核酸的降解和核苷酸代谢
核酸降解和核苷酸代谢

R-5'-P
R-5'-P
5-氨基咪唑-4-羧酸 核苷酸(CAIR)
5-氨基咪唑核苷酸 (AIR)
甲酰甘氨咪核苷酸 (FGAM)
O
C
HO
C
C H2N
N Asp
H2O
ATP
CH
N
合成酶
R-5'-PFra bibliotekCOOH OC
HC N C H
CH2
C
H2N COOH
延胡索酸 N
CH
N
裂解酶
R-5'-P
O
C
H2N
C
C H2N
二、嘌呤核苷酸的降解
AMP
GMP
嘌呤核苷酸的结构
AMP GMP
H(I) 黄嘌呤氧化酶
(次黄嘌呤)
X
G
(黄嘌呤)
黄嘌呤 氧化酶
嘌呤碱的最终 代谢产物
腺嘌呤脱氨酶含量极少 腺苷脱氨酶和腺苷酸脱氨酶活性较高
腺嘌呤脱氨基主要在 核苷和核苷酸水平
鸟嘌呤脱氨酶分布广
鸟嘌呤脱氨基主要 在碱基水平
嘌呤类在核苷酸、核苷和碱基三个水平上的降解
1. 从头合成途径
(1)尿嘧啶核苷酸的合成
2ATP 2ADP+Pi
Gln + HCO3氨甲酰磷酸合成酶Ⅱ
(CPS-Ⅱ )
H2N C OPO3H2 + Glu
O
氨甲酰磷酸
CO2 + NH3 + H2O
2ATP N-乙酰谷氨酸
2ADP+Pi
氨基甲酰磷酸
Pi
线粒体
鸟氨酸
瓜氨酸
鸟氨酸循环
鸟氨酸
尿素
第十五章 核苷酸的降解和核苷酸代谢

第十五章核苷酸的降解和核苷酸代谢第一节分解代谢一、核酸的降解核酸由磷酸二酯酶水解,有核糖核酸酶、脱氧核糖核酸酶、内切酶和外切酶之分。
蛇毒磷酸二酯酶和牛脾磷酸二酯酶都是外切酶,既可水解DNA,又可水解RNA,但蛇毒磷酸二酯酶从3’端水解,生成5’-核苷酸;牛脾磷酸二酯酶从5’端水解,生成3’-核苷酸。
细胞内还有限制性内切酶,可水解外源DNA。
二、核苷酸的降解核苷酸由磷酸单酯酶水解成核苷和磷酸,特异性强的酶只水解5’-核苷酸,称为5’-核苷酸酶,或相反。
核苷磷酸化酶将核苷分解为碱基和戊糖-1-磷酸,核苷水解酶生成碱基和戊糖。
核糖-1-磷酸可被磷酸核糖变位酶催化为核糖-5-磷酸,进入戊糖支路或合成PRPP。
三、嘌呤的分解(一)水解脱氨:腺嘌呤生成次黄嘌呤,鸟嘌呤生成黄嘌呤。
也可在核苷或核苷酸水平上脱氨。
(二)氧化:次黄嘌呤生成黄嘌呤,再氧化生成尿酸。
都由黄嘌呤氧化酶催化,生成过氧化氢。
别嘌呤醇是自杀底物,其氧化产物与酶活性中心的Mo4+紧密结合,有强烈抑制作用。
可防止尿酸钠沉积,用于治疗痛风。
(三)鸟类可将其他含氮物质转化为尿酸,而某些生物可将尿酸继续氧化分解为氨和CO2。
四、嘧啶的分解胞嘧啶先脱氨生成尿嘧啶,再还原成二氢尿嘧啶,然后开环,水解生成β-丙氨酸,可转氨参加有机酸代谢。
胸腺嘧啶与尿嘧啶相似,还原、开环、水解生成β-氨基异丁酸,可直接从尿排出,也可转氨生成甲基丙二酸半醛,最后生成琥珀酰辅酶A,进入三羧酸循环。
第二节合成代谢一、嘌呤核糖核苷酸的合成(一)从头合成途径1.嘌呤环的元素来源2.IMP的合成:其磷酸核糖部分由PRPP提供,由5-磷酸核糖与ATP在磷酸核糖焦磷酸激酶催化下生成。
IMP 的合成有10步,分两个阶段,先生成咪唑环,再生成次黄嘌呤。
首先由谷氨酰胺的氨基取代焦磷酸,再连接甘氨酸、甲川基,甘氨酸的羰基生成氨基后环化,生成5-氨基咪唑核苷酸。
然后羧化,得到天冬氨酸的氨基,甲酰化,最后脱水闭环,生成IMP。
第16章 核酸的降解和核苷酸代谢

核酸的基本结构单位是核苷酸。核酸代谢与核苷酸代谢密切相 关。这是一类在代谢上极为重要的物质,它们几乎参与细胞的所有 生化过程。
核酸降解产生核苷酸,核苷酸还能进一步分解。在生物体内, 核苷酸可由其他化合物所合成。某些辅酶的合成与核苷酸代谢亦有 关。
核苷酸的作用: (1)核苷酸是核酸生物合成的前体。 (2)核苷酸衍生物是许多生物合成的活性中间物。例如,UDP- 葡萄糖和CDP-二脂酰甘油分别是糖原和磷酸甘油酯合成的中间 物。 (3)ATP是生物能量代谢中通用的高能化合物。 (4)腺苷酸是三种重要辅酶(烟酰胺核苷酸、黄素腺嘌呤二核苷 酸和辅酶A)的组分。 (5)某些核苷酸是代谢的调节物质。如cAMP和cGMP是许多种激 素引起生理效应的中间介质。
(四)由嘌呤碱和核苷合成核苷酸 生物体内除能以简单前体物质“从头合成”核苷酸外,尚能由预 先形成的碱基和核苷合成核苷酸,这是对核苷酸代谢的一种“补救” 作用,以便更经济地利用已有的成分。 前已提到,核苷磷酸化酶所催化的转核糖基反应是可逆的。在特 异的核苷磷酸化酶作用下,各种碱基可与1—磷酸核糖反应生成核苷:
二、核苷酸的降解
核苷酸水解下磷酸即成为核苷。生物体内广泛存在的磷的磷酸单酯酶对一切核苷酸都能作用,无论磷酸基在 核苷的2’、3’或5’位置上都可被水解下来。某些特异性强的磷酸单酯 酶只能水解3’—核苷酸或5’—核苷酸,则分别称为3’—核苷酸酶或 5’—核苷酸酶。
(二)胸腺嘧啶核苷酸的合成
第三节 辅酶核苷酸的生物合成 生物体内尚有多种核苷酸衍生物作为辅酶而起作用。其中重要 的有:烟酰胺腺嘌呤二核苷酸、烟酰胺腺嘌呤二核苷酸磷酸、黄素 单核苷酸、黄素腺嘌呤二核苷酸及辅酶A。这几种辅酶核苷酸可在体 内自由存在。现将其生物合成途径分别叙述如下: 一、烟酰胺核苷酸的合成
第13章核酸的降解和核苷酸代谢汇总.

第十三章核酸的降解和核苷酸代谢第一节核酸的降解一、核酸酶及其分类(一)磷酸二酯酶及其分类1.按底物分核糖核酸酶:水解核糖核酸(RNase)脱氧核糖核酸酶:水解脱氧核糖核酸(DNase)2.按水解作用分a)作用于磷酸二酯键的3’-磷酸酯键一侧,生成5’-磷酸(脱氧)核糖;b)作用于5’-磷酸酯键一侧,生成3’-磷酸(脱氧)核糖。
3.按水解位置分类a)从核酸链末端组个切下核苷酸的核酸外切酶;b)从核酸分子内部切断多核苷酸链的核酸内切酶。
4.按水解的特异性a.从多核苷酸链任意位点切割的非特异性核酸内切酶;b.从特定位点切割的特异性核酸内切酶。
限制性DNA 内切限制性核酸酶是属于高度特异性的DNA 内切酶,能专一识别并切割DNA 链上的特定碱基序列,产物仍为双链片段。
5.单磷酸酯酶磷酸单酯酶(核苷酸酶)作用于多核苷酸链两端的磷酸单脂键,水解产生磷酸。
内切酶的作用特点二、核酸的降解•核酸•核苷酸磷酸单酯酶•磷酸•核苷核苷水解酶•含氮碱基/戊糖(磷酸核酸酶/核苷磷酸化酶戊糖)三、核苷酸的功能①作为核酸合成的原料;②体内能量的利用形式;③参与代谢和生理调节;④组成辅酶;⑤作为活化中间代谢物的载体。
第二节核苷酸的分解代谢一、嘌呤核苷酸的分解代谢(一)嘌呤核苷酸分解代谢途径不同生物度对嘌呤碱的分解能力不同,代谢产物也不同。
体内嘌呤核苷酸的分解代谢主要在肝脏、小肠及肝脏中进行。
腺嘌呤核苷酸脱氨酶核苷酸酶核苷磷酸化酶黄嘌呤氧化酶核苷酸酶核苷脱氨酶黄嘌呤氧化酶二、嘧啶核苷酸的分解代谢β-丙氨酸β-氨基丁酸第三节核苷酸的合成代谢核苷酸合成的两条途径:a)利用5’-磷酸核糖、氨基酸、一碳单位和CO2等物质为原料,经过一系列酶促反应合成核苷酸。
又称“从头合成途径”。
b)利用游离的碱基或核苷,经过简单的反应过程,合成核苷酸,该途径称为补救合成途径。
一、嘌呤核苷酸的合成(一)嘌呤核苷酸的从头合成途径 1.嘌呤核苷酸的合成原料早在1948年,Buchanan等采用同位素标记不同化合物喂养鸽子,并测定排出的尿酸中标记原子的位置的同位素示踪技术,证实合成嘌呤的前身物为:氨基酸(甘氨酸、天门冬氨酸、和谷氨酰胺)、CO2和一碳单位(N10-甲酰FH4,N5,N10-甲炔FH4)。
核酸的降解和核苷酸代谢

HGPP
01
补救合成的特点:过程简单,耗能少。
02
补救合成的生理意义:⒈ 减少能量和氨基酸的消耗
03
弥补某些组织(脑、骨髓)不能
04
从头合成嘌呤核苷酸的不足。
(三) 嘌呤核苷酸生物合成(从头合成)的调节
01
02
03
04
05
IMP
5-磷酸核糖胺
GMP
5-磷酸核糖焦磷酸
AMP
天冬氨酸
CO2
NH3
N
N
C
C
C
C
6
5
4
3
2
1
H2N-CO-
P
氨甲酰磷酸
二﹑嘧啶核苷酸的合成 (一)嘧啶核苷酸的从头合成 嘧啶环由氨甲酰磷酸和 天冬氨酸合成的
⒈从头合成途径 ⑴尿嘧啶核苷酸(UMP)的合成
D
C
B
A
尿苷酸激酶
核酸外切酶对核酸的水解位点
5´
p
p
p
p
OH
B
p
p
p
p
3´
B
B
B
B
B
B
B
牛脾磷酸二酯酶( 5´端外切5得3) DNA/RNA
蛇毒磷酸二酯酶( 3´端外切3得5) DNA/RNA
限制性内切酶
01
01
02
03
04
05
原核生物中存在着一类能识别外源DNA双螺旋中4-8个碱基
核酸的降解和核苷酸代谢
01
核苷酸的生物学功能:
02
作为核酸合成的原料(主要功能)
03
体内能量的利用形式(ATP GTP UTP CTP)
第12章核酸的降解和核苷酸代谢

过程:
P-P-CH2O B OH OH
P-P-CH2O B + H2O
OH H
对核糖核苷酸还原酶的调节
CDP UDP
dCDP ATP
dUDP
GDP
dGDP
ADP
dADP
dCTP dTTP dGTP dATP
12.5 核苷酸的抗代谢物
定义:
嘌呤或嘧啶、氨基酸或叶酸等的类似物。
原理:
主要以竞争性抑制干扰或阻断核苷酸的合成 代谢,从而进一步阻止核酸及蛋白质的生物合成。
尿酸—— 人类嘌呤碱的
最终 代谢产物
黄嘌呤氧化酶
特点:氧化降解,环不打破; 终产物:尿酸。
嘌呤代谢紊乱:痛风病
血中尿酸超过正常值。
痛风症的治疗机制
鸟嘌呤
次黄嘌呤
竞争性抑制。
黄嘌呤氧化酶
黄嘌呤
尿酸
别嘌呤醇
12.2.2 嘧啶核苷酸的分解代谢
嘧啶核苷酸分解代谢特点
还原降解,环被打破;
先天缺乏HGPRT——自毁容貌症
三、嘌呤核苷酸的相互转变
AMP
腺苷酸代 琥珀酸
NH3
IMP
GMP XMP
12.3.3 嘧啶核苷酸的合成
一、嘧啶核苷酸的从头合成
合成部位:肝细胞的胞液
嘧啶合成的元素来源
氨基甲酰磷酸
Gln CO2
C N 3 4 5C
C 2 1 6C N
Asp
过程 尿嘧啶核苷酸的合成
_
调节的意义:
既满足需要,又不致于浪费;维持ATP与GTP浓度的平衡。
二、嘌呤核苷酸的补救合成
补救合成过程及调节
次黄嘌呤 鸟嘌呤
腺嘌呤
腺嘌呤核苷
生物化学下-第33章 核酸的降解与核苷酸代谢

磷酸核糖焦磷 酸激酶 转酰胺酶
次黄嘌呤核苷 酸脱氢酶
➢ 嘌呤核苷酸合成的抗代谢物
抗代谢物的概念:在化学结构上与正常代谢物(底物 或辅酶)结构相似,具有竞争性拮抗正常代谢的 物质。
机制:竞争性抑制或“以假乱真”方式干扰或阻断核 苷酸的合成代谢,进而阻止核酸及蛋白质的生物 合成。
尿囊酸酶
尿囊素酶
尿囊酸 (硬骨鱼类)
小 AMP 结
GMP
嘌呤碱的最终 代谢产物
I
H 黄嘌呤氧化酶
X
G
黄嘌呤氧化酶
OH
N
N
OH
HO
N
N H
尿 酸 (uric acid)
3、代谢产物
•排尿酸动物:灵长类、鸟类、昆虫、排尿酸爬虫类 •排尿囊素动物:哺乳动物(灵长类除外)、腹足类 •排尿囊酸动物:硬骨鱼类 •排尿素动物:大多数鱼类、两栖类 •某些低等动物能将尿素进一步分解成NH3和CO2排出。 •植物分解嘌呤的途径与动物相似,产生各种中间产物 (尿囊素、尿囊酸、尿素、NH3)。 •微生物分解嘌呤类物质,生成NH3、CO2及有机酸(甲 酸、乙酸、乳酸、等)。
Lesch-Nyhan综合症(莱-尼综合症):也称为自毁容貌 症,是由于次黄嘌呤-鸟嘌呤磷酸核糖转移酶的遗传缺陷 引起的。缺乏该酶使得次黄嘌呤和鸟嘌呤不能转换为 IMP和GMP,而是降解为尿酸,过量尿酸将导致LeschNyhan综合症。手舞足蹈,咬指咬唇强迫自残。
5、嘌呤核苷酸 生物合成的调节
(二)嘌呤核苷酸的合成
1、 从头合成的概念及部位
①定义
利用磷酸核糖、氨基酸、一碳单位及二氧化碳 等简单物质为原料,经过一系列酶促反应,合成 嘌呤核苷酸的途径。
②合成部位
核酸的降解与核苷酸的代谢

第十章 核酸的降解与核苷酸的代谢学习要求:通过本章学习,熟悉核酸的降解过程,掌握核酸酶的分类及其作用方式;了解核苷酸分解过程及不同生物嘌呤核苷酸分解代谢的区别;了解核苷酸从头合成途径的过程,掌握合成原料及嘌呤核苷酸与嘧啶核苷酸的合成特点,重点掌握核苷酸合成途径的调节,熟悉补救合成途径的过程和意义;熟悉核苷酸代谢与氨基酸代谢及糖代谢的相互关系;了解核苷酸代谢的有关理论对医药及生产实践的指导意义。
动物、植物和微生物都能合成各种核苷酸,因此核苷酸与氨基酸不同,不属于营养必需物质。
细胞内存在多种游离的核苷酸,它们具有多种重要的生理作用:①作为合成核酸的原料。
②ATP 在生物体内能量的贮存和利用中处于中心地位,是最重要的高能化合物。
此外,GTP 在能量利用方面也有一定作用。
③参与代谢和代谢调节。
某些核苷酸或其衍生物是重要的信息物质,如 cAMP 是多种激素作用的第二信使;cGMP 也与代谢调节有关。
④组成辅酶。
腺苷酸是辅酶Ⅰ、辅酶Ⅱ、辅酶A 和FAD 四种辅酶的组成成分。
⑤活化中间代谢物。
UTP 和CTP 可使代谢物NDP (核苷二磷酸)化,成为活性代谢物直接用作合成原料,如UDP-葡萄糖称为“活性葡萄糖”,是合成糖原、糖蛋白的活性原料;CDP-甘油二酯是合成磷脂的活性原料。
ATP 使蛋氨酸腺苷化生成的S-腺苷蛋氨酸(SAM )作为甲基的直接供体,是合成肾上腺素、肌酸等物质的活性原料。
第一节 核酸的酶促降解一、核酸的降解生物组织中的核酸往往以核蛋白的形式存在,动物和异养型微生物可分泌消化酶类分解食物或体外的核蛋白和核酸。
核蛋白可分解成核酸与蛋白质,核酸由各种水解酶催化逐步水解,生成核苷酸、核苷、戊糖和碱基等,这些水解产物均可被吸收,但动物体较少利用这些外源性物质作为核酸合成的原料,进入小肠粘膜细胞的核苷酸、核苷绝大部分进一步被分解。
植物一般不能消化体外的有机物。
所有生物细胞都含有核酸代谢的酶类,能分解细胞内的各种核酸促进其更新。
第八章核酸的降解和核苷酸代谢

降解
核酸
核苷酸
Pi
核苷
戊糖
碱基
二、核苷酸的分解代谢
1.嘌呤碱的分解
NH 2 N
N
N H
N
次黄嘌呤
黄嘌呤
NH3 + CO2
(微生物)
G
R NH2
尿酸(醇式)
尿素
2.嘧啶碱的分解
NH 2 N
N
O
H
NH2
O NH
还原 二氢尿嘧啶
N
O
H
(开环)
H2O
Β-丙AA
H2O
Β-脲基丙酸
三、核苷酸的生物合成
概述: 基本途径
N5,N10-次甲基四氢叶酸
一、核酸的酶促降解
1.核酸水解:
DNA 稳定,耐酸碱
RNA 易水解:碱中水解
2. 酶促水解:
RNA:
RNase(酶稳定、耐高温)
DNA:
DNase(种类多、工具酶)
作用类别:
核酸内切酶 磷酸二酯酶 核酸外切酶 磷酸单酯酶
非特异性 特异性
3.限制性核酸内切酶
(Restriction endonuclease)
具有识别双链DNA分子中特定核苷酸序 列,并由此切割DNA双链的核酸内切酶 统称为限制性核酸内切酶
发现: 1952, Smith Human 用T4 phage 感染E.coli. 提出了限制与修饰现象。
命名:
三字母: 属名+种名+株名
Ⅰ类本同Ⅱ类
从头合成
ATP
(CO2/NH3/AA/戊糖)
核苷酸
半合成(补救合成)
分解的现成嘌呤、嘧啶
dNDP
核苷酸合成的两条途径
补救途径
生物化学第33章核酸的降解和核苷酸代谢

THANK YOU
感谢聆听
01
02
03
04
药物治疗
针对核酸降解和核苷酸代谢异 常的疾病,可采用药物治疗, 如使用核酸酶抑制剂、核苷酸 类似物等。
基因治疗
对于由基因突变引起的核酸降 解和核苷酸代谢异常疾病,基 因治疗是一种潜在的治疗方法 ,如通过基因编辑技术修复突 变基因。
饮食调整
饮食调整可帮助改善核苷酸代 谢异常,如减少高嘌呤食物的 摄入以降低血尿酸水平。
调节代谢
核酸降解产生的核苷酸及其代谢产物可以调节细胞 内核苷酸代谢相关酶的活性,从而影响核苷酸代谢 的速率和方向。
维持平衡
核酸降解与核苷酸代谢之间的动态平衡对于维持细 胞内核苷酸稳态至关重要,核酸降解的异常可能导 致核苷酸代谢紊乱。
核苷酸代谢对核酸降解的反馈作用
80%
产物反馈
核苷酸代谢产生的某些产物可以 反馈抑制核酸降解相关酶的活性 ,从而调节核酸降解的速率。
嘧啶核苷酸的ቤተ መጻሕፍቲ ባይዱ谢
嘧啶核苷酸的合成
先合成嘧啶环,再与磷酸核糖相连生 成嘧啶核苷酸。合成的部位主要在肝 和小肠黏膜中。
嘧啶核苷酸的分解
嘧啶碱基分解代谢是先去除环外氨基生 成嘧啶,再氧化开环,最终生成CO2、 β-丙氨酸及β-氨基异丁酸等。
核苷酸代谢的调控与意义
核苷酸代谢的调控
核苷酸代谢受到多种因素的调控,包括底物浓度、酶活性、基因表达等。此外, 核苷酸代谢还与细胞周期、细胞增殖和分化等生理过程密切相关。
核苷酸代谢的意义
核苷酸是生物体内重要的组成成分,参与遗传信息的传递和表达。同时,核苷 酸也是多种生物活性物质的合成前体,如辅酶、激素等。因此,核苷酸代谢对 于维持生物体的正常生理功能具有重要意义。
核酸的酶促降解与核苷酸代谢

A+P R P P
A M P+P P i
腺 嘌 呤
次 黄 嘌 呤 / 鸟 嘌 呤 磷 酸
G /I +P R P P
G M P /IM P+P P i
鸟 嘌 呤 / 次 黄 嘌 呤
核 糖 转 移 酶
2024/6/22
(三)、 嘧啶核苷酸的合成
嘧啶环各原子的来源 氨基甲酰磷酸
C
4
N3
5C
C2 6C
1
N
一、 核苷酸的生理功能
1、 核酸合成的原料:
2、 能量的利用形式: ATP、GTP、UTP、CTP
3、 参与代谢和生理调节: ATP/ADP/AMP, cAMP、 cGMP
4、 组成辅酶(基):腺苷酸
5、 活性中间代谢物:UDPG、ADPG葡萄糖:糖原合成
• 合成
CDP- 胆碱:磷酸甘油酯
2024/6/22
作用于核糖或 脱氧核糖核苷
作用于核糖核苷
2024/6/22
核苷
2024/6/22
பைடு நூலகம்
(一)、嘌呤核苷酸的分解代谢
2024/6/22
(二)、嘧啶核苷酸的分解代谢
嘧啶核苷酸
胞嘧啶 尿嘧啶
嘧啶碱+磷酸核糖 NH3、CO2、β-丙氨 酸
胸腺嘧啶
NH3、CO2、β-氨基异丁酸
2024/6/22
N H2 C N CH
11)FAICAR脱水环化,生成IMP
2024/6/22
2024/6/22
腺苷酸代琥珀酸 2.AMP和GMP的生成 腺苷酸
次黄嘌呤 核苷酸
2024/6/22
黄嘌呤核苷酸
鸟苷酸
2024/6/22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NN HH
A-腺嘌呤
PHi O 2 次黄2嘌呤
核糖
次腺黄苷苷
2.2 嘧啶的分解
HOHHβHH-氨OOO基OHO异HβHH-O丁丙H酸OOO氨HCHHNHHH酸OHOHOH2H2ON2ONHH+NH2NHON2ONHN3HCCHC3H乙CCCCHHH2H酸HOHHH3排代323HN3出谢22HNHA体。AHHDNH乙Hβ+外D-CNP酸H氨或OPHNA胸胞+基3尿2+进3++AD223腺异N嘧N嘧H入DPHHC嘧丁NC啶有+H啶3P3+啶O酸HO2H机+C2H32酸+O+2
第一节 核酸的降解
核酸
进入磷酸戊糖途径 或重新合成核酸
核酸酶
核苷酸
水
核苷酸酶
磷酸
解
核苷 核苷磷酸化酶
何处去? 磷酸-戊糖
碱基
分?解
合成
特定部位的—限制性内切酶 内切酶 外切酶
RDNNAA
第二节 碱基的分解
提问:嘌呤碱包括哪几种? A-腺嘌呤、G-鸟嘌呤
2.1 嘌呤的分解
A-腺嘌呤的分解
不同种类动物将尿酸直排或进行不同程度继续降解排 出体外。尿酸是人、灵长类、鸟类、爬虫类及大多数 昆虫的嘌呤代谢终产物。
(脑和骨髓) 核糖、氨基酸、CO2、NH3、Pi
内外 源核 酸分 解
核苷 碱基、Pi
核糖核苷酸
主要发生在肝
脏,常因各种 脱氧核苷 抑制物甚至生
脱氧核糖核苷酸
理紧张导致其
中的某些酶缺 乏,影响细胞
DNA
生长。 核酸类补品原理所在,可提高康复速度
辅酶 RNA
嘧啶碱
天冬氨酸
C
-OOC
NH3
N
C
CH2
CO2 C
C
N
CH
+H3N
COO-
嘧啶环合成后+磷酸核糖
C(U)MP
2H
H2O
XMP 还原酶 X-A.C.U.G
dXMP ?
X-A.C.T.G
2ATP
(d)XMP
?
(dUMP+-CH3-→MP)
四氢叶酸载运
(d)XTP 2ADP
DNA RNA
第三节 核苷酸的生物合成
3.1 总论
3.2 “从头合成”中碱基各原子来源
通过放射性同位素法推断 CO2
天冬氨酸
甘氨酸
CN CN CC NN C 甲酸
6
1
5
23 4
7 8
9
甲酸
嘌 呤 碱
谷氨酰胺
磷酸核糖C1上逐个安插成嘌呤碱成分,形成A(G)MP。
“补救”途径 “从头合成”途径(通常情况下占95%)
H2O2在SOD(超氧化物歧化酶)或过氧化氢酶作用下 分解为H2O。 G-鸟嘌呤分解与A类似,产物也是尿酸。
若浓度过高会引起尿结石、风湿性关节炎。
黄嘌呤
尿酸
OONHHH2
HNH
H
H2O
NN
黄嘌呤氧化酶
O HO NN 2 核苷磷酸化酶
H O核糖-1-磷酸 22
脱氨基酶
HO H
H O NN 2 黄嘌呤氧化酶 OO2