加减、乘除等。

- 加减性:如果将一个不等式的两边都加上或减去一个相同的数,不等式的大小关系保持不变。

即如果a > b,则有a + c > b + c(其中c为常数),同样,如果a < b,则有a + c < b+ c。

- 乘除性:如果将一个不等式的两边都乘以或除以一个正数,不等式的大小关系保持不变。

即如果a > b 且c > 0,则有ac > bc,同样,如果a > b 且c < 0,则有ac < bc。

3.不等式的性质:不等式在数学中有一些特殊的性质。

(1)加法性:如果一个不等式两边都加上相同的正数,不等式的大小关系不变。

(2)乘法性:如果一个不等式两边都乘以相同的正数,不等式的大小关系不变。

但若两边都乘以或除以一个负数,则不等号方向会发生改变。

(3)传递性:如果a > b 且 b > c,则有a > c。

同样,如果a < b 且 b < c,则有a < c。

4.不等式方程的解法:不等式方程是不等式和等式相结合的方程,解不等式方程时可以先将不等式方程转化为等式方程,再根据等式方程的解法求解。

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

完整版高中数学不等式知识点总结

完整版高中数学不等式知识点总结

完整版高中数学不等式知识点总结高中数学中的不等式是学习数学中非常重要的一部分,在中高考中,不等式占据了较多的分数比重。

本文将对高中数学中的不等式进行全面的总结,内容涵盖了不等式的概念、基础知识、理论与定理、解题思路、常用不等式以及与其他章节的联系等方面。

一、不等式的概念与基础知识不等式是指含有不等关系的算式,一般表示成 a<b 或a>b,其中 a、b 可以是实数、分数或代数式等。

当 a<b 时,称 a 小于 b,也可以写成 b 大于 a;当 a>b 时,称 a 大于b,也可以写成 b 小于 a。

在不等式中,表示关系的符号“<”和“>”称为不等号。

解不等式可以用图像法、正推反证法和直接法等方法。

图像法:绘制不等式所代表的曲线或图形,在图形中表示不等关系所代表的区域,最终得出解不等式的集合。

正推反证法:通过推理判断得出不等式的解,其中正推法是根据不等式的性质进行推导和运算,而反证法则是通过推翻假设得出结论。

直接法:对不等式进行变形、化简和运算,得出解的过程。

不等式的基础知识:1. 加减法原则:若 a<b,则 a+c<b+c,a-c<b-c(c 为任意实数)。

2. 乘除法原则:若 a<b 且 c>0,则 ac<bc,a/c<b/c;若 a<b 且 c<0,则 ac>bc,a/c>b/c。

3. 平均值不等式:对于任意两个正数 a 和 b,有(a+b)/2>=√ab,等号当且仅当 a=b 时取到。

二、不等式的理论与定理1. 不等式传递性:若 a<b,b<c,则 a<c。

2. 柯西-施瓦茨不等式:对于任意两个实数序列a1,a2,...,an 和 b1,b2,...,bn,有(a1b1+a2b2+...+anbn)^2<=((a1^2+a2^2+...+an^2)(b1^2+b2^ 2+...+bn^2)),等号当且仅当 a1/b1=a2/b2=...=an/bn 时取到。

人教课标版高中数学选修4-5第一讲 不等式和绝对值不等式二 绝对值不等式

人教课标版高中数学选修4-5第一讲 不等式和绝对值不等式二 绝对值不等式

② 解不等式│x│< 2 -2 0 ③ 解不等式│x│> 2 -2 0
含 绝 对 值 的 不 等 式 解 法
一、知识回顾
│x│=a(a>0)
其几何意义:数轴上表示实数x的点到原点的距离等于a.
① 解方程
│x│=a
-2 0
解集为{x│x=2, x=-2} 2 解集为{x│-2 < x < 2 } 2 解集为{x│x > 2或x<-2 } 2
(x+3)(x-1)>0
-3
1

-5<x<3
x<-3或x>1
-5
-3
1
3
-5< x< -3或1<x<3 ∴原不等式的解集是{x|-5< x< -3或1<x<3}
常规法解不等式的关键 1去绝对值 2交集与并集的取法
f(x) 分析二 A B C D y=6
解二 ∴ |x² +2x-9|=6 ∴x² +2x-9=6 或 ∴ x² +2x-15=0 (x+5)(x-3) =0

X-500≤5
-(X-500)≤5
由绝对值得意义,这个结果也可以表示成
│X-500│≤5
含 绝 对 值 的 不 等 式 解 法
一、知识回顾
│x│=a(a>0)
其几何意义:数轴上表示实数x的点到原点的距离等于a.
① 解方程
│x│=2 -2 0
解集为{x│x=2, x=-2} 2 解集为{x│-2 < x < 2 } 2 解集为{x│x > 2或x<-2 } 2
(2)不等式x² -5x + 4 < 0的解集是

第一讲 不等式和绝对值不等式 知识归纳 课件(人教A选修4-5)

第一讲 不等式和绝对值不等式 知识归纳 课件(人教A选修4-5)

对于不等式恒成立求参数范围问题,常见类型及其解法
如下:
(1)分离参数法:
运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔f(x)min≥a”可解决恒成立
中的参数范围问题.
(2)更换主元法:
不少含参不等式恒成立问题,若直接从主元入手非常 困难或不可能时,可转换思维角度,将主元与参数互换,
常可得到简捷的解法.
5 ②当- ≤x≤2 时, 2 3 原不等式变形为 2-x-2x-5>2x,解得 x<- . 5 5 3 ∴解集为{x|- ≤x<- }. 2 5 ③当 x>2 时,原不等式变形为 x-2-2x-5>2x, 7 解得 x<- ,∴原不等式无解. 3 3 综上可得,原不等式的解集为{x|x<- }. 5
2|≤1+2|y-2|+2≤5,即|x-2y+1|的最大值为5.
答案:5
3.(2011· 陕西高考)若不等式|x+1|+|x-2|≥a对任意x∈R 恒成立,则a的取值范围是________.
解析:令 f(x)=|x+1|+|x-2|= -2x+1x≤-1, 3-1<x<2, 2x-1x≥2, ∴f(x)≥3. ∵|x+1|+|x-2|≥a 对任意 x∈R 恒成立,∴a≤3.
[解析]
x+3z 由 x-2y+3z=0 得 y= , 2
2 2 y2 x +9z +6xz 6xz+6xz 则xz= ≥ =3, 4xz 4xz
当且仅当 x=3z 时取“=”.
[答案]
3ቤተ መጻሕፍቲ ባይዱ
1 1 1 [例 3] 设 a, c 为正实数, b, 求证:3+ 3+ 3+abc≥2 3. a b c 1 [证明]因为 a,b,c 为正实数,由平均不等式可得 3+ a

人教新课标版数学高二-数学必修5第三章《不等式》知识整合

人教新课标版数学高二-数学必修5第三章《不等式》知识整合

数学·必修5(人教A版)一、本章概述不等关系是中学数学中最基本、最广泛、最普遍的关系.不等关系起源于实数的性质,产生了实数的大小关系、简单不等式、不等式的基本性质,如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、基本不等式等.不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题.解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法.不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等.不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程.不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,以及三角、数列、立体几何、解析几何中的最大值、最小值问题,这些问题无一不与不等式有着密切的联系.不等式还可以解决现实世界中反映出来的数学问题,许多问题最终归结为不等式的求解或证明.解决这类综合问题的一般思维方法是:引参,建立不等关系,解某一主元的不等式(实为分离变元),适时活用基本不等式.其中建立不等关系的常用途径是:①根据题设条件;②判别式法;③基本不等式法;④依据某些变量(如sin x,cos x)的有界性等.不等式的应用体现了一定的综合性、灵活多样性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用不等式解应用题的基本步骤:①审题;②建立不等式模型;③解决数学问题;④作答.本章中,不等式的证明是难点,解不等式是重点,含参数的不等式综合题是高考命题的热点.掌握不等式的意义和实数的符号法则,是分散难点和解决难点的关键.如能熟悉不等式的性质,认清基本不等式的特点,灵活运用比较、分析、综合等基本方法,认真进行思考和探索,是不难找到解题途径的.要善于进行转化变形,即化无理为有理、化分式为整式、化高次为低次、化绝对值为非绝对值等等,以突破解证不等式这一难关.通过本章的学习达到以下基本目标:1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小;3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系;4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题;5.明确基本不等式及其成立条件,会灵活应用基本不等式证明或求解最值.二、主干知识1.不等式与不等关系.不等式的性质刻画了在一定条件下两个量的不等关系.不等式的性质包括“单向性”和“双向性”.单向性主要用于证明不等式,双向性是解不等式的基础.因为解不等式要求的是同解变形.要正确理解不等式的性质,必须先弄清每一性质的条件和结论、注意条件和结论的放宽和加强,以及条件与结论之间的相互联系.双向性主要有:(1)不等式的基本性质:⎩⎪⎨⎪⎧ a >b ⇔a -b >0,a =b ⇔a -b =0,a <b ⇔a -b <0,这是比较两个实数的大小的依据;(2)a >b ⇔b <a ;(3)a >b ⇔a +c >b +c .单向性主要有:(1)a >b ,b >c ⇒a >c ;(2)a >b ,c >d ⇒a +c >b +d ;(3)a >b ,c >0(c < 0)⇒ac >bc (ac <bc );(4)a >b >0,c >d >0⇒ac >bd ;(5)a >b >0,0<c <d ⇒a c >b d ;(6)a >b >0,m ∈N *⇒a m >b m ;(7)a >b >0,n ∈N *,n >1⇒n a >n b .特别提醒:(1)同向不等式可以相加,异向不等式可以相减.即: 若a >b ,c >d ,则a +c >b +d ;若a >b ,c <d ,则a -c >b -d .但异向不等式不可以相加,同向不等式不可以相减.(2)左右同正不等式,同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.即:若a >b >0,c >d >0,则ac >bd ;若a >b >0,0<c <d ,则a c >b d .(3)左右同正不等式,两边可以同时乘方或开方.即:若a >b >0,n ∈N *,n >1,则a n >b n 或n a >nb .(4)若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b .如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论.2.一元二次不等式及其解法解一元二次不等式常用数形结合法,基本步骤如下:①将一元二次不等式化成ax 2+bx +c >0的形式,②计算判别式并求出相应的一元二次方程的实数解,③画出相应的二次函数的图象,④根据图象和不等式的方向写出一元二次不等式的解集.设相应二次函数的图象开口向上,并与x 轴相交,则有口诀:大于取两边,小于取中间.解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”.要注意对字母参数的讨论,如果遇到下述情况则一般需要讨论:(1)在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析Δ),比较两个根的大小,设根为x 1,x 2,要分x 1>x 2、x 1=x 2、x 1<x 2讨论.(2)不等式两端乘或除一个含参数的式子时,则需讨论这个式子的正负.(3)求解过程中,需用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.注意解完之后要写上:“综上,原不等式的解集是…”.若按参数讨论,最后应按参数取值分别说明其解集;若按未知数讨论,最后应求并集.一元二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解集:设相应的一元二次方程ax2+bx+c=0(a>0)的两根为x1、x2且x1≤x2,Δ=b2-4ac,则不等式的解的各种情况如下表所示:二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=(a>0)的根ax2+bx+c>0(a>0)的解集ax2+bx+c<0(a>0)的解集Δ>0有两相异实根x1,x2(x1<x2){x|x<x1,或x>x2}{x|x1<x<x2}Δ=0有两相等实根x1=x2=-b2a{x|x≠-b2a}∅Δ<0无实根R∅特别提醒:(1)解题中要充分利用一元二次不等式的解集是实数集R和空集∅的几何意义,准确把握一元二次不等式的解集与相应一元二次方程的根及二次函数图象之间的内在联系.(2)解不等式的关键在于保证变形转化的等价性.简单分式不等式可化为整式不等式求解:先通过移项、通分等变形手段将原不等式化为右边为0的形式,然后通过符号法则转化为整式不等式求解.转化为求不等式组的解时,应注意区别“且”、“或”,涉及最后几个不等式的解集是“交”,还是“并”.注意:不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(3)在解决实际问题时,先要从实际问题中抽象出数学模型,并寻找出该数学模型中已知量与未知量,再建立数学关系式,然后用适当的方法解决问题.(4)解含参数的不等式是高中数学中的一类较为重要的题型,解决这类问题的难点在于对参数进行恰当分类.分类相当于增加了题设条件,便于将问题分而治之.在解题过程中,经常会出现分类难以入手或者分类不完全的现象.强化分类意识,选择恰当的解题切入点,掌握一些基本的分类方法,善于借助直观图形找出分类的界值是解决此类问题的关键.3.二元一次不等式(组)与简单的线性规划问题.(1)确定二元一次不等式表示的区域的步骤:①在平面直角坐标系中作出直线Ax+By+C=0;②在直线的一侧任取一点P(x0,y0),当C≠0时,常把原点作为特殊点;③将P(x0,y0)代入Ax+By+C求值:若Ax0+By0+C>0,则包含点P的半平面为不等式Ax+By+C>0所表示的平面区域,不包含点P的半平面为不等式Ax+By+C <0所表示的平面区域.也可采用:把二元一次不等式改写成y>kx +b或y<kx+b的形式,前者表示直线的上方区域,后者表示直线的下方区域.(2)线性规划的有关概念:①满足关于x,y的一次不等式或一次方程的条件叫线性约束条件;②关于变量x,y的解析式叫目标函数,关于变量x,y一次式的目标函数叫线性目标函数;③求目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题;④满足线性约束条件的解(x,y)叫可行解,由所有可行解组成的集合叫做可行域;⑤使目标函数取得最大值或最小值的可行解叫做最优解.(3)解简单线性规划问题的基本步骤:①根据实际问题的约束条件列出不等式;②作出可行域,写出目标函数;③确定目标函数的最优位置,从而获得最优解.具体来讲有以下5步:a.画图:画出线性约束条件所表示的平面区域即可行域;b.定线:令z=0,得一过原点的直线;c.平移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;d.求最优解:通过解方程组求出最优解;e.求最值:求出线性目标函数的最大或最小值.特别提醒:(1)画不等式Ax+By+C≥0所表示的平面区域时,区域包括边界线,因此,将边界直线画成实线;无等号时区域不包括边界线,用虚线表示不包含直线l.(2)Ax+By+C>0表示在直线Ax+By+C=0(B>0)的上方,Ax +By+C<0表示在直线Ax+By+C=0(B>0)的下方.(3)设点P(x1,y1),Q(x2,y2),直线l:Ax+By+C=0,若Ax1+By1+C与Ax2+By2+C同号,则P,Q在直线l的同侧,异号则在直线l的异侧.(4)在求解线性规划问题时要注意:①将目标函数改成斜截式方程;②寻找最优解时注意作图规范.4.基本不等式ab≤a+b 2.(1)基本不等式:设a,b是任意两个正数,那么ab≤a+b2.当且仅当a=b时,等号成立.①基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.②如果把a+b2看做是正数a,b的等差中项,ab看做是正数a,b的等比中项,那么基本不等式也可以叙述为:两个正数的等差中项不小于它们的等比中项.③基本不等式ab≤a+b2几何意义是“半径不小于半弦”.(2)对基本不等式的理解:①基本不等式的左式为和结构,右式为积的形式,该不等式表明两正数a ,b 的和与两正数a ,b 的积之间的大小关系,运用该不等式可作和与积之间的不等变换.②“当且仅当a =b 时,等号成立”的含义:a .当a =b 时等号成立的含意是:a =b ⇒a +b 2=ab ; b .仅当a =b 时等号成立的含意是:a +b 2=ab ⇒a =b ; 综合起来,其含意是:a +b 2=ab ⇔a =b . (3)设a ,b ∈R ,不等式a 2+b 2≥2ab ⇔ab ≤a 2+b 22⇔ab ≤⎝ ⎛⎭⎪⎫a +b 22. (4)基本不等式的几种变式:设a >0,b >0,则a +1a ≥2,b a +a b ≥2,a 2b ≥2a -b .(5)常用的几个不等式:① a 2+b 22≥a +b 2≥ab ≥21a +1b(根据目标不等式左右的运算结构选用);②设a ,b ,c ∈R ,则a 2+b 2+c 2≥ab +bc +ca (当且仅当a =b =c 时,取等号);③真分数的性质:若a >b >0,m >0,则b a <b +m a +m(糖水的浓度问题).特别提醒:(1)用基本不等式求函数的最值时,要特别注意“一正、二定、三相等,和定积最大,积定和最小”这17字方针.常用的方法为:拆、凑、平方.(2)用基本不等式证明不等式时,应重视对所证不等式的分析和化归,应观察不等式左右两边的结构,注意识别轮换对称式,此时可先证一部分,其他同理可证,然后再累加或累乘.题型1 恒成立问题(1)若不等式f (x )>A 在区间D 上恒成立,则等价于在区间D 上f (x )min >A ;(2)若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上f (x )max <B .设函数f (x )=x ,g (x ) =x +a (a >0),若x ∈[1,4]时不等式⎪⎪⎪⎪⎪⎪f (x )-ag (x )f (x )≤1恒成立,求a 的取值范围.解析:由⎪⎪⎪⎪⎪⎪⎪⎪f (x )-ag (x )f (x )≤1⇔-1≤f (x )-ag (x )f (x )≤1,得0≤ag (x )f (x )≤2, 即ax +a 2x ≤2在x ∈[1,4]上恒成立,也就是ax +a 2≤2x 在x ∈[1,4]上恒成立.令t =x ,则t ≥0,且x =t 2,由此可得 at 2-2t +a 2≤0在t ∈[1,2]上恒成立,设g (t ) = at 2-2t +a 2,则只需⎩⎪⎨⎪⎧g (1)≤0,g (2)≤0⇒⎩⎨⎧a -2+a 2≤0,4a -4+a 2≤0,解得 0<a ≤22-2,即满足题意的a 的取值范围是(0,22-2].题型2 能成立问题(1)若在区间D 上存在实数x 使不等式f (x )>A 成立,则等价于在区间D 上的f (x )max >A ;(2)若在区间D 上存在实数x 使不等式f (x )<B 成立,则等价于在区间D 上的f (x )min <B .若存在x ∈R ,使不等式|x -4|+|x -3|<a 成立,求实数a的取值范围.解析:设f (x )=|x -4|+|x -3|,依题意f (x )的最小值<a .又f (x )=|x -4|+|x -3|≥|(x -4)-(x -3)|=1(等号成立的条件是3≤x ≤4).故f (x )的最小值为1,∴a >1.即实数a 的取值范围是(1,+∞).题型3 恰成立问题(1)若不等式f (x )>A 在区间D 上恰成立,则等价于不等式f (x )>A 的解集为D ;(2)若不等式f (x )<B 在区间D 上恰成立,则等价于不等式f (x )<B 的解集为D .已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,求实数a 的取值集合.解析:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,∴Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件).再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,⇒x 2-(a +4)x +4=0有解,得:Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0.综上即知a =-8或a =0时,y min =1,故所求实数a 的取值集合是{-8,0}.题型4 利用基本不等式求最值基本不等式通常用来求最值问题:一般用a +b ≥2ab (a >0,b>0)解“定积求和,和最小”问题,用ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22求“定和求积,积最大”问题,一定要注意适用的范围和条件:“一正、二定、三相等”,特别是利用拆项、添项、配凑、分离变量、减少变元等方法,构造定值条件的方法,和对等号能否成立的验证.若等号不能取到,则应用函数单调性来求最值,还要注意运用基本不等式解决实际问题.已知0<x <2,求函数y =x (8-3x )的最大值.解析:∵0<x <2,∴0<3x <6,8-3x >0, ∴y =x (8-3x )=13·3x ·(8-3x )≤132+-⎛⎫⎪⎝⎭3x 83x 2=163, 当且仅当3x =8-3x ,即x =43时,取等号,∴当x =43时,y =x (8-3x )有最大值为163.设函数f (x )=x +2x +1,x ∈[0,+∞).求函数f (x )的最小值.解析:f (x )=x +2x +1=(x +1)+2x +1-1,∵x ∈[0,+∞),∴x +1>0,2x +1>0,∴x +1+2x +1≥2 2.当且仅当x +1=2x +1,即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.题型5 简单线性规划问题求目标函数在约束条件下的最优解,一般步骤为:一是寻求约束条件和目标函数,二是作出可行域,三是在可行域内求目标函数的最优解,特别注意目标函数z =ax +by +c 在直线ax +by =0平移过程中变化的规律和图中直线斜率关系.简单的线性规划应用题在现实生活中的广泛应用也是高考的热点.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34解析:不等式组表示的平面区域如图所示:由于直线y =kx +43过定点⎝⎛⎭⎪⎫0,43,因此只有直线过AB 中点时,直线y =kx +43能平分平面区域,因为A (1,1),B (0,4),所以AB 中点M ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.答案:A题型6 三个二次(二次函数、二次不等式、二次方程)问题 一元二次方程、一元二次不等式与二次函数三者之间形成一个关系密切、互为关联、互为利用的知识体系.将二次函数看作主体,一元二次方程和一元二次不等式分别为二次函数的函数值为零(零点)和不为零的两种情况,一般讨论二次函数主要是将其通过一元二次方程和一元二次不等式来讨论,而讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象揭示解(集)的几何特征.当m 为何值时,方程2x 2+4mx +3m -1=0有两个负根?解析:方程2x 2+4mx +3m -1=0有两个负根,则有⎩⎪⎨⎪⎧Δ=(4m )2-4×2×(3m -1)≥0,-b a =-4m 2=-2m <0,c a =3m -12>0,即⎩⎪⎨⎪⎧m ≤12或m ≥1,m >0,m >13.∴当m ∈⎩⎨⎧⎭⎬⎫m 13<m ≤12或m ≥1时,原方程有两个负根.题型7 不等式与函数的综合问题定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,求实数 a 的取值范围.解析:∵f (x )的定义域为(-1,1),∴⎩⎨⎧-1<1-a <1,-1<1-a 2<1,∴⎩⎨⎧0<a <2,-2<a <2且a ≠0,∴0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), ∴f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数,∴1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, ∴a 的取值范围是(0,1).题型8 求分式函数的最值求函数y =x 4+3x 2+3x 2+1的最小值.解析:y =(x 4+2x 2+1)+(x 2+1)+1x 2+1=(x 2+1)+1x 2+1+1≥2(x 2+1)·1x 2+1+1=3,当且仅当x 2+1=1x 2+1,即x 2+1=1,即x =0时等号成立.。

高中数学不等式知识点总结

高中数学不等式知识点总结

选修4--5知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: 2a b a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式 ①平均不等式:2211222a b a b ab a b --++≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:22222211221212()()x y x y x x y y +++≥-+-1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k >+ 2212,21k k k k k k =⇒<++- *12(,1)1k N k k k k >∈>++等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解 ⑴2()0()(0)()f x f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0()(0)()f x f x a a f x a ≥⎧<>⇔⎨<⎩ ⑶2()0()0()()()0()0()[()]f x f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或 ⑷2()0()()()0()[()]f x f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩ ⑸()0()()()0()()f x f x g x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或22;z x y =+ 22()()z x a y b =-+-或22()().z x a y b =-+-在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案
A.[
答案: A 解析: 只需
1 2
x
)
1 ] 4 7 D.(−∞, − ) 2
B.(−∞,
f (x) min ⩾ g(x) min 即可.
4. 三位同学合作学习,对问题"已知不等式 xy ⩽ ax2 + 2y 2 对于 x ∈ [1, 2] , y ∈ [2, 3] 恒成立,求 a 的 取值范围"提出了各自的解题思路. 甲说:"可视 x 为变量,y 为常量来分析". 乙说:"寻找 x 与 y 的关系,再作分析". 丙说:"把字母 a 单独放在一边,再作分析". 参考上述思路,或自已的其它解法,可求出实数 a 的取值范围是 ( A.[1, +∞)
1. 若关于 x 的方程 9 x + (4 + a) ⋅ 3 x + 4 = 0 有解,则实数 a 的取值范围是 ( A.(−∞, −8) C.[−8, +∞)
答案: B 解析:
)Hale Waihona Puke B.(−∞, −8]D.(−∞, +∞)
由 9 x + (4 + a) ⋅ 3 x + 4 = 0,得 a = −3 x −
答案: B 解析:
)
D.[−1, 6]
B.[−1, +∞)
C.[−1, 4)
y y y 2 − 2( ) ,由 x ∈ [1, 2] , y ∈ [2, 3] ,x 、 y 构成正方形区域, 表示过 x x x y y 原点直线与正方形区域相交时直线的斜率的取值范围,则有 ∈ [1, 3] ,当 = 1 时, x x y y 2 − 2( ) 有最大值为 −1,则 a 的取值范围是 [−1, +∞) x x

完整版高中数学不等式知识点总结3篇

完整版高中数学不等式知识点总结3篇

完整版高中数学不等式知识点总结第一篇:基本不等式和二元平均数不等式一、基本不等式:基本不等式又称柯西不等式,是数学中重要的基本工具,对于解决不等式问题有重大意义。

基本不等式的形式如下:$$(a_1^2 + a_2^2 + … + a_n^2)(b_1^2 + b_2^2 + … + b_n^2) \geqslant (a_1b_1 + a_2b_2 + … + a_nb_n)^2$$其中$a_1,a_2,…,a_n$ 和$b_1,b_2,…,b_n$ 是任意实数。

基本不等式的证明过程多种多样,这里给出一种简单易懂的证明方法:设$x=a_1b_1+a_2b_2+…+a_nb_n$,则 $x^2$ 可以表示为:$$x^2={(a_1b_1+a_2b_2+…+a_nb_n)}^2$$$$={a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_n}^ 2+2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$又因为:$${a_1}^2+{a_2}^2+…+{a_n}^2\geqslant2a_1a_2+2a_1a_3+…+2a_{n-1}a_n$$$${b_1}^2+{b_2}^2+…+{b_n}^2\geqslant2b_1b_2+2b_1b_3+…+2b_{n-1}b_n$$因此:$${a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_n}^2 \geqslant 2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$故:$$x^2={a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_ n}^2+2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$$$\leqslant({a_1}^2+{a_2}^2+…+{a_n}^2)({b_1}^2+{ b_2}^2+…+{b_n}^2)$$即为所求基本不等式。

高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案

(2)因为
为整式不等式
解得 x <
3 或 x > 4,所以原不等式的解集为 2 3 ∣ {x ∣ x < 或x > 4} . ∣ 2
4.高次不等式的解法 描述: 高次不等式的解法 解一元高次不等式一般利用数轴穿根法(或称根轴法)求解,其步骤是: (1)将 f (x) 最高次项系数化为正数; (2)将 f (x) 分解为若干个一次因式的乘积或二次不可分因式的乘积; (3)求出各因式的零点,并在数轴上依次标出; (4)从最右端上方起,自右至左依次通过各根画曲线,遇到奇次重根要一次穿过,遇到偶次重根 要穿而不过; (5)记数轴上方为正,下方为负,根据曲线显现出的 f (x) 的值的符号变化规律,写出不等式 的解集. 例题: 解不等式 (x + 2)(x + 1)2 (x − 1)3 (x − 2) < 0 . 解:不等式中各因式的实数根为 −2,−1,1 ,2 . 利用根轴法,如图所示.
2 )(x − a) ⩽ 0 . a 2 2 ① 当 < a ,即 a > √2 时,原不等式的解集为 {x| ⩽ x ⩽ a}. a a 2 2 ② 当 > a ,即 0 < a < √2 时,原不等式的解集为 {x|a ⩽ x ⩽ }. a a 2 ③ 当 = a ,即 a = √2 时,原不等式的解集为 {x|x = √2 } . a 2 (3)当 a < 0 时,原不等式化为 (x − )(x − a) ⩾ 0 . a 2 2 ① 当 < a ,即 −√2 < a < 0 时,原不等式的解集为 {x|x ⩽ 或x ⩾ a} . a a 2 2 ② 当 > a ,即 a < −√2 时,原不等式的解集为 {x|x ⩽ a或x ⩾ }. a a 2 ③ 当 = a ,即 a = −√2 时,原不等式的解集为 R. a

新人教A版新教材学高中数学必修第一册第二章一元二次函数方程和不等式等式性质与不等式性质讲义

新人教A版新教材学高中数学必修第一册第二章一元二次函数方程和不等式等式性质与不等式性质讲义

最新课程标准:梳理等式的性质,理解不等式的概念,掌握不等式的性质.知识点一实数大小比较1.文字叙述如果a—b是正数,那么a>b;如果a—b等于0,那么a=b;如果a—b是负数,那么a<b,反之也成立.2.符号表示a—b>0⇔a>b;a—b=0⇔a=b;a—b<0⇔a<b.错误!比较两实数a,b的大小,只需确定它们的差a —b与0的大小关系,与差的具体数值无关.因此,比较两实数a,b的大小,其关键在于经过适当变形,能够确认差a —b 的符号,变形的常用方法有配方、分解因式等.知识点二不等式的性质性质别名性质内容注意1对称性a>b⇔b<a可逆2传递性a>b,b>c⇒a>c3可加性a>b⇔a+c>b+c可逆4可乘性错误!⇒ac>bc c的符号错误!⇒ac<bc5同向可加性错误!⇒a+c>b+d同向错误!(1)性质3是移项的依据.不等式中任何一项改变符号后,可以把它从一边移到另一边.即a +b>c ⇒a>c —B.性质3是可逆性的,即a>b ⇔a +c>b +C.(2)注意不等式的单向性和双向性.性质1和3是双向的,其余的在一般情况下是不可逆的.(3)在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.要克服“想当然”“显然成立”的思维定势.[教材解难]教材P40思考等式有下面的基本性质:性质1如果a=b,那么b=a;性质2如果a=b,b=c,那么a=c;性质3如果a=b,那么a±c=b±c;性质4如果a=b,那么ac=bc;性质5如果a=b,c≠0,那么错误!=错误!.[基础自测]1.大桥桥头竖立的“限重40吨”的警示牌,是提示司机要安全通过该桥,应使车和货物的总质量T满足关系()A.T<40 B.T>40C.T≤40 D.T≥40解析:“限重40吨”是不超过40吨的意思.答案:C2.设M=x2,N=—x—1,则M与N的大小关系是()A.M>NB.M=NC.M<ND.与x有关解析:因为M—N=x2+x+1=错误!2+错误!>0,所以M>N.答案:A3.已知x<a<0,则一定成立的不等式是()A.x2<a2<0 B.x2>ax>a2C.x2<ax<0 D.x2>a2>ax解析:因为x<a<0,不等号两边同时乘a,则ax>a2;不等号两边同时乘x,则x2>ax,故x2>ax>a2.答案:B4.若1≤a≤5,—1≤b≤2,则a—b的取值范围为________.解析:因为—1≤b≤2,所以—2≤—b≤1,又1≤a≤5,所以—1≤a—b≤6.答案:—1≤a—b≤6题型一比较大小[教材P38例1]例1比较(x+2)(x+3)和(x+1)(x+4)的大小.【解析】因为(x+2)(x+3)—(x+1)(x+4)=(x2+5x+6)—(x2+5x+4)=2>0,所以(x+2)(x+3)>(x+1)(x+4).错误!通过考察这两个多项式的差与0的大小关系,可以得出它们的大小关系.教材反思用作差法比较两个实数大小的四步曲跟踪训练1若f(x)=3x2—x+1,g(x)=2x2+x—1,则f(x)与g(x)的大小关系是()A.f(x)<g(x)B.f(x)=g(x)C.f(x)>g(x)D.随x值变化而变化解析:f(x)—g(x)=(3x2—x+1)—(2x2+x—1)=x2—2x+2=(x—1)2+1>0,所以f(x)>g(x).故选C.答案:C错误!→错误!→错误!→错误!题型二不等式的性质[经典例题]错误!→错误!例2对于实数a、b、c,有下列说法:1若a>b,则ac<bc;2若ac2>bc2,则a>b;3若a<b<0,则a2>ab>b2;4若c>a>b>0,则错误!>错误!;5若a>b,错误!>错误!,则a>0,b<0.其中正确的个数是()A.2B.3C.4D.5【解析】对于1,令c=0,则有ac=bc.1错.对于2,由ac2>bc2,知c≠0,∴c2>0⇒a>b.2对.对于3,由a<b<0,两边同乘以a得a2>ab,两边同乘以b得ab>b2,∴a2>ab>b2.3对.对于4,错误!⇒0<c—a<c—b⇒错误!⇒错误!>错误!.4对.对于5,错误!⇒错误!⇒a>0,b<0.5对.故选C.答案:C方法归纳(1)首先要注意不等式成立的条件,不要弱化条件,尤其是不凭想当然随意捏造性质.(2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值一定要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.跟踪训练2(1)已知a<b,那么下列式子中,错误的是()A.4a<4bB.—4a<—4bC.a+4<b+4D.a—4<b—4(2)对于任意实数a,b,c,d,下列命题中正确的是()A.若a>b,c≠0,则ac>bcB.若a>b,则ac2>bc2C.若ac2>bc2,则a>bD.若a>b,则错误!<错误!解析:(1)根据不等式的性质,a<b,4>0⇒4a<4b,A项正确;a<b,—4<0⇒—4a>—4b,B项错误;a<b⇒a+4<b+4,C项正确;a<b⇒a—4<b—4,D项正确.利用不等式的性质,解题关键找准使不等式成立的条件.(2)对于选项A,当c<0时,不正确;对于选项B,当c=0时,不正确;对于选项C,∵ac2>bc2,∴c≠0,∴c2>0,∴一定有a>b.故选项C正确;对于选项D,当a>0,b<0时,不正确.答案:(1)B (2)C题型三利用不等式性质求范围[经典例题]例3已知—2<a≤3,1≤b<2,试求下列代数式的取值范围:(1)|a|;(2)a+b;(3)a—b;(4)2a—3b.【解析】(1)|a|∈[0,3];(2)—1<a+b<5;(3)依题意得—2<a≤3,—2<—b≤—1,相加得—4<a—b≤2;(4)由—2<a≤3得—4<2a≤61,由1≤b<2得—6<—3b≤—32,由12得,—10<2a—3b≤3.错误!运用不等式性质研究代数式的取值范围,关键是把握不等号的方向.方法归纳利用不等式性质求范围的一般思路(1)借助性质,转化为同向不等式相加进行解答;(2)借助所给条件整体使用,切不可随意拆分所给条件;(3)结合不等式的传递性进行求解.跟踪训练3已知实数x,y满足:1<x<2<y<3,(1)求xy的取值范围;(2)求x—2y的取值范围.解析:(1)∵1<x<2<y<3,∴1<x<2,2<y<3,则2<xy<6,则xy的取值范围是(2,6).(2)由(1)知1<x<2,2<y<3,从而—6<—2y<—4,则—5<x—2y<—2,即x—2y的取值范围是(—5,—2).错误!(1)根据不等式的性质6可直接求解;(2)求出—2y的取值范围后,利用不等式的性质5即可求x —2y的取值范围.课时作业7一、选择题1.若A=a2+3ab,B=4ab—b2,则A、B的大小关系是()A.A≤BB.A≥BC.A<B或A>BD.A>B解析:因为A—B=a2+3ab—(4ab—b2)=错误!2+错误!b2≥0,所以A≥B.答案:B2.已知:a,b,c,d∈R,则下列命题中必成立的是()A.若a>b,c>b,则a>cB.若a>—b,则c—a<c+bC.若a>b,c<d,则错误!>错误!D.若a2>b2,则—a<—b解析:选项A,若a=4,b=2,c=5,显然不成立;选项C不满足倒数不等式的条件,如a>b>0,c<0<d时,不成立;选项D只有a>b>0时才可以.否则如a=—1,b=0时不成立.答案:B3.若—1<α<β<1,则下列各式中恒成立的是()A.—2<α—β<0 B.—2<α—β<—1C.—1<α—β<0 D.—1<α—β<1解析:∵—1<β<1,∴—1<—β<1.又—1<α<1,∴—2<α+(—β)<2,又α<β,∴α—β<0,即—2<α—β<0.故选A.答案:A4.有四个不等式:1|a|>|b|;2a<b;3a+b<ab;4a3>b3.若错误!<错误!<0,则不正确的不等式的个数是()A.0 B.1C.2D.3解析:由错误!<错误!<0可得b<a<0,从而|a|<|b|,1不正确;a>b,2不正确;a +b<0,ab>0,则a+b<ab成立,3正确;a3>b3,4正确.故不正确的不等式的个数为2.答案:C二、填空题5.已知a,b均为实数,则(a+3)(a—5)________(a+2)(a—4)(填“>”“<”或“=”).解析:因为(a+3)(a—5)—(a+2)(a—4)=(a2—2a—15)—(a2—2a—8)=—7<0,所以(a+3)(a—5)<(a+2)(a—4).答案:<6.如果a>b,那么c—2a与c—2b中较大的是________.解析:c—2a—(c—2b)=2b—2a=2(b—a)<0.答案:c—2b1a>b⇒a2>b2;2a2>b2⇒a>b;3a>b⇒错误!<1;4a>b,c>d⇒ac>bd;5a>b,c>d⇒a—c>b—d.其中错误的命题是________(填写相应序号).解析:由性质7可知,只有当a>b>0时,a2>b2才成立,故12都错误;对于3,只有当a>0且a>b时,错误!<1才成立,故3错误;由性质6可知,只有当a>b>0,c>d>0时,ac>bd才成立,故4错误;对于5,由c>d得—d>—c,从而a—d>b—c,故5错误.答案:12345三、解答题8.已知x<1,比较x3—1与2x2—2x的大小.解析:x3—1—(2x2—2x)=x3—2x2+2x—1=(x3—x2)—(x2—2x+1)=x2(x—1)—(x—1)2=(x—1)(x2—x+1)=(x—1)·错误!,因为x<1,所以x—1<0,又因为错误!2+错误!>0,所以(x—1)错误!<0,所以x3—1<2x2—2x.9.若bc—ad≥0,bd>0.求证:错误!≤错误!.证明:因为bc—ad≥0,所以ad≤bc,因为bd>0,所以错误!≤错误!,所以错误!+1≤错误!+1,所以错误!≤错误!.[尖子生题库]10.设f(x)=ax2+bx,1≤f(—1)≤2,2≤f(1)≤4,求f(—2)的取值范围.解析:方法一设f(—2)=mf(—1)+nf(1)(m,n为待定系数),则4a—2b=m(a—b)+n(a+b)=(m+n)a+(n—m)b,于是得错误!,解得错误!∴f(—2)=3f(—1)+f(1).又∵1≤f(—1)≤2,2≤f(1)≤4.∴5≤3f(—1)+f(1)≤10,故f(—2)的取值范围是[5,10].方法二由错误!,得错误!,∴f(—2)=4a—2b=3f(—1)+f(1).又∵1≤f(—1)≤2,2≤f(1)≤4,∴5≤3f(—1)+f(1)≤10,故f(—2)的取值范围是[5,10].。

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结高中数学中,不等式是一个重要的内容,它是解决数学问题的一种有力工具。

不等式是一种用于描述数值的大小关系的数学语句,它包含“大于”、“小于”、“大于等于”、“小于等于”等符号。

在数学考试中,不等式问题常常出现在基础知识和综合应用的部分,所以对不等式的学习是非常必要的。

下面我将为大家总结一下高中数学中关于不等式的知识点。

一、不等式的基本概念1. 不等式的定义:不等式是数值之间大小关系的表达式,由关系符号和数值构成。

2. 关系符号的含义:- 大于:表示前面的数比后面的数要大,如a>b。

- 小于:表示前面的数比后面的数要小,如a<b。

- 大于等于:表示前面的数比后面的数大或相等,如a≥b。

- 小于等于:表示前面的数比后面的数小或相等,如a≤b。

二、不等式的性质及常用规则1. 不等式的性质:- 若a>b,则-a<-b。

- 若a>b,则a+c>b+c。

- 若a>b,则ac>bc(当c为正数时)。

- 若a>b,则ac<bc(当c为负数时)。

- 若a>b,且c>0,那么a/c>b/c。

- 若a>b,且c<0,那么a/c<b/c。

2. 不等式的常用规则:- 加法规则:若a>b,则a+c>b+c。

- 减法规则:若a>b,则a-c>b-c。

- 乘法规则:若a>b(c>0),则ac>bc;若a<b(c<0),则ac<bc。

- 除法规则:若a>b(c>0),则a/c>b/c;若a<b(c<0),则a/c<b/c。

- 对称性:若a>b,则-b<-a。

三、一元一次不等式1. 一元一次不等式的解集表示法:- 解集用区间表示。

- 开区间:解集中的数不包括端点。

- 闭区间:解集中的数包括端点。

2. 不等式的性质应用举例:- 若a>0,则-1/a<0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修不等式知识点总结1、不等式的基本性质①(对称性)b a >②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式) 2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b>+≥若则(当仅当a=b 时取等号) 0,2b a ab a b<+≤-若则(当仅当a=b 时取等号)⑦ba nb n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,a b R +∈(,当且仅当a b =时取""=号). (即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++ ③二维形式的三角不等式:1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式: 设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立. ⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数. 4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法: ①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小), 如211,(1)k k k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等. 5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集. 规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时, ()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤ ⑶同解变形法,其同解定理有:①(0);x a a x a a ≤⇔-≤≤≥②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或 规律:关键是去掉绝对值的符号. 12、含有两个(或两个以上)绝对值的不等式的解法: 规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=> ②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥ 15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域.⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值:法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,z B为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值. ⑷常见的目标函数的类型:①“截距”型:;z Ax By =+②“斜率”型:y z x =或;y b z x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

相关文档
最新文档