半导体材料的发展现状及趋势概述.pptx

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体材料的发展现状及趋势
半导体材料是指电阻率在10-3~108Ωcm, 介于金属和绝缘体之间的材料。半导体材 料是制作晶体管、集成电路、电力电子器 件、光电子器件的重要基础材料,支撑着 通信、计算机、信息家电与网络技术等电 子信息产业的发展。
电子信息产业规模最大的是美国。近几年 来,中国电子信息产品以举世瞩目的速度 发展,2003年中国电子信息产业销售收 入1.88万亿元,折合2200~2300亿美元,
硅材料仍是电子信息产业最主要的基础材 料,95%以上的半导体器件和99%以上的 集成电路(IC)是用硅材料制作的。在21世 纪,它的主导和核心地位仍不会动摇。但
是硅材料的物理性质限制了其在光电子和 高频高功率器件上的应用。
砷化镓材料的电子迁移率是硅的6倍多, 其器件具有硅器件所不具有的高频、高速 和光电性能,并可在同一芯片同时处理光 电信号,被公认是新一代的通信用材料。 随着高速信息产业的蓬勃发展,砷化镓成 为继硅之后发展最快、应用最广、产量最 大的半导体材料。同时,其在军事电子系 统中的应用日益广泛,并占据不可取代的 重要地位。
数值越高,半导体性能越好。电子迁移速
率决定半导体低压条件下的高频工作性能,
饱和速率决定半导体高压条件下的高频工 作性能。
表1 主要半导体材料的比较
材料

禁带宽度(ev)
理 性
饱和速率(×10-7cm/s)

热导(W/c·K)
击穿电压(M/cm)
电子迁移速率(cm2/V·s)
Si 1.1 1.0
1.3 0.3 1350
将宽禁带(Eg>2.3eV)的氮化镓、碳化硅、硒化 锌和金刚石等称为第三代半导体材料。
上述材料是目前主要应用的半导体材料,三代 半导体材料代表品种分别为硅、砷化镓和氮化 镓。
材料的物理性质是产品应用的基础,表1 列出了主要半导体材料的物理性质及应用
情况。表中禁带宽度决定发射光的波长, 禁带宽度越大发射光波长越短(蓝光发射); 禁带宽度越小发射光波长越长。其它参数
宽带隙半导体材料的高介电强度最适合用 于高功率放大器、开关和二极管。宽带隙 材料的相对介电常数比常规材料的要小, 由于对寄生参数影响小,这对毫米波放大 器而言是有利用价值的。电荷载流子输运 特性是许多器件尤其是工作频率为微波、 毫米波放大器的一个重要特性。
宽带隙半导体材料的电子迁移率一般没有 多数通用半导体的高,其空穴迁移率一般 较高,金刚石则很高。宽带隙材料的高电 场电子速度(饱和速度)一般较常规半导体 高得多,这就使得宽带隙材料成为毫米波 放大器的首选者。
从表1看出,选择宽带隙半导体材料的主要理由 是显而易见的。氮化镓的热导率明显高于常规 半导体。这一属性在高功率放大器和激光器中 是很起作用的。带隙大小本身是热生率的主要 贡献者。在任意给定的温度下,宽带隙材料的 热生率比常规半导体的小10~14个数量级。这 一特性在电荷耦合器件、新型非易失性高速存 储器中起很大的作用,并能实质性地减小光探 测器的暗电流。
产业规模已超过日本位居世界第二(同期 日本信息产业销售收入只有1900亿美
元),成为中国第一大支柱产业。半导体
材料及应用已成为衡量一个国家经济发展、 科技进步和国防实力的重要标志。
在半导体产业的发展中,
硅、锗称为第一代半导体材料;
将砷化镓、磷化锢、磷化镓、砷化锢、砷化铝 及其合金等称为第二代半导体材料;
氮化镓材料的禁带宽度为硅材料的3倍多, 其器件在大功率、高温、高频、高速和光 电子应用方面具有远比硅器件和砷化镓器 件更为优良的特性,可制成蓝绿光、紫外 光的发光器件和探测器件。
近年来取得了很大进展,并开始进入市场。 与制造技术非常成熟和制造成本相对较低 的硅半导体材料相比,第三代半导体材料 目前面临的最主要挑战是发展适合氮化镓 薄膜生长的低成本衬底材料和大尺寸的氮 化镓体单晶生长工艺。
霍尔元件 激光调制器 高速集成电路 太阳能电池
激光器件 发光二极管 紫外探测器
集成电路
主要用途 通讯、雷达、广播、电视、自动控制 各种计算机、通讯、广播、自动控制、电子钟表、仪表
整流 整流、直流输配电、电气机车、设备自控、高频振荡器
原子能分析、光量子检测 太阳能发电
雷达、微波通讯、电视、移动通讯 光纤通讯

硅是集成电路产业的基础,半导体材料中 98%是硅。半导体器件的95%以上是用硅 材料制作的,90%以上的大规模集成电路 (LSI)、超大规模集成电路(VLSI)、甚大规 模集成电路(ULSI)都是制作在高纯优质的 硅抛光片和外延片上的。硅片被称作集成 电路的核心材料,硅材料产业的发展和集 成电路的发展紧密相关。
GaAs 1.4 2.1
0.6 0.4 8500

光学应用
用 情
高频性能

高温性能
发展阶段
相对制造成本
无 差 中 成熟 低
红外 好 差
发展中 高
GaN 3.4 2.7
2.0 5.0 900
蓝光/紫外 好 好
初期 高
硅材料具有储量丰富、价格低廉、热性能 与机械性能优良、易于生长大尺寸高纯度
晶体等优点,处在成熟的发展阶段。目前,

半导体硅材料自从60年代被广泛应用于各类电 子元器件以来,其用量平均大约以每年12~ 16%的速度增长。目前全世界每年消耗约 18000~25000吨半导体级多晶硅,消耗 6000~7000吨单晶硅,硅片销售金额约60~80 亿美元。可以说在未来30~50年内,硅材料仍 将是LSI工业最基础和最重要的功能材料。电子 工业的发展历史表明,没有半导体硅材料的发 展,就不可能有集成电路、电子工业和信息技 术的发展。
主要半导体材料的用途如表2所示。可以 预见:以硅材料为主体、GaAs半导体材 料及新一代宽禁带半导体材料共同发展将 成为集成电路及半导体器件产业发展的主 流。
材料名称 硅
砷化镓
氮化镓
表2 半导体材料的主要用途
制作器件 二极管、晶体管
集成电路 整流器 晶闸管
射线探测器 太阳能电池 各种微波管
激光管 红外发光管
小功率红外光源 磁场控制 激光通讯Baidu Nhomakorabea
高速计算机、移动通讯 太阳能发电
光学存储、激光打印机、医疗、军事应用 信号灯、视频显示、微型灯泡、移动电话
分析仪器、火焰检测、臭氧监测 通讯基站(功放器件)、永远性内存、电子开关、导弹
二、半导体材料发展现状
1、半导体硅材料
从目前电子工业的发展来看,尽管有各 种新型的半导体材料不断出现,半导体硅 材料以丰富的资源、优质的特性、日臻完 善的工艺以及广泛的用途等综合优势而成 为了当代电子工业中应用最多的半导体材 料。
相关文档
最新文档