盾构隧道穿越土坝的地层沉降控制

盾构施工质量保证措施

1.1管片质量保证措施 (1)管片生产质量保证措施 1)严格控制管片模具的精度,按照精度要求对管片钢模定期进行检查和校正。 2)要求混凝土所使用的原材必须符合设计及施工规范的要求,应有出厂合格证和相应的试验报告。 3)严格审查管片生产工艺和质量保证措施,认真做好过程控制。指派专门的管片质量检查人员每周不定期去构件厂检查管片生产过程的质量、原材料及生产工艺的控制情况,要求构件厂提供从原材、生产及试验的所有资料,并结合检查记录分析等形成质量周报,并报业主及监理等单位。 4)要严格做好出厂检验及现场的验收工作,事先制定出厂检查及现场质量验收标准。 5)事先计划好现场管片的存放、运输及拼装作业。要有管片的使用计划。 (2)管片拼装质量保证措施 1)选取管片时要多方面考虑,选取管片时也要本着“勤纠偏、小纠偏”的原则进行,以减小片拼装时的错台。 2)确保质量合格、管片类型符合工程师指令的管片才准进洞。 3)严格按指定的拼装工艺进行拼装。 4)拼装过程中经尺量管片错台符合拼装要求后,再将管片就位。 (3)管片衬砌防水质量保证措施 1)确保管片的自身防水符合设计要求,并对管片弹性密封垫入洞前进行严格的验收。 2)严格控制拼装工艺,提高管片拼装的质量。 3)在管片拼装前先于弹性密封垫上涂抹润滑剂,以减少弹性密封垫在拼装中出现的错位。 4)安装管片螺栓接头前检验止水垫圈完整方可安装螺栓。 5)盾构掘进时盾尾空隙注浆要严格控制配比,以形成稳定均匀的管片防水层。

(1)盾构施工轴线控制措施 1)所使用盾构机须装备有高度现代化的自动实时监控测量指引系统。 2)在盾构隧道施工之前,要严格按要求建立起一套严密的人工测量和自动测量控制系统,根据自动的精度和工程的精度要求决定人工控制测量和复核的内容及频率。 3)认真做好盾构机的操作控制,按“勤纠偏、小纠偏”的原则,通过严格的计算,合理选择和控制各千斤顶的行程量,从而使盾构和隧道轴线在容许偏差范围内,切不可纠偏幅度过大,以控制隧道平面与高程偏差而引起的隧道轴线折角变化不超过0.4%。 4)合理使用超挖刀和铰接千斤顶来控制盾构机轴线,从而实现对隧道轴线的线形控制。 5)管片的类型和拼装方式的控制,依据隧道中线和设计中线以及盾构机和管片的关系,通过计算修正曲线来确定管片的类型和超前量。 (2)盾构施工沉降控制措施 认真进行现场环境条件的调查,并结合线路的走向做好地面的监测工作。准备进行的与沉降有关的监测项目有:地表沉降监测、地面建(构)筑物变形监测、地下管线变形监测、河底沉降监测、隧道收敛监测。 1)监测点的观测频率、范围与数据处理 2)盾尾注浆压力和注浆量是直接影响地面沉降的关键因素,在施工中要严格按规定程序和下达的施工指令进行注浆操作,精确控制注浆压力和注浆量。 3)严格控制盾构机的姿态 在盾构掘进施工过程中,盾构姿态变幅越大,盾构机越难控制,对地面沉降的影响也越大,要坚持“勤监测、勤纠偏、小纠偏”的原则,尽量实现盾构的平缓推进;严禁一次性大幅度纠偏,造成过大超挖和对周围土层的扰动。每次盾构机的纠偏量应不超过3cm(0.5%D)。 1.3联络通道施工质量保证措施 (1)测量放线准确,从地面引测后,尽早从隧道内进行检测。 (2)衬砌之间的防水板接缝严密,焊钢筋时设隔垫板保护。

盾构施工近距离下穿地铁线路沉降控制技术

盾构施工近距离下穿地铁线路沉降控制技术 发表时间:2019-04-28T10:00:34.173Z 来源:《基层建设》2019年第6期作者:史天增[导读] 摘要:地铁工程的大量建设,让城市中盾构施工变得越来越多,如何控制盾构施工下穿地铁线路的沉降是施工中的一个重难点,对于保证地铁施工的高质量和安全性具有重要意义。 中铁十一局集团城市轨道工程有限公司摘要:地铁工程的大量建设,让城市中盾构施工变得越来越多,如何控制盾构施工下穿地铁线路的沉降是施工中的一个重难点,对于保证地铁施工的高质量和安全性具有重要意义。本文从盾构施工下穿地铁线路的五个阶段出发,结合工程实例,对不同阶段采取了有针对性的控制措施,保障了地铁施工的安全。 关键词:盾构施工;下穿地铁线路;沉降控制 一、工程概况 某市地铁区间为单洞单线区间,区间起点为机场北站,终点为吊出井,起点里程为YDK41+437.900,终点里程为YDK42+343.576(ZDK42+335.972),区间长度905.676m(左线898.072m),线路埋深在19m~27m之间,最小线间距12.05m。区间线路自机场北站先后以24‰、28‰及4‰坡度向下直至吊出井。机~吊区间右线在机场北站大里程端(对应里程:DK41+437.9)始发掘进,始发直线掘进211m后在里程DK41+659.8(对应环号:142环)处先后下穿既有运营的11号线右线、11号线入场线、11号线出场线及11号线左线。 盾构施工近距离下穿地铁线路是施工难点,特别是结合地下不良地质条件的影响,使得土体易受施工影响发生沉降,施工控制难度加大。 二、盾构施工下穿地铁线路沉降控制措施分析 盾构施工造成的土体沉降主要是因为施工过程对于土体的扰动和水土流失造成的。其可以分成五个阶段,第一阶段,盾构施工还未达到断面,地下水位降低导致沉降;第二阶段,盾构通过该断面前,因控制不足,导致前方土塑性变形引起沉降;第三阶段,盾构通过断面,由于刀盘与盾体之间存在15mm间隙及超挖、纠偏、盾构外侧与土体之间接触导致沉降;第四阶段,盾构通过该断面后产生的弹塑性变形,因衬砌处理不当导致的沉降;第五阶段,盾构通过断面后,发生的后续沉降。针对沉降五阶段分别采取不同控制措施: 1.前期沉降控制措施 为保证盾构顺利掘进上软下硬地层,在出入线与正线之间用A600@150垂用高压旋喷桩对隧道上软下硬段进行预加固处理。加固区域和深度见下图所示。 图1 盾构通过区域加固示意图盾构机下穿11 号线隧道前,在11号线隧道出入线洞内对11号线隧道下方土体进行注浆加固。注浆范围: (1)隧道深度范围内,加固范围为:既有地铁11号线隧道底部至强风化花岗岩岩面,若强风化花岗岩岩面位于机~吊区间隧道拱顶以下,则加固至机~吊区间隧道顶。 (2)在地面上使用WSS斜孔注浆对下穿11号线正线影响区进行使用WSS注浆进行预加固处理。 2.开挖面沉降控制措施 盾构掘进开挖面沉降主要通过土压控制、出土量、掘进参数调整进行控制。为了保证开挖面的稳定,保持开挖面土压平衡、对土仓压力进行实时监测,对土压设定进行试验。根据开挖面土压平衡、控制出土量。对总推力、推进速度、刀盘扭矩、千斤顶压力进行监测并分析其随地层条件变化的规律。 3.盾构通过时沉降控制措施 本工程选用海瑞克盾构机,刀盘设计直径为6980mm,前盾直径为6950mm,刀盘较盾体直径大30mm,为减少该阶段沉降,应尽量缩短盾体通过时间,因此需保证盾构能连续掘进,防止盾构机发生不必要的停机。而当盾构机应特殊原因在下穿地铁期间时,通过盾构机盾体上的径向孔向盾体周边注入厚浆土,以填充盾体周边的孔隙,减小盾体通过阶段的沉降。 4.盾尾空隙沉降控制措施 (1)同步注浆 盾尾与管片脱离后,管片与土体间会出现14cm建筑孔隙,掘进过程中盾尾同步注浆管在建筑孔隙中注入同步浆液填充,以防止盾尾与管片脱离后土体坍塌,造成地面沉降过大。 ①注浆量 同步注浆量理论上是充填盾尾建筑空隙,但同时要考虑盾构推进过程中的纠偏、浆液渗透(与地质情况有关)及注浆材料固结收缩等因素。注浆量按下式进行计算: Q=V?λ 式中: Q——注入量(m3) λ——注浆率(取1.2~1.5,曲线地段及沙性地层段取较大值,其它地段根据实际情况选定) V——盾尾建筑空隙(m3)

隧道沉降观测方案

中交第一公路工程局有限公司 CHINA FIRST HIGHW A Y ENGINEERING CO.,L TD. 新建沪昆铁路客运专线长沙至昆明段(贵州)CKGZTJ-4 标二工区 隧道沉降变形观测方案中交第一公路工程局有限公司沪昆客专贵州段工程指挥部二工区 二○一一年一月

目录 一、总则 (2) 二、主要依据的标准及规范 (2) 三、沉降变形监测网建立及测量技术要求 (2) 四、一般规定 (3) 五、沉降观测的内容 (4) 六、沉降观测点的布置 (4) 七、观测精度 (4) 八、沉降观测频度 (4) 九、分析评估方法及判定标准 (5) 十、组织与管理 (6) 一、总则 1、为指导沪昆客运专线贵州段土建工程四标段二工区做好施工期间的沉降观测,通过对隧道工程的沉降观测资料进行分析,预测工后沉降,确定无碴轨道的铺设时间,评估路基工后沉降控制效果,确保无碴轨道结构的安全,制定本方案。 2、无碴轨道铺设条件评估的重点是线下工程的变形,评估综合考虑沿线路方向各种结构物间的变形关系进行实施。 3、基础工程的沉降观测数据必须采用先进、成熟、科学的检测手段取得,且必须真实可靠,全面反映工程实际状况。 4、本规定适用于施工期及正式验收通过前的沉降观测评估工作。 二、主要依据的标准及规范 1、《客运专线无碴轨道铺设条件评估技术指南》(铁建[2006]158号); 2、《高速铁路工程测量规范》及条文说明(TB10601-2009); 3、《工程测量规范》(GB50026-2006) 4、《国家一、二等水准测量规范》GB12897-2006 5、《客运专线铁路变形观测评估技术手册》工管技2009-77号 6、沪昆客专隧道设计图纸 三、沉降变形监测网建立及测量技术要求 1、沉降监测网的建立、精度要求等应符合相关规范的要求; 2、沉降监测网应在施工高程控制网的基础上进行加密建立,按二等水准测

武汉地铁2号线盾构施工对地表沉降影响分析

武汉地铁2号线盾构施工对地表沉降影响分析 【摘要】对武汉地铁2号线盾构掘进施工过程中地表沉降监测数据统计,并根据Peck理论进行拟合对比分析,得到盾构施工引起纵横断面地表沉降的特点:纵向上,盾构机切口前30m以内和后50m以内为影响区域,其中又以切口后50m为显著影响区,盾构通过该区域产生的沉降占总沉降量的80%~90%,盾构对某断面上影响范围在沿盾构中心轴线向左右两侧延伸10~18m;对武汉粉质黏土夹粉土粉砂层,盾构掘进引起的地表沉降数据累计变化控制指标宜为-40mm,盾构机切口通过监测断面6~20m范围内单次平均变化速率控制值宜为-15mm/d。 【关键词】地铁;盾构施工;地表沉降;Peck公式 武汉汉口地区工程地质、水文地质非常复杂,既有深厚软土,又有粉土、粉砂、互层及承压水的影响。在此种地质条件下进行地铁盾构施工,对变形控制有更加严格的要求。本文结合Peck理论对武汉地区盾构施工引起地表沉降变化情况进行初步分析,以期得到适用于武汉特殊地质情况下盾构施工对地表扰动的沉降控制标准。 1、工程概况 武汉地铁2号线一期工程某区间位于汉口,线路周边各种建筑物密集、地下管线密布,场地地貌为长江北岸冲积I级阶地。盾构起讫里程为:CK4右+743.906~CK5右+758.399,右线长1 014.493m,左线长1 017.576m,总长2 032.069m。区间设一个联络通道,与泵房合建,里程为:CK5(右)+220.000;设有2个平面曲线,最小曲线半径700m,线间距12~15m。线路最大纵坡坡度14‰,最小坡度2‰,区间结构平均覆土厚度约11m。 该区间隧道为外径6m、内径5.4m、管片拼装衬砌的单洞圆形隧道,管片环宽1.5m,管片采用C50,P12混凝土。 区间左线掘进采用新购法国维尔特EPB盾构机,开挖直径6 280mm,护盾直径6 262mm,主机长9.5m,整机长约77m,盾构及后配套总重450t(主机约300t),最小转弯半径250m,最大坡度35‰,整机使用寿命10km。 2、水文地质条件 盾构区间地层物理力学指标如表1所示。盾构隧道掘进地层主要在③4,③5层。地层静止水位埋深3.8m左右,且与长江、汉江有较密切的水系联系,整个盾构施工全部在地下水位以下。 3、地表沉降监测方法 3.1监测点布置 隧道纵向上沿中心轴线每隔20m布设一个监测断面;横向上,每个断面沿轴线中心点向两边每隔3m布设一个监测点,共5个。为减小路面结构对观测效果的影响,所有沉降监测点均埋设于原状土层内,由套管保护至地面。监测点埋深约1.5m,到原状土为止。

盾构法隧道施工引起的地面沉降的原因与对策

盾构法隧道施工引起的地面沉降机理与控制 摘要:本文首先分析了盾构法隧道引起的地面沉降规律和沉降 影响范围,总结了盾构隧道地面沉降的主要影响因素;指明地面沉 降主要源于开挖面的应力释放和附加应力等引起的地层变形,并对地铁施工中的地面沉降安全判断标准和控制原则进行了探讨,为城市地铁工程建设提供有益的参考。 关键词:盾构隧道地铁工程地面沉降沉降控制 中图分类号:u45 文献标识码:a 文章编 号:1672-3791(2012)06(b)-0071-02 abstract:this paper analyzes the shield tunnel caused by land subsidence law and settlement of affected areas,and summarizes the main factors of land subsidence of the shield tunnel;specified land subsidence is mainly due to the excavation surface stress release and the additional stress causedstrata deformation,land subsidence and subway construction safety criteria and control principles are discussed to provide a useful reference for the construction of urban subway project. key words:shield tunnel;subway project;land subsidence;subsidence control 盾构法具有不影响地面交通、对周围建(构)筑物影响小、适应复

浅谈盾构穿越低瓦斯复合地层施工关键技术

浅谈盾构穿越低瓦斯复合地层施工关键技术 摘要目前国内地铁工程采用盾构法在瓦斯地层中掘进经验较少,且无相关规范参考。本文以成都地铁18号线盾构穿越低瓦斯复合地层为例,介绍了低瓦斯复合地层施工重点,难点,提出了瓦斯防控,渣土改良,注浆控制,管线保护等关键技术的控制措施,对在瓦斯隧道掘进中的施工参数做出主动调整,保证了低瓦斯复合地层隧道安全快速贯通,可以为同类工程提供合理参考。 关键词低瓦斯隧道;复合地层;盾构隧道 成都轨道交通18号线工程海福1号风井~海昌路站区间采用2台中铁装备复合式土压平衡盾构机,开挖直径为8630mm。海昌路站~海福1号风井区间在里程DK22+714~DK22+964段(长度约为250m),穿越上部卵石,下部砂岩复合地层,隧道线路坡度为25‰的上坡。 1 工程地质特征 成都轨道交通18号线海福1号风井~海昌路站区间复合地层段隧道范围内上部地层为密实卵石土,下部地层为中风化砂岩,其抗剪强度为150kpa,单轴极限抗压强度为3.7Mpa,隧道埋深5~11m。 2 瓦斯概况 2.1 有毒气体 海福1号风井~海昌路站区间隧道穿越苏码头油气田,根据地勘报告,在沿线不同地段均测出有不同程度的瓦斯分布。有害气体主要有浅层天然气(CH4)、一氧化碳(CO)气体。 2.2 瓦斯等级划分 根据《铁路瓦斯隧道技术规范》(TB10120-2002)瓦斯等级判定标准,如当全工区的瓦斯涌出量小于0.5m3/min时,为低瓦斯工区。根据岩土工程勘察报告,海福1号风井~海昌路站盾构区间为低瓦斯隧道[1]。 3 盾构穿越低瓦斯复合地层施工重点、难点分析 3.1 瓦斯防控 瓦斯隧道施工总原则为:控火源,防涌出,重监测,强通风。瓦斯隧道必须贯彻“先测后进,有疑必测,不明不进”的指导方针。必须把“一通二防”(通风、防治瓦斯、防火)作为安全工作的重点,建立和落实“一通二防”管理制度,保证人员、资金和技术设备到位。

探析南京河西地区地铁盾构隧道不均匀沉降问题

探析南京河西地区地铁盾构隧道不均匀沉降问题 发表时间:2018-04-02T16:14:19.563Z 来源:《基层建设》2017年第36期作者:田为波王丹丹 [导读] 通过构建的盾构隧道沉降计算公式及典型案例,解释了盾构隧道不均匀沉降是由不均匀分布的下卧软土与外部影响因素共同作用所造成,明确了地下水位的下降对盾构隧道沉降影响最为显著,外部基坑施工影响次之,地表堆载影响较少。 江苏建科工程咨询有限公司江苏南京 210000 摘要:依托实测资料,发现南京河西地区某盾构隧道已经形成多个不均匀沉降槽、地面沉降主要发生在软土层、②-4土体地下水位具有呈现正弦函数规律的季节性波动,通过构建的盾构隧道沉降计算公式及典型案例,解释了盾构隧道不均匀沉降是由不均匀分布的下卧软土与外部影响因素共同作用所造成,明确了地下水位的下降对盾构隧道沉降影响最为显著,外部基坑施工影响次之,地表堆载影响较少。 关键词:城市轨道交通;隧道沉降;下卧层软土;地下水位;外部施工 1河西地区盾构隧道 1.1盾构隧道设计参数 隧道外径6.2m,内径5.5m,壁厚0.35m,环宽为1.2m,管片的环与环、块与块间均以机械性能等级为5.6级的M30弯螺栓连接错缝拼装,管片混凝土强度等级为C50,抗渗等级为P12。 1.2沿线地质概况 河西地区某盾构隧道地层自上而下大致可分为①-1及①-2b填土层、②-1b2-3漫滩硬壳层、②-2b4漫滩淤泥质粉质黏土、②-3b3-4漫滩淤泥质粉质黏土、②-3c2-3漫滩冲积粉质黏土、②-3d2-3漫滩冲积粉细砂、②-4d2-1漫滩冲积粉细砂,局部存在断层。盾构隧道主要坐落于②-3及②-4土层中,详见图1。 图1运营盾构隧道地质剖面 2河西地区监测成果 2.1盾构隧道长期沉降监测 盾构区间通车运营以来,每3个月观测1次,截至2015年12月,隧道已经实施长期沉降监测20期,考虑隧道上下行线中心线相距约 17m,上下行线隧道沉降变化规律基本一致,文中仅以下行线隧道沉降作为分析对象,隧道不同时段沉降曲线见图2。 从图2可以清晰明显看出,盾构隧道已经形成了11个沉降槽,沉降曲线与隧道下卧软土层分布曲线相似,其中6个沉降槽周边现在或曾经存在物业开发,截至数据统计节点,其中8个沉降槽不均匀沉降已经超出规范控制值。

盾构下穿建筑物沉降分析与控制技术研究-本科毕业论文

盾构下穿建筑物沉降分析与控制技术研究-本科毕业论文

中国矿业大学(北京) 本科生毕业设计(论文) 中文题目:盾构下穿建筑物沉降分析与控制技术研究 英文题目:Research on Subsidence Analysis and the Relevant Encountering Measures for TBM undergoing the Buildings 姓名:学号: 学院: 专业:班级: 指导教师:职称: 完成日期: 2012 年 05 月 31 日

中国矿业大学(北京)本科生毕业论文任务书 学院专业 班级学生姓名 任务下达日期:2012年1月18日 完成日期:2012年5月31日 题目:盾构下穿建筑物沉降分析与控制技术研究 专题题目: 主要内容和要求: 1、盾构工法的发展和应用: ①盾构工法发展概况。 ②盾构工法在中国的应用。 2、盾构施工沉降问题的提出: ①阐述对盾构施工沉降的认识。 ②国内外盾构施工沉降分析及控制技术研究现状。 3、对盾构下穿建筑物沉降问题的认识: ①简述盾构下穿建筑物的安全风险。 ②对盾构下穿建筑物沉降规律进行分析与归纳。 4、盾构施工引起建筑物沉降控制技术分析: ①分析盾构施工引起建筑物沉降的主要影响因素。

②阐述控制建筑物沉降的方法及其适用条件和优缺点。 ③工程实例分析与研究。 5、结论和展望: ①谈谈自己对盾构下穿建筑物的理解,通过研究人们对盾构下穿建筑物沉降的分析、控制和处理方法得出自己的结论以及对今后发展趋势的展望。 ②对完善盾构下穿建筑物沉降控制方法以保证施工安全,提出自己一家之言。

院长签字:指导教师签字:

城市浅埋暗挖隧道沉降控制与分析

城市浅埋暗挖地铁隧道沉降控制与分析 中铁十三局集团二处南京地铁TA25项目部 蒲开勇范文兴黄捷胜 【摘要】本文按地面建筑物沉降、地面沉降变形的不同要求对沉降控制问题作出分析,给出了相关的控制基准经验公式,结合南京地铁鼓楼站-玄武门站区间具体情况,对浅埋暗挖隧道地表、建筑沉降进行细致监测,并根据现场实测数据进行较为深入的分析,阐述在设计及施工浅埋暗挖地铁隧道时应注意的事项,以供类似工程参考。 【关键词】地铁隧道浅埋暗挖沉降监测控制分析 引言 随着城市地铁在我国的陆续兴建,浅埋暗挖法在地铁隧道施工中得到广泛的应用,由于其埋置深度小,随着地层物质被挖出,自洞室临空面向地层深处一定范围内地层应力场将发生调整,宏观表现为地层物质的移动,施工引起的地层变位将波及地表,产生地面沉降,形成施工沉降槽,过大的地面沉降和地层变位将直接危及地面建筑物的正常使用,进而危及施工安全,因此施工中必须对有害沉降进行控制,这就要解决沉降的控制基准问题,并通过控制基准在施工过程中对地面建筑、地表沉降等,在理论分析指导下进行有计划的监测,以监测数据为依据,对暗挖隧道进行动态管理。 1.工程概况 南京地铁南北线一期工程TA12标鼓楼站~玄武门站区间隧道开挖方法为矿山法,在鼓楼站北修建一停车渡线,其起始里程为K10+337.7,终点里程为K10+671.286,渡线段长333.586m,实际施工开挖最大断面(马蹄形)。该段覆土厚度11.9~17.30m。地质情况从上至下依次为松散~稍密状杂填土、软塑状粉质粘土、残积土、强风化安山岩、中风化破碎安山岩。区间地下水主要为松散层的孔隙潜水和基岩裂隙水,地下水位埋深 1.2~4.5m。渡线段地表建筑物、地下管线较密集且安全度较低。地表有二层以上建筑物19幢,建筑物最早年代为1947年;部分建筑物已有多条裂缝;玄武门站南端有307.6 m的软~流塑地质段,该段土体具有高压缩性,高灵敏度,易产生土体流动、开挖面不稳等现象,地面有五层住宅楼3幢和两层砖房两处(为民国时期建筑)并穿越市区道路。 2.沉降控制基准值的确定 沉降控制基准由两个方面确定:其一是出于环控的需要;其二是出于隧道工程结构稳定本身的需要。实施的控制基准必须两者兼顾。 沉降对城市环境、隧道结构本身造成的危害主要表现在地面建筑物的过量倾斜及地下管线的变形、断裂而影响其正常使用和威胁结构安全。通常的地面沉降控制值即是出于对环境和结构稳定要求的考虑,其根据主要来源于已有的建设规范及以往的工程实例。但是由于地面建筑及地下管线种

盾构法施工引起地面沉降原因分析及防治措施

盾构法施工引起地面沉降原因分析及 防治措施

盾构法施工引起地面沉降原因分析及控制方法进入21世纪,世界经济的迅猛发展使城市化建设得到了大幅度的提速。当前,人口不断地向城市聚集,使城市人口和建筑的密集度快速上升,造成能被利用的地面空间越来越少,因此,当今城市现代化建设的重要课题之一便是开发地下空间,为人类创造价值。但各种用途的管线被布置在地下,这便产生了在地下工程施工背景下的一种最佳方法——盾构法。盾构法施工虽然优点颇多,可是也存在诸多问题。本文就盾构法施工过程中引起的地面沉降问题展开讨论,分析产生的原因及寻找控制方法。 一,地面沉降产生原因 1、地层隆沉的发展过程 盾构推进引起的地面沉降包括五个阶段:最初的沉降、开挖面前方的沉降、盾构机经过时沉降、盾尾空隙的沉降以及最终固 结沉降,如图l所示。 第一阶段:最初的沉降。该压缩、固结沉降是因为地基有效上覆土层厚度增加而产生的沉降,也是盾构机向前掘进时因为地下水水位降低造成的。指从盾构开挖面距地面沉降观测点还有一

定距离(约3~12m)的时候开始,直至开挖面到达观测点这段时间内所产生的沉降。第二阶段:开挖面前方的沉降(或隆起)。这种地基塑性变形是由土体应力释放、开挖面的反向土压力、或机身周围的摩擦力等作用而产生的。它是从开挖面距观测点约几米时开始至观测点处于开挖面正上方这段时间所产生的沉降(或隆起)。第三阶段:盾构机经过时沉降。该沉降是在土体的扰动下,从盾构机的开挖面到达测点的正下方开始到盾构机尾部经过沉降观测点该段时期产生的沉降(或隆起)。第四阶段:盾尾空隙沉降。该沉降产生于盾尾经过沉降观测点正下方之后。土的密实度下降,应力释放是其土力学上的表现。第五阶段:固结沉降,它是一种由地基扰动所产生的残余变形沉降。经前人研究发现,第一阶段沉降占总沉降的0~4.5%,第二阶段沉降占总沉降的0~44%,第三阶段沉降占总沉降的15~20%,第四阶段沉降占总沉降的20~30%,第5阶段沉降占总沉降的5~30%。 2、地表沉降的因素影响分析 该因素影响分析的平台是当前使用较为广泛的大型三维有限元分析软件ANSYS,盾构开挖面掘进引起的地表沉降的客观因素包括盾构直径、土体刚度、隧道埋深、施工状况等设计条件;而其主观因素包含施工管理、盾构机的选用形式、盾尾注浆、辅助施工方法等。下面对盾尾同步注浆、覆土厚度、管片宽度、掌子面顶进压力、土体弹性模量和盾构直径六个方面的因素进行分析。

地铁盾构隧道下穿建筑物沉降规律分析

地铁盾构隧道下穿建筑物沉降规律分析 摘要:通过对成都地铁盾构隧道穿越建筑物引起的地表沉降进行动态监测与分析,得出了盾构地铁隧道在穿越建筑物时沉降发生时间及影响范围,并初步制定了用于指导施工的监测数据库,以便为今后类似工程提供参考。 关键词:成都地铁2 号线; 盾构隧道; 穿越; 地面建筑物; 沉降监测 1 .引言 随着国家、城市的经济发展,地铁成为交通繁忙、人口密集城市的重要交通工具。在地铁盾构隧道施工期间,不可避免地要近距离地下穿地面建筑物,在穿越期间,由于地层受扰动、超挖引起的地层损失及应力改变等原因都可能造成地面建筑物出现沉降、位移,从而引起建筑物出现裂缝、倾斜甚至倒塌,给人民的财产、安全带来威胁。为掌握盾构施工过程中地面建筑物的状态,在实施加固、保护等施工措施的同时,必须对地面建筑物进行监测,并将监测数据及时反馈到施工中,确保施工安全。本文对成都地铁盾构隧道某栋建筑物的监测成果进行研究分析,以便为今后类似工程提供参考。 2 .工程及地质概况 本工程为成都地铁线2 号线羊西二环路站~白果林站,在里程YCK26 + 332 ~YCK26 + 832 段穿越密集居民建筑群。盾构隧道埋深约14 米,地面建筑物为金琴路南段二巷2 号楼,主体上部为砖混7 层,下部为预制桩基础,基底约2.5m 中砂。 该隧道地处川西平原岷江I 级阶地,为侵蚀~堆积阶地地貌,地形平坦。隧道穿越地层主要为砂卵石层,局部夹中砂。第四系孔隙水是段内地下水的主要存在形式,主要赋存于各个时期沉积的卵石土及砂层中,土体透水性强、渗透系数大,水量丰富。场地内地质构造条件简单,未发现有断裂通过,无不良地质作用,在VII度地震作用下,不具备产生滑坡、崩塌、陷落等地震地质灾害的条件,环境工程地质条件较简单。综合判定,本工程场地稳定。 3 .监测方案设计 尽管盾构法施工隧道具有对周围环境影响小、掘进速度快、机械化程度高、施工安全等特点,但仍不可避免地引起地表以及地表建筑物沉降。因此在研究盾构隧道对建筑物沉降的影响,布设了建筑物沉降监测点,用以观测建筑物下沉量,判定建筑物的安全性,以便采取相应的保护措施。 3 .1 测点布置 建筑物沉降监测点位布设在建( 构) 筑物四角的结构柱、建筑物基础分界点( 基础沉降缝) 布设沉降观测点10 个监测点位,见图1。

盾构近距离下穿既有隧道沉降控制技术

盾构近距离下穿既有隧道沉降控制技术 盾构近距离下穿既有隧道沉降控制技术 摘要:深圳地铁3号线购物公园站~福田站区间盾构施工需下穿已运行的1号线隧道,其中两隧道最小净距为1.23米。通过对工程现场条件综合分析及力学模型研究和计算,综合各方论证结果,确定施工方案并进行盾构施工关键技术研究,为下穿施工中提供全面的技术参数,施工完成后,既有运行线内各项控制指标得到了有效控制,未对已运行线结构及道床、轨道产生不利影响。 关键词:盾构隧道;实时监测;控制指标;参数;沉降 中图分类号:U456.3文献标识码:A 文章编号: 1前言 1.1工程背景 深圳地铁3号线购物公园站~福田站区间右线下穿隧道与正在 运营的深圳地铁1号线隧道之间的最小净距为1.46 m,左线最小净距为1.23 m。区间下穿隧道主要位于全风化花岗岩层和强风化花岗岩层,隧道覆土厚度约为18m,线路坡度为-5‰,采用通用型管片,管片外径6.0m,内径5.4m,管片厚度300mm,管片宽度1.5m,分块数为6块(一块封顶块、两块邻接块、三块标准块)。 1.2难点及风险分析 1、技术难点 新建地铁与下穿的既有运行线最小净距1.23米,盾构掘进对既有运行线影响较大,根据深圳市地铁公司《城市轨道交通安全保护区施工管理办法(暂行)》规定,运营线路轨道竖向变形±4mm,两轨道横向高差<4mm,水平及水平三角坑高低差<4mm/10m,轨距+6mm~-2mm;控制指标严格,对盾构掘进控制要求高。 2、工程安全方面存在的风险 正在运营的地铁1号线因沉降过大影响营运,甚至造成停运的风

险,社会责任重大;下穿区域全强风化地层中存在球状风化体的风险;盾构机选型及后配套设备故障导致停机引起的安全风险。 2施工模型研究及方案确定 2.1施工模型研究 1、施工力学行为数值分析―力学模型 1)正交段最小净距仅为1.2m,上洞埋深为10.6m; 2)综合判定围岩级别为Ⅴ级,夹土体围岩按加固考虑; 3)主要模拟新建隧道开挖对既有1号线运营线隧道的影响; 4)采用FLAC3D进行力学分析。 图1力学模型示意图 2、施工力学行为数值分析―计算结果 1)地表沉降为7.7mm,既有隧道(1号线)最大沉降3.9mm,附加拉应力达到1.25MPa。 2)上下两洞之间地层的最大主应力值将达到0.25MPa,下洞(3号线)最大轴力为616kN,最大弯矩为28kN?m,均位于两侧边墙部位。 目标地表与既有1号线隧道随施工的下沉情况如图2和图3所示。 图2目标面地表随施工沉降情况图3既有隧道(1号线)随施工下沉情况 2.2控制指标 根据深圳市地铁集团《城市轨道交通安全保护区施工管理办法(暂行)》的规定,参照多次专家论证会的论证意见,新建盾构隧道施工对既有1号运行线影响的控制指标按三级预警制度进行管理,即,预警值、报警值、控制值三级。预警值取控制值的50%,报警值取控制值的80%,结构变形控制指标如下: 表1结构变形控制指标(单位:mm)

黄土地质地铁隧道施工降水与沉降控制

黄土地质地铁隧道施工降水与沉降控制 摘要:地铁暗挖隧道施工降水的成功与否是决定隧道施工安全、优质、高效完成的保证,又是地层沉降控制的关键。针对西安特有的黄土地质条件下地铁深基坑施工,从土层地质、水文、降水方式、降水参数等各个方面进行分析和研究,对黄土地质条件下地铁深基坑降水与沉降控制的施工技术进行了阐述。 关键词:黄土地铁隧道施工降水沉降控制 1工程概况 西安地铁一号线朝阳门站~康复路站区间隧道起始于朝阳门车站,沿长乐西路向东,下穿中兴路人行天桥,终止于康复路车站;左右线隧道分别长774.597米、776.2米,均采用喷锚构筑法施工;左右线隧道线间距15米,拱顶埋深约14.87米(朝阳门端)~9.48米(康复路端),隧道按照地质地段不同分为a、b、c、d、e五种断面结构。区间隧道在zdk22+651.627~zdk22+695.851段下穿中兴路人行天桥,天桥基础为钻孔灌注桩基,桩长30m,桩径1m,桩基础与隧道的最小净距0.487m。区间隧道在z(y)dk22+534.604和z(y)dk23+247.780处设置两个施工竖井;在zdk22+751.197(ydk22+750.950)处设置联络通道兼废水泵房一座。f 朝阳门外地裂缝在区间近朝阳门车站段通过,f4地裂缝在区间近康复路车站段通过。 2 工程地质特征 2.1地形地貌

朝康区间隧道位于长乐西路下方,区间场地标高404.99~407.91m,全段东高西低,高差2.92m,地貌单元属黄土梁洼。 2.2工程地质 2.2.1全更新统地层(q4) 1-1层杂填土():主要以路面及路基组成,较密实,全场地分布,层厚0.7~1.9m,层底深度0.7~1.9m。 1-2层素填土():主要有黏性土组成,含白灰渣及少量砖瓦碎块,较松散,局部分布,属高压缩型土,具湿陷性,层厚0.7~5.10m ,层底深度1.20~5.80m。 2.2.2全更新统地层(q3) 3-1-1层新黄土():褐黄色,大孔、虫孔发育,ā1-2=0.88mpa-1,硬塑-可塑状态,属高压缩型土,δs2.0=0.041,具湿陷性,层厚0.5~5.50m ,层底深度3.00~6.50m。 3-1-2层饱和软黄土():褐黄色,大孔、虫孔发育,见少量白色钙质条纹及蜗牛壳碎片,ā1-2=0.32mpa-1,属中压缩型土,i=0.95,软塑,局部流塑,s=96%,层厚2.50~10.30m ,层底深度8.70~13.70m。3-2-2层古土壤():红褐色,具针状孔隙,含多量白色钙质条纹及结核,团粒结构,底部结核富集成30cm左右硬层。可塑,ā1-2=0.25mpa-1,属中压缩型土。层厚3.20~5.50m,层底深度12.50~18.30m。 2.2.3全更新统地层(q2) 4-1-2层老黄土(): 褐黄色,具针状孔隙,含少量钙质结核,可塑

盾构施工对地表沉降影响的预估

盾构施工对地表沉降影响的预估 摘要:以杭州地铁1号线过江隧道为背景,采用经验公式法和有限元数值模拟方法研究分析盾构隧道施工引起的钱塘江北岸标准海塘地表沉降规律,比较两种方法的计算结果,验证了有限元数值模型的合理性,为隧道工程的顺利实施提供参考依据。关键词:盾构隧道;数值模拟;地层变形 杭州地铁1号线南起萧山湘湖杭州乐园,穿过滨江新中心,至钱塘江时在最低冲刷高程以下通过江底,直达江北岸进入婺江路下,并沿该路西行。过江隧道采用加泥式土压平衡盾构施工,采用钢筋混凝土管片单层装配式衬砌。盾构隧道外径6.2m,内径5.5m,衬砌厚度35cm,环宽1.2m,衬砌环全环由6块组成,环与环、块与块间均采用弯螺栓连接。 过江隧道盾构掘进时不可避免地引起地层扰动,引起地层变形及地面沉降。扰动导致土体强度和压缩模量的降低,这将引起长时间的固结和次固结。当地层变形超过一定范围时,会严重危及周围建筑物的安全。因此,掌握地层沉降规律并预先评估其影响程度,对工程的顺利实施极为重要。本文采用经

验公式法和有限元数值模拟方法对钱江通道盾构隧道施工过程中明清鱼鳞石塘的地表沉降规律进行研究,以期对海塘的保护措施及隧道工程的顺利实施提供参考依据。 1盾构隧道引起土层变形的发展过程盾构推进引起的地面沉降分为5个阶段[1-2]: 1)初期沉降:即盾构开挖面到达某一位臵之前,在盾构推进前方的土体滑裂面以外产生的沉降。因初期沉降量较小,所以一般不被人们觉察。 2)盾构到达时的地面变形:为在开挖面靠近观测点并到达观测点下方过程中所产生的沉降或隆起现象。当盾构机的正面土压力等于开挖面静止土压力时,掘进对土体影响最小;当盾构机推力不足,其正面土压力小于开挖面的静止土压力时,开挖面土体下沉;当盾构机推力过大则会引起开挖面土体的隆起。 3)盾构通过时的地面变形:为盾构机开挖面到达观测点至盾构机尾部通过观测点这一过程所产生的沉降。该沉降主要是由于盾构机的通过破坏了原来的土体状况,造成土体的扰动所致。

盾构施工沉降分析

目录 1.地表沉降原因 (1) 1.1.地层损失 (1) 1.2.受扰动土的固结 (2) 1.3.地下水流失 (3) 2.地表沉降的发展过程 (4) 2.1.初期沉降 (5) 2.2.开挖面沉降 (6) 2.3.尾部沉降 (6) 2.4.尾部空隙沉降 (6) 2.5.长期延续沉降 (6) 3.引起地表沉降的因素 (6) 3.1.主观原因 (6) 3.2.客观原因 (7) 4.穿越建(构)筑物掘进参数的控制 (8) 5.结语 (9)

盾构施工沉降分析 针对地铁工程而言,进行沉降控制的重要性体现在两个方面: (1) 城市地铁工程一般位于城市的繁华地段,周围建筑物密集、各种地下管线纵横复杂交错,一旦沉降事故发生,将可能造成建筑物开裂、倾斜,地下管线断裂等事故。影响市民正常生活,造成各种纠纷,进而影响工程施工的进度,增加工程的费用。 (2) 沉降事故在地铁工程的施工中属于多发事故。同时其发生的直接表现为地下隧道拱顶的下沉或坍塌,而这种塌陷的发生又多由涌水、涌泥,环片支护失效等原因引起。这些原因的存在和发生,可以导致施工现场的人员伤亡、设备损坏,进而影响工程进度、增加工程费用,造成严重的后果。 1.地表沉降原因 在软土地层中开挖隧道,不论采取任何施工技术都将引起地层运动,产生地面沉降。盾构施工中引起的地层损失和盾构隧道周围受扰动或受剪切破坏的重塑土的再固结,是地面沉降的基本原因。 1.1.地层损失 地层损失是盾构施工中实际开挖土体体积与竣工隧道体积之差(地层损失率指地层损失体积占盾构理论排土体积的百分比)。周围土体在弥补地层损失中发生地层移动,引起地面沉降。 引起地层损失的施工及其他因素是: (1) 开挖面土体移动 当盾构掘进时,开挖面土体受到的水平支护应力小于原始侧向

复合地层土压平衡盾构施工技术研究

复合地层土压平衡盾构施工技术研究 发表时间:2019-05-23T09:58:12.010Z 来源:《防护工程》2019年第1期作者:王亚飞 [导读] 全面掌握孤石的分布情况,研究孤石处理方法,确保盾构顺利穿越孤石段地层,是隧道盾构工程成败的关键。 摘要:以某轨道交通3号线为工程实例,研究土压平衡(EPB)盾构在复合地层中的施工技术。苏州轨道交通3号线何山路站至某乐园站区间隧道通过108m“上软(土)下硬(岩)”的复合地层,在设计阶段:通过改变隧道纵坡,缩短复合地层段长度;通过改良TBM刀盘设计,优化机械运行参数,实现盾构机械参数和地层物理参数的匹配;通过对隧道上部松散土体静压注浆加固和在建筑物与隧道间安装隔离桩,控制地层变形和保护邻近建筑物;采用三维数值模拟预测隧道开挖引起的地层变形和建筑物沉降,为工程决策提供依据。在施工阶段:对于软土、复合地层和硬岩段采用不同盾构运行模式和掘进参数;掘进过程采用六个主要参数指标进行控制;采用在盾构机前方开挖竖井进行损坏刀箱、刀具的更换。施工监测显示:实测地表和建筑物沉降与三维有限元预测、Peck经验公式预测结果吻合良好,地表沉降控制在2.0cm以内,邻近建筑物沉降控制在3mm以内。工程的顺利实施为国内其他类似复合地层隧道盾构掘进工程提供有益借鉴。 关键词:隧道掘进;复合地层;土压平衡; 引言 随着我国城市轨道交通建设事业的蓬勃发展,地铁线路的规划不可避免地需要穿越不良地质区域。如广州、深圳、厦门等城市的花岗岩地层中就不同程度地分布着花岗岩球状风化体,俗称“孤石”。孤石强度很高,与周边风化土体性质差异大,造成相邻地层突变、软硬不均,对盾构施工提出了严峻的挑战。全面掌握孤石的分布情况,研究孤石处理方法,确保盾构顺利穿越孤石段地层,是隧道盾构工程成败的关键。 1 工程设计概况 1.1 工程地质 隧道所处地层自上而下分为五层:杂填土、黏土、粉质黏土、风化围岩和基岩。杂填土由砾石、砂石、粉土、黏土和人造材料的混合物组成,松散状态,平均标贯值N为6;黏土层的平均含水量为30%,液限34%,塑限13.5%,根据USC土壤分类系统划分为CL,中硬状态,平均不排水剪切强度为60kPa;粉质黏土层的平均含水量为31.4%,液限33%,塑限12.7%,根据USC土壤分类系统划分为CL,其强度比黏土层低,平均不排水剪切强度为30kPa;风化围岩基本处于残余土状态,由砾石、沙石、粉土和黏土混合物组成,中密状态,平均标贯值N 为18;基岩为轻度至中度风化的凝灰岩,岩石完整性(RQD)在70%~90%之间,平均值为78%,岩芯的单轴抗压强度在45~121MPa之间,平均值为82.5MPa。具体土层参数如表1所列。由于隧道下方基岩面起伏变化大,隧道在何山路站附近需经过不连续软土段、复合地层段和硬岩地层段,图2至图4显示了隧道复合地层段分布情况与其所在区域的地质剖面图。地下水由潜水、微承压水及裂隙水组成,水位在地面以下2m以内。 1.2 隧道选址 由于在软土、复合地层和硬岩中土压平衡盾构的运行模式不同,因此在隧道掘进前需准确了解隧道所处地质条件。从何山路站向南出发的200环(240m)内地质条件差异很大,特别是基岩面变化很不规则。在初步设计阶段,始发240m的范围内共钻26个孔以确定地质情况,钻孔深度至隧道设计边界下方约10m处,土样被送到实验室进行室内力学参数测试。在最终设计阶段进行了第一次补堪钻孔,补勘点位布置在隧道范围内,水平间距5m,垂直间距2m,在何山路站始发的240m范围内共钻59孔,密集的勘探点对地质条件进行了详细补充。施工前,在详勘孔位间布置第二次补堪钻孔,由何山路站始发的240m范围内共钻10孔。 2 复合地层土压平衡盾构施工技术 2.1 钻孔探测孤石技术 1)探测区域根据孤石在花岗岩残积土中的基本发育特点以及越靠近山丘越密集的特点,调查工程所在地原始地理地貌,一般为山丘附近的地段,将之作为钻探的重点区域来考虑,隧道洞身所处<5H>花岗岩残积土、<6H>全风化花岗岩地层区域也将作为重点探测区域;此外,详勘中已揭露孤石在隧道洞身范围内的钻孔附近隧道线路出现孤石的几率也很大,将之作为补充钻探的重点区域来考虑。从成本、工期方面考虑,钻探孔的布置采用逐级加密的方法,在实施过程中根据现场实际情况实行动态管理,对钻探孔的布置和数量进行适当调整,以提高孤石探测的准确性。2)钻探孔布置方式重点探测区域:钻孔沿隧道线型按三排错孔布置,一排布置在隧道中心线上,另两排分别距隧道边线1.5m布设。采用三级加密的布孔方式,孔距按10m→5m→2.5m的方式加密。第一级布孔间距为10m;根据第一级钻孔的实际情况判断,如孔间出现孤石的机率很大,则在第一级布孔的基础上每两孔间增加一个钻探孔,使临近两孔的孔距不超过5m;根据第一、第二级钻孔的实际情况判断,如孔间出现孤石的机率仍然很大,则将孔距增密到2.5m/个;在第二或第三级加密钻孔前,如判断孔间出现孤石的机率不大或盾构机足以应付风险,则终止加密钻孔。 2.2 泡沫剂选用 经过对出渣口结构的调整,减少了出渣口堵塞现象.但是,使用的泡沫剂消耗偏大,土体改良效果一般,渣土流动性能受到限制.究其原因:泡沫剂的改良效果是相对所处理的土层条件而言的,不同的地质条件下,选择合理适用的泡沫剂产品,才能做到既保证顺利施工,又节约成本的效果.泡沫剂的选择要从两个方面进行考虑,一是泡沫剂材料自身的性质,二是泡沫剂与开挖后土层混合所形成的泡沫混合土力学性质.目前应用于土压平衡式盾构施工中的泡沫剂的发泡率在5~20之间,在同样条件下,发泡率越高,等量的泡沫剂产生的泡沫就越多,说明其具有高效性.但是发泡率与生成泡沫的稳定性是相互影响的,较高的发泡率是牺牲泡沫稳定性为代价的,仅仅发泡率高并不能说明泡沫剂的优越,两者需要进行综合考虑.泡沫剂作用的土体处于运动状态,泡沫改良土体的作用仅要求从开挖面到螺旋输送机口顺利排出这段运动过程中,所以泡沫的稳定性将直接关系到土体改良效果的持续时间.泡沫的发泡率作为一项可变参数,可以根据具体施工情况进行选择。 2.3 土体加固 为保证开挖时的掌子面稳定,控制隧道开挖引起的土体变形,保护隧道穿过处地表的既有建筑物,在复合地层区域盾构开挖之前对隧道上部土体进行静压注浆,在隧道与相邻建筑物之间安装隔离桩。本标段中复合地层段上部“软土”由不同高度的粉质黏土和风化围岩组成。

相关文档
最新文档