医学统计学知识点
医学统计学知识点总结

医学统计学1. 对定量资料进行统计描述时,如何选择适宜的指标定量资料统计描述常用的统计指标及其适用场合描述内容指标意义适用场合平均水平;均数个体的平均值·对称分布几何均数平均倍数取对数后对称分布中位数[位次居中的观察值①非对称分布;②半定量资料;③末端开口资料;④分布不明众数频数最多的观察值不拘分布形式,概略分析?调和均数基于倒数变换的平均值正偏峰分布资料变异度全距观察值取值范围不拘分布形式,概略分析标准差(方差)观察值平均离开均数的程度对称分布,特别是正态分布资料四分位数间距?居中半数观察值的全距①非对称分布;②半定量资料;③末端开口资料;④分布不明变异系数标准差与均数的相对比①不同量纲的变量间比较;②量纲相同但数量级相差悬殊的变量间比较定性资料:阳性事件的概率,概率分布,强度和相对比。
¥2. 应用相对数时应注意哪些问题答:(1)防止概念混淆相对数的计算是两部分观察结果的比值,根据这两部分观察结果的特点,就可以判断所计算的相对数属于前述何种指标。
(2)计算相对数时分母不宜过小样本量较小时以直接报告绝对数为宜。
(3)观察单位数不等的几个相对数,不能直接相加求其平均水平。
(4)相对数间的比较须注意可比性,有时需分组讨论或计算标准化率。
3. 常用统计图有哪些分别适用于什么分析目的常用统计图的适用资料及实施方法<图形适用资料实施方法条图组间数量对比用直条高度表示数量大小直方图用直条的面积表示各组段的频数或频率(定量资料的分布百分条图构成比用直条分段的长度表示全体中各部分的构成比饼图构成比用圆饼的扇形面积表示全体中各部分的构成比定量资料数值变动线条位于横、纵坐标均为算术尺度的坐标系、线图半对数线图定量资料发展速度线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系散点图}双变量间的关联点的密集程度和形成的趋势,表示两现象间的相关关系箱式图定量资料取值范围用箱体、线条标志四分位数间距及中位数、全距的位置茎叶图定量资料的分布'用茎表示组段的设置情形,叶片为个体值,叶长为频数第3章概率分布(连续随机变量的正态分布;离散随机变量的二项分布及Poisson分布)1. 服从二项分布及Poisson分布的条件分别是什么二项分布成立的条件:①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。
公卫执业医师-卫生统计学知识点整理

①②③④⑤第一章绪论1、统计工作的基本步骤:研究设计-搜集资料-整理资料-分析资料设计是整个研究过程中最关键的一环;研究设计是统计工作的基础和关键。
统计推断包括参数估计和假设检验。
2.计量资料(定量资料):是用定量的方法对每一个观察单位的某项指标进行测定所得的资料。
其变量值是定量的,表现为数值大小,一般具有度量衡单位。
可分为离散型变量(如现有子女数、儿童龋齿数、胎次)和连续型变量(身高、体重、血红蛋白)。
计数资料(定性资料、分类资料):是把观察单位按某种属性(性质)或类别进行分组、清点各组观察单位数所得资料。
各观察数值是定性的,一般无度量衡单位。
各属性之间互不相容(只有“阴、阳”性或···)例:性别、职业、血型。
等级资料:是把观察单位按属性程度或等级顺序分组,清点各组观察单位所得资料。
医学领域的三类资料可以相互转换。
3、同质:是指所研究的观察对象具有某些相同的性质或特征。
变异:是同质个体的某项指标之间的差异,即个体变异或个体差异性。
总体:是根据研究目的确定的同质研究对象的全体(或全部同质观察单位)。
观察单位优先的总体称为有限总体;无法确定数量的总体称为无限总体。
样本:从总体中具有代表性的一部分个体。
抽样误差:由随机抽样造成的样本指标与总体指标之间、样本指标与样本指标之间的差异称为抽样误差。
抽样误差的根源在于个体变异,在抽样研究中是不可避免的。
概率(P):是随机事件发生的可能性大小的数值度量。
P=1的事件称为必然事件;P=0的事件为不可能的事件;0<P<1的事件称为随机事件;P≤0.05的随机事件称为小概率事件。
第二章计量资料的统计描述1、频数表和频数分布图的用途:①揭示计量资料的分布类型;②揭示计量资料分布的重要特征——集中趋势与离散趋势;③便于发现特大或特小的可疑值;④作为陈述资料的形式。
例数大时可以频率估计概率;⑤便于资料的进一步统计分析。
2、集中趋势:①(算数)均数:总体均数μ和样本均数x ;用于计量资料的正态分布或近似正态分布资料②几何均数G:应用于对数正态分布或近似正态分布资料,也可用于呈倍数关系的等比资料。
卫生统计学知识点(笔记)

第一章绪论1.统计学(statistics)是一门处理数据中变异性的科学与艺术,内容包括收集、分析、解释和表达数据,目的是求得可靠的结果。
2.▲总体(population)用来表示大同小异的对象全体,例如一个国家的所有成年人;某地的所有小学生。
可分为目标总体和研究总体。
若试图对某个总体下结论,这个总体便称为目标总体(target population);资料常来源于目标总体中的一个部分,它称为研究总体(study population)。
需要谨慎的是,就研究总体所下的结论未必适用于目标总体。
3.▲样本(sample)是指从研究总体中抽取的一部分有代表性的个体。
获取样本的过程称为抽样(sampling)。
抽样研究的目的是用样本数据推断总体的特征。
需要注意的是,统计学的结论从来就不是完全肯定或完全否定的,能不能成功地达到从样本推断总体的目的,关键是抽样的方法、样本的代表性和推断的技术。
4.▲同质(homogeneity)是指同一总体中个体的主要性质相同。
5.▲变异(variation)是指同质的个体之间存在的差异。
6.▲变量的类型二分类变量分类变量或名义变量定性变量多分类变量变量有序变量或等级变量定量变量离散型变量连续型变量变量的转化:只能由“高级”向“低级”转化,即由信息量多的向信息量少的类型转化,如:定量有序分类二值7.▲参数(parameter)是反映总体特征的指标,参数的大小是客观存在的,是一个常数,不会发生变化,然而往往是未知的,需要通过样本资料来估计,如总体均数μ,总体标准差σ。
8.▲统计量(statistic)又称样本统计量,是反映样本特征的指标,是由观察资料计算出来的,如样本均数 X,样本标准差S。
统计学的任务就是依据样本统计量来推断总体参数。
9.▲概率与频率的区别:概率是参数,频率是统计量;频率总是围绕概率上下波动。
当某事件发生的概率≤0.05时,即P≤0.05,统计学习惯上称该事件为小概率事件。
医学统计学题库知识点精析与应用

第一章统计描述习题一、选择题1.描述一组偏态分布资料的变异度,以(D )指标较好。
A. 全距B. 标准差C. 变异系数D. 四分位数间距E. 方差2.各观察值均加(或减)同一数后(B )。
A. 均数不变,标准差改变B. 均数改变,标准差不变C. 两者均不变D. 两者均改变E. 以上都不对3.偏态分布宜用(C )描述其分布的集中趋势。
A. 算术均数B. 标准差C. 中位数D. 四分位数间距E. 方差4.为了直观地比较化疗后相同时点上一组乳腺癌患者血清肌酐和血液尿素氮两项指标观测值的变异程度的大小,可选用的最佳指标是(E )。
A.标准差B.标准误C.全距D.四分位数间距E.变异系数5.测量了某地152人接种某疫苗后的抗体滴度,宜用(C )反映其平均滴度。
A. 算术均数B. 中位数C.几何均数D.众数E.调和均数6.测量了某地237人晨尿中氟含量(mg/L),结果如下:尿氟值:0.2~ 0.6~ 1.0~ 1.4~ 1.8~ 2.2~ 2.6~ 3.0~ 3.4~ 3.8~频数: 75 67 30 20 16 19 6 2 1 1宜用(B )描述该资料。
A. 算术均数与标准差B.中位数与四分位数间距C.几何均数与标准差D. 算术均数与四分位数间距E. 中位数与标准差7.用均数和标准差可以全面描述(C )资料的特征。
A. 正偏态资料B. 负偏态分布C.正态分布D. 对称分布E. 对数正态分布8.比较身高和体重两组数据变异度大小宜采用(A )。
A. 变异系数B. 方差C. 极差D. 标准差E. 四分位数间距9.血清学滴度资料最常用来表示其平均水平的指标是(C )。
A. 算术平均数B. 中位数C. 几何均数D. 变异系数E. 标准差10.最小组段无下限或最大组段无上限的频数分布资料,可用(C )描述其集中趋势。
A. 均数B. 标准差C. 中位数D. 四分位数间距E. 几何均数11.现有某种沙门菌食物中毒患者164例的潜伏期资料,宜用(B )描述该资料。
统计学知识点整理贺佳

统计学知识点整理贺佳1、同质:医学研究对象具有的某种共性称为同质。
2、变异:对于同质的研究对象,其变量之间的差异称为变异。
3、个体:⽆论⽤何种⽅式收集资料,都要根据研究的⽬的确定观察单位,⼜成个体,4、总体:根据研究⽬的,所有同质的观察单位某项观察值得全体成为总体。
5、样本:来⾃于总体的部分观察单位的观测值称为样本。
6、样本含量:抽取的观察值的个数称为样本含量。
7、参数:总体中全部观测值所得的特征值称为参数。
8、统计量:由样本获得的统计指标称为统计量。
9、抽样误差:统计学中,这种由抽样与变异引起的样本统计量与总体参数的差异,或者不同的样本的样本统计量之间的差别,称为抽样误差。
10、观察单位的研究特征称为变量,变量的观察结果称为变量值,多个变量值汇成资料。
11、随机变量:随机试验结果的所有取值称为随机变量或变量。
12、频率:在相同的条件下,独⽴的重复n次试验,随机试验的某⼀结果A出现f次,则称f/n为结果A 出现的频率。
13、概率:当n逐渐增⼤时,频率f/n始终在⼀个常数左右微⼩摆动,称该常数为A出现的概率。
14、频数:当汇总⼤量的原始数据时,把数据按类型分组(组段),其中每个组的数据个数,称为该组的频数。
15、正偏态:集中位置偏向⼩的⼀侧叫正偏态,⼜叫右偏态16、负偏态:集中位置偏⼤的⼀侧叫负偏态,⼜叫左偏态17、医学参考值:医学参考值⼜称临床参考值,指绝⼤多数“正常⼈”的各种⽣理、⽣化指标、组织代谢产物及⼈体对各种实验的反应值等测量值的分布范围。
18、结构相对数,⼜称构成⽐:表⽰事物内部某⼀部分的观察单位数与该事物各组成部分的观察单位总数之⽐,⽤以说明各构成部分在总体中所占的⽐重或分布。
19、相对⽐简称⽐(ratio),是两个有关指标之⽐,说明两指标间的⽐例关系。
20、强度相对数,⼜称为率:说明单位时间内某现象发⽣的频率或强度。
21、定基⽐:报告期指标与基线期指标之⽐。
22、环⽐:报告期指标与前⼀期指标之⽐。
医学统计学知识点

第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物。
3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异。
统计学通过对变异的研究来探索事物。
(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。
(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、AB等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标。
统计量,指描述样本特征的指标。
(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。
随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。
抽样误差,是抽样引起的统计量与参数间的差异。
抽样误差主要来源于个体的变异。
医学数学知识点总结

医学数学知识点总结一、基本概念1. 数学在医学中的作用数学是一门用来描述、分析和预测自然现象的学科,它在医学中扮演着非常重要的角色。
医学数学涉及到医学统计学、医学图像处理、生物数学、医学建模等方面的知识,它可以帮助医生更好地理解和分析医学数据,提高医学诊断和治疗的准确性和效率。
2. 医学统计学医学统计学是统计学在医学领域中的应用,它主要研究医学数据的收集、整理、分析和解释。
医学统计学的主要内容包括描述统计学、推断统计学、生存分析、临床试验设计等方面的知识,它可以帮助医生对疾病的发病机制、诊断方法和治疗效果等进行科学的评估。
3. 医学图像处理医学图像处理是一种将医学图像转化为数字形式并进行分析和处理的技术,它主要应用于医学影像诊断、手术导航和治疗监控等方面。
医学图像处理涉及到数字图像处理、医学成像原理、人工智能等领域的知识,它可以帮助医生更准确地获取和解释医学图像信息。
4. 生物数学生物数学是数学在生物学中的应用,它主要研究生物系统的建模、分析和仿真。
生物数学涉及到微分方程、动力系统、随机过程等方面的知识,它可以帮助医生对生物系统的动力学行为、稳态状态和稳定性进行定量分析。
5. 医学建模医学建模是将数学方法应用于医学领域的一种技术,它主要用于疾病的预测、诊断和治疗等方面。
医学建模涉及到数学建模、计算机仿真、优化算法等方面的知识,它可以帮助医生更好地理解和干预疾病的发展过程。
二、常用方法1. 统计描述方法统计描述方法是用来描述医学数据的基本特征和分布情况的方法,它主要包括均值、中位数、方差、标准差、偏度、峰度等统计量。
统计描述方法可以帮助医生对不同样本之间的差异和相似性进行定量分析。
2. 统计推断方法统计推断方法是用来从样本数据中进行总体参数推断的方法,它主要包括假设检验、置信区间估计、方差分析、回归分析等统计方法。
统计推断方法可以帮助医生对样本数据的统计显著性和实际意义进行评估。
3. 生存分析方法生存分析方法是用来分析生存数据的方法,它主要包括生存曲线、生存函数、危险比、生存回归分析等方法。
医学生物统计学知识点

医学生物统计学知识点在医学领域,生物统计学是一门重要的学科,它提供了在医学实验和研究中收集、分析和解释数据的方法和技巧。
本文将介绍医学生物统计学的一些基本知识点。
一、基本概念1. 总体和样本:在生物统计学中,研究对象被称为总体,而从总体中选取的一部分作为研究样本。
2. 变量和观测值:研究中所关心的特定性质或特征被称为变量,而在样本中观察到的具体数值被称为观测值。
二、描述性统计学1. 频数分布:用来描述变量不同取值出现的次数,通常以频数表或频率直方图的形式展示。
2. 平均数:用来表示一组数据的集中趋势,包括算术平均数、加权平均数和几何平均数等。
3. 中位数:将一组数据按照大小排序,中间的那个值即为中位数,对于偶数个数据则取中间两个数的平均值。
4. 方差和标准差:用来衡量数据的离散程度,方差是各数据与平均数之差的平方和的平均数,标准差是方差的平方根。
三、概率与概率分布1. 概率的基本原理:描述事件发生的可能性,介于0和1之间,其中0表示不可能发生,1表示一定会发生。
2. 离散型随机变量与概率分布:如二项分布、泊松分布等,适用于离散型变量的概率计算。
3. 连续型随机变量与概率密度函数:如正态分布、指数分布等,适用于连续型变量的概率计算。
四、假设检验1. 原假设与备择假设:在医学研究中,我们通常提出原假设来进行检验,并根据收集到的数据判断是否拒绝原假设。
2. 显著性水平和P值:显著性水平是我们指定的拒绝原假设的程度,而P值是根据实际数据计算出来的,表示观察到的结果与原假设一致的可能性。
3. 单样本检验和双样本检验:单样本检验用于研究样本与总体的差异,双样本检验用于比较两个样本之间的差异。
五、相关性分析1. 相关系数:用来衡量两个变量之间的线性相关程度,常用的有皮尔逊相关系数和斯皮尔曼等级相关系数。
2. 散点图:用来展示两个变量之间的关系,可以直观地观察到变量之间的趋势。
六、回归分析1. 简单线性回归:研究一个自变量与一个因变量之间的关系,通过回归方程来描述二者之间的线性关系。
医学统计学知识点

第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物.3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1)同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异。
统计学通过对变异的研究来探索事物。
(2)变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果.(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、A B等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标。
统计量,指描述样本特征的指标。
(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。
随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。
抽样误差,是抽样引起的统计量与参数间的差异。
抽样误差主要来源于个体的变异。
医学统计学第三版仇丽霞知识点

医学统计学第三版仇丽霞知识点医学统计学是医学生必修的一门课程,也是临床医生和研究人员必备的基础知识。
《医学统计学第三版》是一本权威的教材,作者为仇丽霞教授。
本文将围绕《医学统计学第三版》中的知识点展开全面评估,以深度和广度兼具的方式撰写一篇有价值的文章。
1. 《医学统计学第三版》简介《医学统计学第三版》是仇丽霞教授根据多年的教学和临床经验,结合国内外最新研究成果编写而成。
全书内容系统全面,涵盖了医学统计学的基本理论、方法和应用,既适合医学生学习,也适合临床医生和研究人员参考。
2. 深入挖掘《医学统计学第三版》知识点在《医学统计学第三版》中,仇丽霞教授详细介绍了医学统计学的基本概念、常用方法和实际应用。
书中系统阐述了统计学的基本概念,包括总体和样本、参数和统计量、假设检验等内容。
针对不同类型的数据和研究设计,书中详细讲解了描述性统计分析、推断性统计分析、生存分析等方法。
书中还涉及了临床试验、流行病学调查、医学统计软件的应用等内容。
3. 对《医学统计学第三版》的个人观点和理解个人认为,《医学统计学第三版》作为一本权威教材,内容系统全面,适合不同层次的读者阅读。
仇丽霞教授在书中运用大量的实例和案例,使抽象的统计学理论变得具体和生动。
书中还涉及了大量的医学研究实践,对于提高临床医生和研究人员的实际操作能力也具有很大的帮助。
4. 总结与回顾通过对《医学统计学第三版》的全面评估,我深刻理解了医学统计学的基本理论和方法,对于今后的学习和研究都具有很大的指导意义。
仇丽霞教授在书中的详细讲解和丰富案例使我受益匪浅。
我相信,在今后的学习和工作中,我会更加灵活地运用统计学知识,为临床医疗和医学研究做出更大的贡献。
《医学统计学第三版》是一本值得推荐的医学统计学教材,无论是医学生还是临床医生和研究人员都可以从中受益良多。
希望本文能对您有所帮助,让您对《医学统计学第三版》有更全面、深刻和灵活的理解。
以上为根据您提供的内容、主题或概念撰写的文章,希望能够满足您的要求。
卫生统计学知识点整理(二)

卫生统计学知识点整理(二)2017-11-28一、频数分布的两个特征?集中趋势和离散趋势。
二、频数分布的类型?正态分布和偏态分布。
三、描述集中趋势的指标?平均数:算数平均数、几何平均数和中位数。
四、什么是算数平均数?简称均数,由原始数据求和后除以样本量计算,是最常用的一种平均数。
μ表示总体均数,x表示样本均数。
五、算数平均数适用条件?适用于对称分布尤其是正态分布资料。
六、几何均数G适用条件?1、等比资料:如医学上血清抗体滴度、人口几何增长等资料。
2、对数正态分布资料(原始数据经过对数转换后服从正态分布:如疾病的潜伏期资料)七、几何平均数的计算方法?n1、直接法:G=X1X2X3…..Xn2、加权法:G=lg-1flgXf八、什么是中位数?用符号M表示,指一组有小到大顺序排列的观察值中位次居中的那个观察值。
九、中位数的特点?1、中位数不受分布两端的特大值或特小值的影响,当资料的一端或两端无确定数据时,不能求均数和几何均数,但是可求出中位数。
2、和均数相比,中位数比较稳定,但只能反映居中位置个体值的信息。
3、由于中位数是位居中间的那个观察值,也称第50百分位数(P50).4、对于对称分布的资料,理论上中位数和均数相等;而对于正偏态分布的资料,中位数小于均数,对于负偏态分布的资料则相反。
十、中位数的适用条件?常用于描述偏态分布的资料,或分布类型不明确的资料的集中位置。
十一、描述离散趋势的指标有哪些?极差、四分位数间距、方差、标准差和变异系数。
其中方差和标准差是常用的变异指标。
十二、什么是极差?用符号R表示,最大值与最小值之差,用于反应观察值变异的范围的大小。
极差越大,变异度越大。
十三、什么是四分位数间距?用符号Q表示,一组数据的下四分位数即第25百分位数(P25),用Q L表示。
上四分位数即第75百分位数(P75),用Q u表示。
四分位数间距即上四分位数Q u与下四分位数Q L之差,即Q=Q u-Q L= P75- P25四分位数间距Q越大,表示数据分布的变异度变大。
医学统计学大题重点知识总结

t1nν=-一、描述集中位置的指标应用适用范围【简】平均数:算数均数、几何均数、中位数、百分位数。
1、算数平均数:适用于单峰对称分布或近似于单峰对称分布的资料2、几何均数:适用于对数变换后单峰对称的资料。
eg.等比资料、滴度资料、对数正态分布资料3、中位数:理论上可用于任何分布资料,但当资料适合计算均数或几何均数时,不宜用中位数。
Eg:偏态分布、分布不明资料、有不确定值的资料.4、百分位数:适用于任何分布的资料。
二、描述离散趋势的指标【简】变异度:极差、四分位数间距、标准差、方差、变异系数。
1、极差:又称全距,是一组数据中最大值和最小值之差。
极差大说明资料的离散度大。
优点:简单明了缺点:不灵敏和不稳定。
样本例数相差悬殊时,不适宜比较其极差。
2、四分位数间距:即中间一半观察值的极差。
四分位数间距较全距稳定,常与中位数一起,描述不对称分布资料的特征。
3、标准差:基本内容是离均差,它显示一组变量值与其均数的间距,故标准差直接地、总结地、平均地描述了变量值的离散程度。
在同质的前提下,标准差大,表示变量值的离散程度大,即变量值的分布分散、不整齐、波动较大;标准差小,表示变量值的离散程度小,即变量值的分布集中、整齐、波动较小。
4、方差:利用了所用的信息,与变异度和变量值的个数有关。
5、变异系数(CV):变异系数派生于标准差,其应用价值在于排除了平均水平的影响,并消除了单位。
三、正态分布特征1、单峰分布;高峰在均数处;2、以均数为中心,均数两侧完全对称。
3、正态分布有两个参数(parameter),即位置参数 (均数)和变异度参数 (标准差)。
4、有些指标本身不服从正态分布,但经过变换之后可以服从正态分布。
5、正态曲线下的面积分布有一定的规律。
四、参考值范围(含义+原则)【简】1、含义:(1)又称正常值范围,是绝大多数正常人的某观察指标所在的范围。
绝大多数:90%,95%,99%等等。
(2)确定参考值范围的意义:用于判断正常与异常。
卫生统计学知识点(笔记)

第一章绪论1.统计学(statistics)是一门处理数据中变异性的科学与艺术,内容包括收集、分析、解释和表达数据,目的是求得可靠的结果。
2.▲总体(population)用来表示大同小异的对象全体,例如一个国家的所有成年人;某地的所有小学生。
可分为目标总体和研究总体。
若试图对某个总体下结论,这个总体便称为目标总体(target population);资料常来源于目标总体中的一个部分,它称为研究总体(study population)。
需要谨慎的是,就研究总体所下的结论未必适用于目标总体。
3.▲样本(sample)是指从研究总体中抽取的一部分有代表性的个体。
获取样本的过程称为抽样(sampling)。
抽样研究的目的是用样本数据推断总体的特征。
需要注意的是,统计学的结论从来就不是完全肯定或完全否定的,能不能成功地达到从样本推断总体的目的,关键是抽样的方法、样本的代表性和推断的技术。
4.▲同质(homogeneity)是指同一总体中个体的主要性质相同。
5.▲变异(variation)是指同质的个体之间存在的差异。
6.▲变量的类型二分类变量分类变量或名义变量定性变量多分类变量变量有序变量或等级变量定量变量离散型变量连续型变量变量的转化:只能由“高级”向“低级”转化,即由信息量多的向信息量少的类型转化,如:定量有序分类二值7.▲参数(parameter)是反映总体特征的指标,参数的大小是客观存在的,是一个常数,不会发生变化,然而往往是未知的,需要通过样本资料来估计,如总体均数μ,总体标准差σ。
8.▲统计量(statistic)又称样本统计量,是反映样本特征的指标,是由观察资料计算出来的,如样本均数 X,样本标准差S。
统计学的任务就是依据样本统计量来推断总体参数。
9.▲概率与频率的区别:概率是参数,频率是统计量;频率总是围绕概率上下波动。
当某事件发生的概率≤0.05时,即P≤0.05,统计学习惯上称该事件为小概率事件。
卫生统计学知识点汇总

1、卫生统计学是应用概率论和数理统计学的基本原理和方法,研究居民卫生状况以及卫生服务领域中数据的收集、整理和分析的一门科学,是卫生及其相关领域研究中不可缺少的分析问题和解决问题的重要工具。
2、统计工作的基本步骤:①设计;②收集资料;③整理资料;④分析资料3、分析资料是根据研究目的计算有关指标描述数据的基本特征,选择适当统计方法对资料进行分析,阐明事物的内在联系和规律的过程。
统计分析包括:①统计描述:是指选用统计指标、统计表或统计图等对资料的数量特征及其分布规律进行测定和描述②统计推断:是指选择恰当的统计方法由已知的样本信息推断总体的特征,包括参数估计和假设检验4、(1)①同质:在统计学中,若某些观察对象具有相同的特征或属性,我们就称之为同质,或具有同质性②变异:我们将同质个体的某项特征或属性的观察值或测量值之间的差异称为变异(2)①总体:根据研究目的确定的同质观察单位的全体,更确切地说,是同质的所有观察单位某种特征或属性的观察值或测量值的集合。
若总体明确了特定的时间和空间范围且包含有限个观察单位,称为有限总体。
若总体没有特定的时间和空间范围的限制,且包含的观察单位个数是无限的或几乎是不可能准确计数的,称该总体为无限总体②样本:从总体中随机抽取的具有代表性的部分观察单位的集合(3)①参数:反映总体特征的指标称为参数②统计量:根据样本观察值计算出来的指标称为统计量(4)①变量:确定总体之后,研究者需要对每个观察单位的某项特征或属性进行观察或测量,这种特征或属性称为变量。
变量的观察值或测量值称为变量值或观察值②资料:变量值的集合称为资料。
资料可分为定量资料(又称计量资料)和定性资料(又称分类资料)两类。
定性资料又可分为计数资料和等级资料(5)①抽样研究:从总体中随机抽取样本,通过样本信息推断总体特征的研究方法称为抽样研究②抽样误差:由随机抽样造成的样本统计量与总体参数之间、样本统计量之间的差异称为抽样误差产生抽样误差的根源在于个体变异,由于个体变异是普遍存在的,因此在抽样研究中抽样误差是不可避免的,但它具有一定的规律性,可以用统计学方法估计其大小(6)概率:随机事件发生可能性大小的数值度量当某事件发生的概率P≤0.05时,统计学中习惯上称该事件为小概率事件,表示在一次实验或观察中该事件发生的可能性很小,可以视为很可能不发生。
卫生统计学知识点总结

卫生统计学统计工作基本步骤:统计设计(调查设计和实验设计)、资料分析{收集资料、整理资料、分析资料【统计描述和统计推断(参数估计和假设检验)】。
★统计推断:是利用样本所提供的信息来推断总体特征,包括:参数估计和假设检验.a参数估计是指利用样本信息来估计总体参数,主要有点估计(把样本统计量直接作为总体参数估计值)和区间估计【按预先设定的可信度(1-α),来确定总体均数的所在范围】。
b假设检验:是以小概率反证法的逻辑推理来判断总体参数间是否有质的区别.变量资料可分为定性变量、定量变量。
不同类型的变量可以进行转化,通常是由高级向低级转化。
资料按性质可分为计量资料、计数资料和等级资料。
定量资料的统计描述1频率分布表和频率分布图是描述计量资料分布类型及分布特征的方法.离散型定量变量的频率分布图可用直条图表达。
2频率分布表(图)的用途:①描述资料的分布类型;②描述分布的集中趋势和离散趋势;③便于发现一些特大和特小的可疑值;④便于进一步的统计分析和处理;⑤当样本含量足够大时,以频率作为概率的估计值. ★3集中趋势和离散趋势是定量资料中总体分布的两个重要指标。
(1)描述集中趋势的统计指标:平均数(算术均数、几何均数和中位数)、百分位数(是一种位置参数,用于确定医学参考值范围,P50就是中位数)、众数.算术均数:适用于对称分布资料,特别是正态分布资料或近似正态分布资料;几何均数:对数正态分布资料(频率图一般呈正偏峰分布)、等比数列;中位数:适用于各种分布的资料,特别是偏峰分布资料,也可用于分布末端无确定值得资料。
(2)描述离散趋势的指标:极差、四分位数间距、方差、标准差和变异系数。
四分位数间距:适用于各种分布的资料,特别是偏峰分布资料,常把中位数和四分位数间距结合起来描述资料的集中趋势和离散趋势。
方差和标准差:都适用于对称分布资料,特别对正态分布资料或近似正态分布资料,常把均数和标准差结合起来描述资料的集中趋势和离散趋势;变异系数:主要用于量纲不同时,或均数相差较大时变量间变异程度的比较。
医学统计学第三版仇丽霞知识点

医学统计学第三版仇丽霞知识点
《医学统计学第三版》是由仇丽霞等人编写的医学统计学教材,主要用于医学专业的教学和学习。
以下是该教材的一些重要知识点:
1. 描述性统计学:介绍了常见的描述统计指标,如均值、中位数、标准差等,以及频率分布表和直方图的制作方法。
2. 推断统计学:包括参数估计和假设检验。
参数估计涉及点估计和区间估计的方法,假设检验涉及单样本、两样本和多样本的参数检验方法。
3. 相关与回归分析:介绍了相关系数的计算方法和使用,以及简单线性回归和多元线性回归的原理和应用。
4. 生存分析:介绍了生存率、死亡率和生存函数的计算方法,以及生存曲线的绘制和比较。
5. 随机试验和临床实验设计:介绍了随机试验和临床实验的基本原理和设计方法,以及推荐的统计分析方法。
6. 双重盲法和样本大小估计:介绍了双重盲法的原理和应用,以及样本大小估计的方法。
7. 统计学软件:介绍了常用的统计学软件,如SPSS、SAS和
R等,以及它们的基本操作和分析功能。
这些是《医学统计学第三版》中的一些重要知识点,涵盖了医学统计学的基本概念、方法和应用。
阅读该教材可以帮助医学专业的学生和从业人员掌握统计学原理和应用,进而在医学研究和临床实践中运用统计学知识。
卫生统计学 课件知识点整理

1-绪论第一节统计学与医学统计学方法1、统计学是收集、分析、解释与呈现数据资料的一门科学收集数据:实验设计、调查设计分析数据:统计学描述、统计学推断解释数据:根据专业等解释统计结果呈现结果:向杂志社、上级部门发表结果2、统计工作的基本步骤①统计设计:包括调查、实验设计②收集资料:取得准确可靠的原始资料③整理资料:对资料进行整理、改错、数量化④分析资料:统计描述、统计推断(参数估计、假设检验)第二节数据类型1、计量资料(定量数据):用仪器、工具等测量方法获得的数据。
特点:有计量单位2、计数资料(定性数据/分类资料):按某种属性分类,然后清点每类的数据。
无固有计量单位,分为二分类和多分类3、等级资料(有序分类资料):半定量或半定性的观察结果。
有大小顺序4、三类资料间关系第三节统计学基本概念1、随机变量(random variable)及其分类简称变量(variable),用大写拉丁字母表示,如X、Y、Z。
变量值用小写拉丁字母表示①离散型变量(discrete variable)相当于计数资料(定性数据)②连续型变量(continuous variable)相当于计量资料(定量数据)③有序变量(ordinal variable)相当于等级资料2、同质与变异(homogeneity and variation)同质:指事物的性质、影响条件或背景相同或非常相近变异:指同质的个体之间的差异3、总体与样本(population and sample)总体:根据研究目的确定的同质研究对象的全体(集合)分有限总体与无限总体样本:从总体中随机抽取的部分观察单位随机抽样(random sampling)为保证样本的可靠性和代表性,需要采用随机的抽样方法4、参数与统计量(parameter and statistic)参数:总体的统计指标,如总体均数,标准差,为固定的常数统计量:样本的统计指标,如样本均数、标准差,为参数附近波动的随机变量5、误差(error)实际观察值与客观真实值之差①系统误差(systematic error)在实际观测中,由受试对象、研究者、仪器设备、研究方法、非实验因素影响等原因造成的有一定倾向性或规律性的误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物。
3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异。
统计学通过对变异的研究来探索事物。
(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。
(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、AB 等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
v1.0 可编辑可修改抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标。
统计量,指描述样本特征的指标。
(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。
随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。
抽样误差,是抽样引起的统计量与参数间的差异。
抽样误差主要来源于个体的变异。
统计学主要研究抽样误差。
(5)概率概率,是描述某事件发生可能性大小的量度。
必然事件,事件肯定发生,概率P(U)=1;随机事件,事件可能发生,可能不发生,概率介于0≤P(A)≤ 1;不可能事件,事件肯定不发生,概率P(∮)=0;小概率事件,事件发生的可能性很小,概率P(A)≤ 、或P(A)≤ 。
医学科研中,P(A)≤ 作为事物差别有统计意义,P(A)≤ 作为事物差别有高度统计意义。
第二章定量数据的统计描述定量数据的统计描述方法:频数表、直方图、统计指标。
(1)频数分布频数分布的目的:了解数据的分布范围、集中位置以及分布形态等特征,以便根据资料分布情况选择合适的统计方法。
频数分布的用途:①作为陈述资料的形式;②便于观察数据的分布类型;③便于发现数据中特大或特小的可疑值;④当样本量大时,可用各组段的频率作为概率的估计值。
计算全距(range,R):是一组数据的最大值与最小值之差。
R=Max-Min确定组数与组距样本量在100例左右,组数选择8~15之间,一般取10组左右。
组距≈全距/组数确定组限第一组段必须包括最小值,最后一组段必须包括最大值。
最后一组段包括最大值,且一般情况下应包含该组段上限,其余各组段区间左闭右开。
计算各组段频数(frequency):即计算各组段内观察值的个数。
计算各组段频率(percent):即计算各组段频数与总观察值个数之比,用百分数表示。
计算累计频数(cumulative frequency)和累计频率(cumulative percent):累计频数是由上至下将频数累加;累计频率是由上至下将频率累加。
(2)直方图直方图,是以垂直条段代表频数分布的一种图形。
(3)频数分布表的用途1、作为称述资料的形式,可以代替原始资料,便于进一步分析。
2、便于观察数据的分布类型。
资料分布类型分为:对称分布和偏态分布。
在统计分析时常需要根据资料的分布形式选择相应的统计分析方法,因此对数据分布形式的判定非常重要。
3、便于发现资料中某些远离群体的特大或特小值。
4、当样本含量比较大时,可用各组段的频率作为概率的估计值。
集中趋势的统计指标平均数,是描述一组观察值集中位置或平均水平的统计指标,常作为一组数据的代表值用于分析和进行组间的比较。
常用的有算术均数、几何均数、中位数、百分位数等。
算术均数,等于一个变量所有观察值的和除以观察值个数。
总体均数用希腊字母μ表示,样本均数用符号Χ拔表示。
算术均数适用于对称分布的资料,如分布均匀的小样本数据或近似正态分布的大样本数据。
算术均数易受极端值的影响,并且受极大值的影响大于受极小值的影响。
几何均数几何均数(geometric mean,G),等于一个变量所有n个观察值的乘积的n次方根。
几何均数适用于取对数后近似呈对称分布的资料,尤其是右偏态分布数据。
医学研究中常用于比例数据。
【注】计算几何均数的观察值不能小于或等于0,因为无法求对数。
中位数中位数(median,M),是在按大小顺序排列的变量的所有观察值中,位于正中间的一个或两个数值。
当数据呈偏态分布、或频数分布两端无确定数值,均宜采用中位数描述集中趋势。
中位数的确定取决于它在数据序列中的位置,因此对极端值不敏感。
百分位数百分位数(percentile),是一个位置指标,它将一组变量值排列后划分为若干相等部分的分割点数值。
用Px表示,X用百分数表示。
表示在按照升序排列的数据中,其左侧(≤Px )的观察值个数在整个样本中所占百分比为X %,其右侧(≥ Px )的观察值个数在整个样本中所占百分比为(100-X )%。
百分位数不论资料分布类型均可计算,在实际工作中常用于确定医学参考值范围;在假设检验中用作拒绝或不拒绝检验假设的界值。
百分位数并非由全部观察值综合计算得来,因此,它不如均数和标准差精确;然而中间部分的百分位数因不受资料中个别极端数据的影响,具有较好的稳定性。
小结变异程度的统计指标变异指标,又称离散指标,用以描述一组计量资料各观察值之间参差不齐的程度。
变异指标越大,观察值之间差异愈大,说明变异程度越大;反之亦然。
常用的有极差、四分位数间距、方差、标准差和变异系数。
极差极差(range,R),等于一个变量所有观察值中最大值与最小值之间的差值。
R =Max - Min缺点:①没有利用观察值的全部信息,不能反映其它数据的离散度;②各样本含量大小悬殊时,不宜比较其极差;③极差的抽样误差也较大,所以不够稳定。
极差仅适用于对未知分布的小样本资料作粗略的分析。
四分位数间距四分位数,是统计学对特殊的三个百分位数P25% 、 P50% 和 P75%的统称四分位数间距(quartile range,Q),等于第三四分位数与第一四分位数之间的差值。
Q = P75% - P25%缺点:①没有利用观察值的全部信息,不能反映其它数据的离散度;四分位数间距仅用来描述大样本偏态资料的变异情况。
方差方差(variance),是描述一个变量的所有观察值与总体均数的平均离散程度的指标。
总体方差用σ2表示,样本方差用 S2表示。
标准差标准差(standard deviation,S ),是描述一个变量的所有观察值与均数的平均离散程度的指标。
总体标准差用σ表示,样本标准差用 S表示。
标准差方差或标准差属同类变异指标,它们多用来描述均匀分布或近似正态分布的资料,大、小样本均可,其中以标准差的应用最广,通常与均数结合使用。
比如在许多医学研究报告中常用 X拔±S 的形式表达资料。
变异系数变异系数(coefficient of variation,CV ),是一个度量相对离散程度的指标。
CV是无量纲的指标,可以用来比较几个量纲不同的指标变量之间的离散程度的差异,或比较量纲相同但均数相差悬殊的变量之间的离散程度的差异。
小结第三章正态分布与医学参考值范围正态分布,是一种连续型随机变量常见而重要的分布。
正态曲线,是一条高峰位于中央,两侧逐渐下降并完全对称,曲线两端永远不与横轴相交的钟型曲线。
如果随机变量X的分布服从概率密度函数和概率分布函数称连续型随机变量X服从正态分布,记为X~N (μ, σ2 )。
π为圆周率,e为自然对数的底值,σ为总体标准差,μ为总体均数。
正态分布的特征1、正态分布是单峰分布,以X =μ为中心,左右完全对称,正态曲线以X轴为渐近线,两端与X轴不相交。
2、正态曲线在X =μ 处有最大值,其值为f(μ)=1/(μ√2π) ;X越远离μ ,f(X)值越小,在X= μ± σ 处有拐点,呈现钟形。
3、正态分布完全由参数μ和σ决定。
μ是位置参数,决定正态曲线在X轴上的位置。
在σ一定时,μ增大,曲线沿横轴向右移动;μ较小,曲线沿横轴向左移动。
σ是形状参数,决定正态曲线的分布形态。
σ越大,曲线的形状越“矮胖”,表示数据分布越分散;σ越小,曲线的形状越“瘦高”,表示数据分布越集中。
正态曲线下面积分布规律1、服从正态分布的随机变量在某一区间上的曲线下面积与其在同一区间上取值的概率相等。
2、曲线下的总面积为1或100%,以μ为中心左右两侧面积各占50%,越靠近μ 处曲线下面积越大,两边逐渐减少。
3、所有的正态曲线,在μ左右的任意个标准差范围内面积相同。
一些特殊情况,在μ±σ范围内的面积约为%,在μ±σ范围内的面积约为%,在μ±σ范围内的面积约为%。
标准正态分布对任意一个服从N (μ, σ2 )分布的随机变量X,经Z=X-μ/σ变换都可以转为μ=0、σ=1的标准正态分布,也称随机变量的标准化变换。
标准正态分布的应用实际应用中,经z变换可把求解任意一个正态分布曲线下面积的问题,转化成标准正态分布曲线下相应面积的问题。
正态分布的应用1、制定医学参考值范围2、质量控制3、正态分布是很多统计方法的理论基础医学参考值范围医学参考值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。
医学参考值范围,习惯上是包含95%的参照总体的范围。
制订的注意事项a、抽取足够例数的同质“正常人”样本★“正常人”的定义,样本量(n>120),随机化。
b、确定具有实际意义的统一测量标准★指标的测量方法等要有规定,控制测量误差。
c、根据指标的性质确定是否要分组★根据实际情况、专业知识。
d、根据指标含义决定单、双侧范围★单侧下限,过低异常;单侧上限,过高异常;双侧,过高、过低均异常。
e、选择适当的百分范围★绝大多数人,一般80%、90%、95%、99%;★减少误诊,取较大范围;减少漏诊,取较小范围。
f、估计参考值范围★根据资料分布类型:正态分布法、百分位数法。
第四章定性数据的统计描述相对数,是两个有关的绝对数之比,也可以是两个统计指标之比。