激光主要有四大特性讲解

合集下载

激光的基础知识

激光的基础知识

激光的基础知识光学人生,从这里开始!相信激光这名词对大家来说一点也不陌生。

在日常生活中,我们常常接触到激光,例如在课堂上我们所用的激光指示器,与及在计算机或音响组合中用来读取光盘资料的光驱等等。

在工业上,激光常用于切割或微细加工。

在军事上,激光被用来拦截导弹。

科学家也利用激光非常准确地测量了地球和月球的距离,涉及的误差只有几厘米。

激光的用途那么广泛,究竟它有哪些特点,又是如何产生的呢?以下我们将会阐释激光的基本特点和基本原理。

激光的特性高亮度、高方向性、高单色性和高相干性是激光的四大特性。

(1)激光的高亮度:一般规律认为,光源在单位面积上向某一方向的单位立体角内发射的功率,就称为光源在该方向上的亮度。

激光在亮度上的提高主要是靠光线在发射方向上的高度集中。

激光的发射角极小(一般用毫弧度表示),它几乎是高度平等准直的光束,能实现定向集中发射。

因此,激光有高亮度性。

固体激光器的亮度更可高达1011W/cn2Sr 。

不仅如此,一束激光经过聚焦后,由于其高亮度性的特点,能产生强烈的热效应,其焦点范围内的温度可达数千度或数万度,能熔化甚至于气化对激光有吸收能力的生物组织或非生物材料。

如工业上精密器件的焊接、灯孔、切割;医学上切割组织(光刀)、气化表浅肿瘤以及显微光谱分析等这些新技术都是利用激光的高亮度性所产生的高温效应。

激光功率密度的单位为mw/cm2或W/cm2,能量密度为焦尔/厘米2。

(2)激光的高方向性:激光的高方向性使其能在有效地传递较长距离的同时,还能保证聚焦得到极高的功率密度,激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。

1962年人类第一次使用激光照射月球,地球离月球的距离约38万公里,这两点都是激光加工的重要条件。

(3)激光的高单色性:光的颜色由光的波长(或频率)决定。

一定的波长对应一定的颜色。

太阳光的波长分布范围约在0.76微米至0.4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。

光的激光效应

光的激光效应

光的激光效应光是一种电磁辐射,具有波粒二象性。

在光的运动过程中,常常会产生一系列的特殊效应,其中激光效应是最为独特和引人注目的一种。

一、激光的特性激光,即激光光源所产生的光束,具有高度的单色性、方向性和相干性。

这些独特的特性使得激光成为众多领域中的重要工具。

1. 单色性激光所产生的光具有极高的单色性,光的波长非常集中,只有很小的波长范围。

相比之下,普通的自然光波长的范围较宽,不具备如此高度的单色性。

2. 方向性激光光束具有极高的方向性,光线几乎是平行传播的。

这种方向性使得激光能够在远距离传输而不容易发生散射,大大增加了激光在通信、测量等领域的应用性。

3. 相干性激光具有高度的相干性,即波峰和波谷的振动是有规律的。

这种相干性使得激光可以通过干涉实现各种精密的测量和干涉效应。

相干性还使得激光在光学信息存储、全息术等领域有着广泛应用。

二、激光效应的应用激光效应作为光的一种特殊效应,在众多领域中得到了广泛的应用。

以下将重点介绍激光效应在医学、通信和制造领域的应用。

1. 医学应用激光在医学领域的应用日益广泛,其中最为典型的应用是激光手术。

利用激光的高能量和精确控制,医生可以实现无创伤的手术操作,减少患者的痛苦和恢复期。

此外,激光在眼科手术、皮肤美容等方面也有着重要的应用。

2. 通信应用激光在通信领域的应用是现代信息社会不可或缺的一部分。

激光通信利用激光的高方向性和相干性,实现了光纤通信技术的快速发展。

光纤通信不仅传输速率大大提高,而且具有传输距离远、抗干扰能力强等优点,成为现代通信领域的主要技术手段。

3. 制造应用激光在制造领域的应用非常广泛,具有高精度、高效率、非接触等优点。

例如,激光切割、激光焊接等工艺在工业制造中得到广泛应用。

激光加工技术能够实现对材料的高精度加工和微观结构的调控,提高了生产效率和产品质量。

三、激光效应的未来发展随着科学技术的不断进步,激光效应将在更多领域发挥作用。

以下是激光效应未来发展的几个方面。

激光的特性(Laser

激光的特性(Laser

• 激光所能达到的最小光束发散角还要受到衍 射效应的限制,它不能小于激光通过输出孔 径时的衍射角m
• 设输出孔径为2a,则衍射极限为
m
2a
(rad )
• 激光束的空间相干性和方向性对它的聚焦 性能有重要影响。
• 当一束发散角为的单色光被焦距为F的透
镜聚焦时,焦平面光斑直径D为 DF
m
Dm
F 2a
• Both the amplitude and the phase of a goodquality laser oscillator will in fact change only slowly with time, so that the amplitude and the phase of the output sine wave from the laser at any one time will be strongly correlated with the amplitudes and phases at considerably earlier or later times. A good laser beam might thus be said to be temporally coherent because of this strong correlation between the amplitudes and phases of the signal at not very different points in time.
• More colloquially, a signal is called “temporally coherent” if there is strong correlation in some sense between the amplitude and/or phase of the signal at any time and at earlier or later time.

《激光的特性及应用》 知识清单

《激光的特性及应用》 知识清单

《激光的特性及应用》知识清单一、激光的特性1、方向性好激光具有极高的方向性,其光线几乎可以沿着一条直线传播。

这意味着激光能够在长距离传输过程中保持较小的发散角,从而实现精确的能量传输和聚焦。

例如,在激光测距和激光通信中,方向性好的特点使得测量和传输的精度大大提高。

2、单色性好激光的单色性非常出色,即其光波的波长范围非常狭窄。

这使得激光具有特定的颜色和频率,并且能量集中在一个很窄的频段内。

在光谱分析、医学诊断和激光干涉测量等领域,单色性好的特性发挥着重要作用。

3、相干性强激光具有很强的相干性,这意味着光波在时间和空间上的相位关系是高度一致的。

相干性使得激光能够产生稳定的干涉和衍射现象,广泛应用于激光全息技术、精密测量和光学存储等方面。

4、亮度高激光的亮度极高,其能量在空间上高度集中。

相比普通光源,激光能够在极小的面积上产生巨大的功率密度。

这一特性使得激光在工业加工(如激光切割、焊接和打孔)、医疗手术(如激光近视治疗和肿瘤切除)等领域具有独特的优势。

二、激光的应用1、工业领域(1)激光切割利用激光的高能量密度和方向性好的特点,能够精确地切割各种材料,包括金属、塑料、木材等。

激光切割具有切口光滑、精度高、速度快等优点,广泛应用于汽车制造、电子设备生产等行业。

(2)激光焊接在焊接过程中,激光能够将材料快速加热至熔点并使其融合,形成牢固的焊缝。

激光焊接具有焊缝窄、热影响区小、焊接强度高等优点,常用于汽车零部件、航空航天器件等的焊接。

(3)激光打孔通过聚焦激光束,可以在各种材料上打出微小而精确的孔。

激光打孔在电子元件制造、钟表制造、医疗器械等领域有广泛应用。

(4)激光打标在产品表面利用激光进行标记,具有永久性、高精度、高速度等特点。

常用于电子产品、珠宝首饰、包装等行业的标识和防伪。

2、医疗领域(1)激光近视治疗通过改变角膜的形状来矫正近视,其原理是利用准分子激光精确地切削角膜组织,从而改变角膜的曲率,达到矫正视力的目的。

激光四大特性

激光四大特性

激光的四大特性
实验证明,激光器所发射的光是一种偏振光, 偏振光在前进中周围带有电磁场力,研究得出 偏振光能够重新排列液晶分子,而细胞膜类似 于液晶分子,所以激光照射时能使细胞分子按 偏振光的电场力方向重新排列,使细胞膜表面 不正常结构发生改变(细胞表面带电性能,从 而使血粘度,血小板变化等)。但是它的振动 只发生在一个平面内(共振),且方向固定。 例如:激光照水不发生折射;偏振镜可以防反 光。
相干性
激光的四大特性
激光束的发散角非常小,几乎是一 条直线,能量集中,可以很强的穿透皮 肤、肌肉、血管壁照射血液。而普通光 是向四面八方扩散的,无法说清它的发 散方向。 例如:医学上用激光针灸;晚上在一间 漆黑的房子里打开一盏灯和打开一束激 光的区别激光器所发射的光是一种偏振光偏振光在前进中周围带有电磁场力研究得出偏振光能够重新排列液晶分子而细胞膜类似于液晶分子所以激光照射时能使细胞分子按偏振光的电场力方向重新排列使细胞膜表面不正常结构发生改变细胞表面带电性能从而使血粘度血小板变化等
主讲:
激光的四大特性
激 光
四大特性
单色性
偏振性
干涉性
方向性
激光的四大特性
单色性
光的颜色是由光的波长(或频率)决定。而光总有一定 的频率宽度(波长范围),频率宽度越小,则此光的单色性 越好。普通光源发射的光波,它的谱线宽度比较大,有一定 的频率范围,这频率范围内的所有频率,都可以在它所发射 的光波中找到,也就是说颜色很杂很多,无法准确判断其颜 色。如普通光源中单色性最好的氪灯,它的谱线宽度已达 4.7×10-3-纳米。但是,经过光学谐振腔(激光器)的原理 选择后,只有那些满足谐振腔共振条件而又落在工作物质的 谱线宽度内的频率光才能形成激光输出,不满足共振条件的 频率,都在谐振腔内干涉相消了。可见,经过谐振腔选择后, 发射出来的光波的频率宽度即波长分布范围非常窄,一般激 光谱线宽度仅为10-9纳米,是氪灯的五万分之一。所以,激 光的颜色极纯,单色性很好。 益健堂激光选择红色光的原因:单红色激光能被血红细胞所 强烈的吸收,对人体 的健康是很有好处的。 例如:光纤通信中用激光传播来减少光信号的损耗,所有通 信光缆的信号很好。

激光基本特征

激光基本特征

激光基本特征激光是指一束高度聚焦、具有单色性、相干性和高亮度等特征的光束。

激光是由处于激发态的原子或分子释放出来的光子所组成的。

激光的基本特征是指激光独特的性质和行为,下面将从以下几个方面详细介绍激光的基本特征。

1. 单色性激光的单色性指激光所产生的光是单一频率的。

激光的单色性由于激发态原子或分子之间的能级结构和产生激光的物质的特性所决定。

激光所具有的单色性使其在科学研究、医学、通信等领域具有广泛的应用。

2. 相干性激光的相干性是指激光光波中光子的相位关系保持一致的特性。

激光光束的相干性使其具有干涉、衍射等特性。

激光的相干性能够保持光束的集中性,使得激光在远距离传输时损失较小,有助于激光的聚焦和精确测量。

3. 高亮度激光的高亮度是指激光的亮度远远高于其他光源。

激光的高亮度是由于激光所具有的高度聚焦特性和聚光能力优秀的光学系统所决定的。

高亮度的激光在医学、材料加工和军事等领域有着广泛的应用。

4. 窄束性激光的窄束性是指激光光束的直径非常小。

与其他光源相比,激光光束的直径可以达到亚微米甚至更小的级别。

激光的窄束性使得激光光束能够在远距离传输时保持高度集中,从而实现高精度的光学操作。

5. 高能量激光所具有的高能量使得其在科学研究、医学治疗和军事应用等领域展现出巨大的潜力。

激光的高能量是由于激发态原子或分子释放出的光子具有高能量特性所决定的。

高能量的激光在材料切割、焊接、打孔等领域具有重要的应用价值。

总之,激光的基本特征是单色性、相干性、高亮度、窄束性和高能量。

这些特征使得激光在科学研究、医学、工业生产等领域发挥着重要的作用。

随着激光技术的不断发展壮大,激光领域的应用将会更加广泛。

激光知识点归纳总结

激光知识点归纳总结

激光知识点归纳总结一、激光的基本概念1. 激光的定义:激光是指一种纯准直性极好的光线,其光子是高度同步的单色光子。

2. 激光的产生:激光是由受激发射产生的,利用三能级或四能级的原子,分子或离子系统,通过外加能量使体系转移到激发态,再利用其辐射产生激光光子。

3. 激光的特性:激光具有单色性、准直性、明暗对比度高、相干性强等特点。

4. 激光的种类:激光可以分为气体激光器、固体激光器、液体激光器和半导体激光器等。

二、激光的基本原理1. 激光的受激辐射:当原子、分子或离子处于激发态时,通过外界刺激的辐射能引起它们从激发态向稳态跃迁,再发出与外界激发辐射相同特性的电磁波,即受激辐射。

2. 激光的稳态条件:产生激光需要满足稳态条件,即发射和吸收的粒子数要平衡,从而实现能量的持续放大和稳定输出。

3. 激光的放大作用:在激光器内,通过激发态原子、分子或离子吸收外界光子能量,使它们跃迁到更高激发态,从而放大光子,产生激光。

4. 激光的光学谐振腔:激光器内部常常设置光学谐振腔,用来反射和增强激光,从而实现激光的输出。

三、激光的应用领域1. 激光测距与测速:激光雷达通过测量反射光的飞行时间来实现测距,同时通过多普勒效应测速。

2. 激光材料加工:激光可用于金属切割、焊接、打孔等材料加工过程。

3. 激光医学应用:激光可用于眼科手术、皮肤治疗、激光治疗仪等医疗设备。

4. 激光通讯:激光可以传输更大带宽、更高速率的信息,用于通讯领域。

5. 激光导航:激光雷达可用于无人飞行器、自动驾驶汽车等导航系统。

6. 激光防御:激光武器可用于导弹防御、激光束武器等领域。

四、激光器的分类1. 气体激光器:以气体为工作物质的激光器,常见的包括二氧化碳激光器、氦氖激光器等。

2. 固体激光器:以固体为工作物质的激光器,常见的包括Nd:YAG激光器、激光二极管等。

3. 半导体激光器:以半导体为工作物质的激光器,可用于激光打印机、光纤通信等领域。

4. 液体激光器:以液体为工作物质的激光器,常见的包括染料激光器等。

激光的原理性质及其应用

激光的原理性质及其应用

激光的原理性质及其应用1. 激光的原理性质激光(Laser)是一种与常见的光线有很大区别的光线。

它具有独特的性质和应用,源于其特殊的原理。

1.1 激光的定义激光是一种由同一频率、同一波长、同一方向传播的相干光,其具体特征包括单一波长、高度聚束、高度单色性、高度相干性等。

1.2 激光的产生原理激光产生的过程主要涉及三个基本元素:激发能源、激发介质和光学反馈。

•激发能源:激发能源可以是电流、化学反应、光或其他能源形式。

•激发介质:典型的激发介质包括气体、液体、固体和半导体。

不同激发介质的特性会影响激光的波长和功率。

•光学反馈:光学反馈是指将一部分激发介质中产生的光传送回激发介质,从而增强光的放大效应。

1.3 激光的特性激光具有以下几个主要特性:•单色性:激光的波长非常窄,几乎只有一个特定的波长。

这使得激光在许多精确测量、光谱学和光学实验中得到广泛应用。

•相干性:激光是相干光,其光波的振动方向是一致的,相位关系保持稳定,从而产生具有干涉和衍射效应的特性。

这使得激光在干涉测量和激光干涉仪中具有广泛的应用。

•聚束性:激光的光线可以通过透镜等光学元件进行聚束,从而使得激光能够实现高度聚焦和精确操控,常被应用于激光器加工、医学手术等领域。

•高度定向性:激光的光线传播方向非常集中,具有极高的指向性。

这种特性使得激光可以用于通信、测距和测速等精确测量应用。

2. 激光的应用激光由于其独特的性质,广泛应用于多个领域,包括科学研究、医疗、工业生产等。

2.1 激光在科学研究中的应用•光谱学:激光具有单色性和相干性的特点,可以用于高分辨率光谱学研究,如光谱分析、荧光探测等。

•激光制冷:激光可以通过激发物质内部的原子和分子,实现制冷效应,用于冷却原子、分子甚至固体材料。

•激光光纤:激光光纤是一种利用激光作为信号传输的光纤,可应用于光通信、光传感等领域。

•激光雷达:激光雷达利用激光束进行测量,可应用于航空、地理测绘、气象等领域。

激光的特点应用及原理

激光的特点应用及原理

激光的特点、应用及原理一、激光的特点激光(laser)是一种特殊的光波,具有以下几个特点:1.高度聚焦性:激光具有高度聚焦性,可以通过光学器件将其聚焦到小的点上,因此激光可以集中能量,实现高精度的加工和测量。

2.单色性:激光是单色光,其波长非常狭窄,只有一个确定的波长。

这使得激光可以在光谱分析、激光干涉等领域有着广泛的应用。

3.相干性:激光是相干光,具有相位一致性。

这种相位一致性使得激光在干涉、衍射等光学现象中表现出特殊的特点。

4.高亮度:激光束非常亮,具有高亮度。

这使得激光可以在远距离传输,并且可以在光通信、激光雷达等领域发挥作用。

二、激光的应用激光由于其特殊的性质,在多个领域得到了广泛的应用,下面列举了一些常见的激光应用:1.激光切割和焊接:由于激光具有高度聚焦性和能量密集性,因此常被用于金属切割和焊接。

激光切割和焊接具有高效、精确的优点,在制造业中有广泛应用。

2.激光医学:激光在医学领域有着重要的应用。

例如,激光手术可以代替传统手术,减少损伤和愈合时间;激光美容可以去除痣、纹身等。

3.激光测量和定位:由于激光具有高精度和高亮度,因此经常被用于测量和定位。

激光测距仪、激光雷达等设备广泛应用于工程测量、地质勘探等领域。

4.激光显示和光通信:激光被用于制造高清晰度的激光电视、投影仪等显示设备,同时也被应用于光纤通信,提高传输速度和质量。

三、激光的原理激光的产生是通过激发介质原子或分子,使其达到激发态,然后通过受激辐射产生的光的放大和反馈而产生的。

激光的产生过程可以分为以下几个步骤:1.激发:通过电流、光、化学反应等方式激发介质原子或分子,使其达到激发态。

2.受激辐射:当激发态的原子或分子遇到足够多的光子时,它们将发生受激辐射,释放出与入射光子相同的频率和相位的光子。

3.放大:放大器中包含了活性介质,这些活性介质被激发态的原子或分子所占据。

当受激辐射的光经过放大器时,由于反复的受激辐射作用,光的强度会不断增强。

激光的特点(特性)

激光的特点(特性)

激光的特点(特性)1、相干性好2、方向性强3、单色性好1、相干性好一个几瓦的电灯泡,只能用作普通照明。

如果把它的能量集中到1m直径的小球内,就可以得到很高的光功率密度,用这个能量能把钢板打穿。

然而,普通光源的光是向四面八方发射的,光能无法高度集中。

普通光源上不同点发出的光在不同方向上、不同时间里都是杂乱无章的,经过透镜后也不可能会聚在一点上。

激光与普通光相比则大不相同。

因为它的频率很单纯,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来,这就叫相干性高。

一台巨脉冲红宝石激光器的亮度可达1015w/cm2•sr,比太阳表面的亮度还高若干倍。

具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。

2、方向性强激光的方向性比现在所有的其他光源都好得多,它几乎是一束平行线。

如果把激光发射到月球上去,历经38、4万公里的路程后,也只有一个直径为2km左右的光斑。

3、单色性好:受激辐射光(激光)是原子在发生受激辐射时释放出来的光,其频率组成范围非常狭窄,通俗一点讲,就是受激辐射光单色性非常好,激光的“颜色”非常的纯(不同颜色,实际就是不同频率)。

激光的单色性是实现激光加工的重要因素。

我们可以通过简单的物理实验来说明这个问题。

我们使用三棱镜,可以将一束太阳光分解成七色光谱带,其原理是日光其实是多种波长的光混合在一起的复色光,不同波长的光透过同一介质时,由于在介质中折射率的不同,使各色光的传播方向发生不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱带。

典型灯泵浦YAG激光器原理在一个截面为椭圆形的腔体内,两个焦点上分别放置激光棒和氪灯,在一个焦点上(氪灯)发出一定波长的光,经过反射腔体内壁的反射,会聚在腔体的另一个焦点上(激光棒),使工作物质里的粒子受到激发,粒子受激吸收后,处于低能态的原子由于吸收了外界辐射而发生能级跃迁,继而释放出激光,产生的激光在全反射镜片和部分反射镜片之间进行来回振荡,当能量达到一定值时,就可以从部分反射镜片透过,这就实现了激光的输出。

激光的原理与特点

激光的原理与特点

激光的原理与特点
激光,是指具有高度一致的光波振荡特性的一种光束。

激光的原理是通过三级系统(包括基态、激发态和亚稳态)之间的电磁辐射相互作用而产生的。

具体来说,激光的原理包括光放大、光共振、正反馈等。

激光的特点主要有以下几个方面:
1. 高度的单色性:激光的频率非常纯净,只有极少的频率成分,因此它具有非常高的单色性。

这是由于激光光波是由一个频率极为准确的谐振振荡系统所产生的。

2. 高度的方向性:激光光束具有非常高的方向性,激光光束在传播过程中很少发生散射,能够以非常窄的角度进行定向传播。

这是由于激光的振荡介质是一个长而细的谐振腔。

3. 高度的相干性:激光光束具有非常高的相干性,所有的光波的振幅和相位都高度一致。

这是由于激光光波是由许多同样频率和相位的原子或分子发射的。

4. 高度的能量密度:激光光束具有非常高的能量密度,能够集中大量的能量在一个很小的空间范围内。

由于激光的强度非常大,因此它可以用来进行高精度的切割、焊接等工业加工。

总之,激光作为一种特殊的光线,具有高度的单色性、方向性、相干性和能量密度,这些特点使得激光被广泛应用于科学、医学、工业等多个领域。

激光的特性及应用

激光的特性及应用

激光的特性及应用激光(laser)是一种高度聚焦的、单色性和相干性极高的光束。

它具有独特的特性,因此在各个领域有广泛的应用。

本文将介绍激光的特性以及一些常见的激光应用。

一、激光的特性1. 高度聚焦:激光束可以被聚焦到极小的直径,因此可以实现高精度和高分辨率的操作。

这种属性使激光在医疗、材料加工和通信领域得到广泛应用。

2. 单色性:激光是单色光,即它的频率非常纯净。

这使得激光在光谱分析、光学传感器和高精度测量中具有重要作用。

3. 相干性:激光的光波是相干的,即光的波峰和波谷保持稳定的相对位置。

这种特性使激光在干涉测量、全息术和激光雷达等领域得到广泛应用。

4. 高能量密度:激光具有高能量密度,可以在很小的空间范围内提供大量的能量。

这使得激光在切割、焊接和打孔等材料加工过程中非常有效。

二、激光的应用1. 医疗领域:激光在医疗领域有着广泛的应用。

例如,激光手术可以实现精确的组织切割和病变去除,减少手术风险和恢复时间。

激光还可以用于激光治疗中的照射,用于促进伤口愈合和病症治疗。

2. 通信领域:激光在光纤通信中起到关键作用。

激光作为信息传输的光源,可以提供高速、高带宽的数据传输。

此外,激光器还可以用于激光雷达系统,提供高分辨率和远距离测量。

3. 制造业:激光在制造业中有广泛应用。

例如,激光切割机可以用于精确切割金属和非金属材料,激光焊接机可以实现高质量的焊接工艺,激光打标机可以在产品上进行纹理、标记和刻字。

4. 科学研究:激光在科学研究中也扮演重要角色。

例如,激光光谱学被广泛应用于化学和物理领域的分析和研究。

激光还可以用于量子物理实验、原子和分子物理学研究等领域。

5. 军事应用:激光在军事领域有着重要的应用。

激光器可以作为导引系统用于精确制导导弹和飞行器。

激光还可以用于激光武器系统,具有远射程、高精度和强杀伤力等特点。

综上所述,激光作为一种特殊的光束,具有高度聚焦、单色性、相干性和高能量密度等特性。

这些特性使得激光在医疗、通信、制造和科学研究等领域都得到了广泛应用。

激光在医学上的应用-论文最终版

激光在医学上的应用-论文最终版

激光在医学上的应用1、引言1.1、激光的特点(特性):(选自:现代激光工程应用技术P2-3+文献【4】百度知道网址)概括地说,激光有四大特性:高亮度、高方向性、高单色性和高相干性。

他们之间不是互相独立的,而是互有联系的。

激光所具有的上述优异特性是普通光源望尘莫及的。

【2】1.1.1、激光的高亮度【4】普通光源所发出的光是连续的,并且在4π立体角内传播,能量十分分散,所以亮度不高。

激光的亮度可比普通光源高出1012-1019倍,是目前最亮的光源,强激光甚至可产生上亿度的高温。

激光的高能量是保证激光临床治疗有效的最可贵的基本特性之一。

1.1.2、激光的高方向性激光的高方向性主要指其光束的发散角小。

激光束的方向性好这一特性在医学上的应用主要是激光能量能在空间高度集中,从而可将激光束制成激光手术刀。

另外,由几何光学可知,平行性越好的光束经聚焦得到的焦斑尺寸越小,再加之激光单色性好,经聚焦后无色散像差,使光斑尺寸进一步缩小,可达微米级以下,甚至可用作切割细胞或分子的精细的“手术刀”。

1.1.3、激光的高单色性普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色。

而激光发射的各个光子频率相同,因此激光是最好的单色光源。

由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床选择性治疗上获得重要应用。

此外,激光的单色特性在光谱技术及光学测量中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。

1.1.4、激光的高相干性由于受激辐射的光子在相位上是一致的,再加之谐振腔的选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相干性很好(由自发辐射产生的普通光是非相干光)。

激光为我们提供了最好的相干光源。

正是由于激光器的问世,才促使相干技术获得飞跃发展,全息技术才得以实现。

【4】1.2、激光在医学上涉及的方面(选自:激光原理及应用P184【1】)激光在医学及医疗领域中的应用,可分为在治疗中的应用与在测定、诊断中的应用两大类。

激光的特性

激光的特性

激光的特性1、方向性好,激光的发光方向可以限制在小于几个毫弧度立体角内,这就使得在照射方向上的照度提高千万倍。

激光准直、导向和测距就是利用方向性好这一特性。

2、亮度高,激光是当代最亮的光源。

它的能量高度集中,很容易在某一微小点处产生高压和几万摄氏度甚至几百万摄氏度高温。

3、单色性好,为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。

激光的用途1、军事上,出现了激光枪、激光炮、激光雷达、激光导弹等激光武器,美国还在试验用激光打卫星。

2、工业上,可以切割、熔化材料。

有激光唱机和光碟等。

3、激光通信。

用光传递信息,比如,舰船用灯语通信,交通灯用红、黄、绿三色调度,打电话等。

4、激光传图。

除了传送图像处,传像束还能传送一般的符号或数字,以及放大图像或缩小图像。

5、钻孔、切割、焊接以及淬火,是加工金属材料时最常用的操作。

自从引进了激光后,在加工的强度、质量以及范围等方面开创了全新的局面。

除了金属材料外,激光还能加工许多非金属材料。

6、照相排版。

照相排版是通过排字机上的透镜,来改变字样的大小和形状的。

用照相排版时,只需将光源通过透镜把需要的文字和符号,在感光相纸上成像,再经过显影和定影就形成了照相底片。

然后,只要像印照片那样印刷就行。

相比普通光源,激光排版省时省力。

由于激光亮度高,颜色浅,可以大大改善图像的清晰度,印出来的书质量自然就高。

7、激光主要是用来治疗视网膜剥离。

医生可以用激光器对准病人眼底,使激光器发射出一束激光,通过加热使视网膜重新与眼球内壁合在一起,激光束就像焊枪一样,将病人的视网膜焊接好了。

8、用医用激光器来治疗白内障。

只要将激光束对准眼球内晶状体的前表面或后表面发射,就可以迅速切除掉晶状体表面的混沌膜。

9、在牙科中,激光可以代替牙钻。

治疗时,只须将光纤发射端接近龋齿灶,发出激光束,龋处组织会分解,然后用清水冲洗掉。

10、在美容方面,激光美容也被广泛的用,例如:激光脱毛、激光祛痣、激光嫩肤等。

1、激光的三个基本特点

1、激光的三个基本特点

1、激光的三个基本特点
激光是一种高度集中、强聚焦、高频率的电磁辐射波,因此具有以下三个基本特点:
1. 高强度:激光的光束具有高强度的能量,其光束可以聚焦到非常小的区域内,从
而能够产生极高的功率密度。

激光的光束经过聚焦后,能够将其能量集中到很小的空间内,实现高功率密度的能量输出。

由于激光具有高强度的能量,因此使用激光材料加工可以显
著提高加工效率。

2. 单色性:激光的光线是非常单色的光线。

激光通常只有一种波长,而且光的相位、频率、波长等参数非常稳定。

因此,激光可以非常有效地用于光学测量和光学通信等领域。

激光光线的单色性还使得它可以被用来制造光阀和光学传感器等设备。

3. 相干性:激光的光线具有相干性,即所有光的波向初始波的偏移是一致的。

这种
相干性可以使激光具有高质量的光学特性,能够保持高光强度和高能量密度。

激光使用中,其相干性可以使得激光干涉现象得到有效控制,从而实现了多种无线通信和高速网络通信
技术的开发应用。

总的来说,激光的三个基本特性,高强度、单色性和相干性,使其在许多现代科技领
域得到广泛应用,如制造业、医疗、军事、通信等领域。

简述激光的特性及应用领域

简述激光的特性及应用领域

简述激光的特性及应用领域激光是一种由激光介质产生的具有高度定向性、单色性、相干性和高亮度的电磁辐射。

激光的特性和应用领域广泛,下面将分别进行详细描述。

激光的特性包括:1. 高度定向性:激光具有很高的定向性,其光束呈现出非常狭窄和集中的特点。

这种特性使激光可以在长距离传播过程中保持较小的光束扩散角度。

2. 单色性:激光是一种单色光,即具有非常窄的光谱线宽。

这是由于激光介质的能级结构决定的,激光产生的光具有很高的频率稳定性。

3. 相干性:激光的光波具有高度相干性,即激光光波上的任意两个点的光波相位关系是恒定的。

这种相干性使得激光可以形成稳定的干涉和衍射效应。

4. 高亮度:激光具有高亮度,即单位面积上的功率非常大。

激光因其高亮度可以在远距离进行传播而不容易衰减。

激光的应用领域有很广泛,包括但不限于以下几个方面:1. 医疗领域:激光在医疗领域中有着广泛的应用,如激光手术、激光治疗和激光检测等。

例如,激光可以用于皮肤病激光治疗、白内障手术和视网膜手术等。

2. 通信领域:激光被广泛应用于通信技术中的光纤通信和激光雷达等领域。

激光可以通过光纤进行信息传输,具有高速、远距离传输和抗干扰性强的特点,因此在通信领域有着重要的应用。

3. 制造加工领域:激光可以用于丝印、切割、焊接、打孔和表面处理等工艺。

例如,激光切割可以用于金属制品、塑料和玻璃切割等;激光焊接可以用于汽车制造、电子工业和航空航天等领域。

4. 科学研究领域:激光在科学研究领域中得到广泛应用。

例如,激光光谱学可以用于原子和分子结构研究;激光光谱学和激光干涉技术可以用于材料表征和光学实验等。

5. 军事应用领域:激光在军事领域有着重要的应用,如激光制导导弹和激光测距仪等。

激光制导导弹可以通过激光束进行精确瞄准和追踪目标,提高命中率;激光测距仪可以用于测量目标与观测者之间的距离。

6. 激光显示技术:激光在显示技术中被广泛应用,如激光投影仪和激光显示屏等。

激光投影仪可以产生高亮度、高对比度和高分辨率的投影效果;激光显示屏可以提供更鲜艳、更真实和更逼真的图像显示。

关于激光的描述

关于激光的描述

关于激光的描述激光是一种特殊的光源,具有高度纯净的单色性、高度相干性和高度定向性。

激光的产生是通过激发原子或分子使其处于激发态,然后通过各种方式从激发态返回基态,释放出一束具有特殊性质的光。

激光的特点之一是其高度纯净的单色性。

激光光束中的光波几乎完全相同,具有非常狭窄的频率范围。

这种单色性使得激光在许多应用中非常有用,例如光通信和光谱分析。

激光的高度相干性是指光波之间存在着稳定的相位关系,可以产生干涉效应。

这种相干性使得激光在干涉、衍射和波前调制等领域有广泛的应用。

激光的另一个重要特性是其高度定向性,即激光光束的方向性非常好。

与普通光源不同,激光光束几乎没有发散,能够保持较远距离内的高集中度。

这种定向性使得激光在激光器、激光雷达和激光切割等领域得到广泛应用。

激光在各个领域都有着广泛的应用。

在医学领域,激光可以用于进行手术切割、治疗肿瘤和皮肤病等。

激光手术具有出血少、创伤小和恢复快的优点,被广泛应用于眼科手术、皮肤美容和腔镜手术等。

在工业领域,激光可用于材料切割、焊接和打标等工艺。

激光切割具有高精度、高效率和无接触的特点,广泛应用于金属加工、电子制造和汽车制造等行业。

激光还在通信领域发挥着重要作用。

激光光纤通信具有大带宽、低损耗和长传输距离的优势,是现代通信系统的重要组成部分。

激光光纤通信的发展使得人们能够通过光纤进行高速、可靠的信息传输,推动了现代信息技术的发展。

除了以上应用,激光还在科学研究、环境监测、测距测速和激光雷达等领域得到广泛应用。

激光的特殊性质使其成为一种独特的工具,在许多领域都有着不可替代的作用。

然而,激光也存在一些安全风险。

激光具有较高的能量密度,如果不正确使用或处理,可能对人体和环境造成伤害。

因此,在使用激光时需要遵守相关的安全规定,并采取适当的防护措施。

激光作为一种特殊的光源,具有高度纯净的单色性、高度相干性和高度定向性。

它在医学、工业、通信和科研等方面都有广泛的应用。

激光的特殊性质使其成为一种独特的工具,在现代科技发展中发挥着重要作用。

激光特点及应用高中

激光特点及应用高中

激光特点及应用高中激光(Laser)是由于受光激发而放出的一种具有高度一致性且具备高强度、高单色性、高指向性、高聚焦性的电磁辐射波。

激光的特点有:1. 高单色性:激光所发出的光具有高度单色性,即具有极窄的频谱宽度。

这是因为激光放大以及激光产生的过程中,只有具有特定频率的光能被放大而产生激光。

高单色性使得激光在光谱分析、光波导器件等领域有广泛应用。

2. 高强度:激光光束所携带的能量密度非常高,可以集中到极小的空间尺度上。

激光的高强度使得它在切割、焊接、打孔等材料加工领域有广泛应用。

3. 高指向性:激光的光束具有非常好的指向性,即激光光束的传播方向非常集中且射束发散极小。

这使得激光在通信、雷达、测距等领域具有优势。

4. 高聚焦性:激光光束能够被聚焦为非常小的斑点,聚焦后的激光光束辐射能量密度非常高。

这使得激光在医学、照明、材料表面处理等领域具有广泛应用。

5. 高相干性:激光光波是一种相干光,光波的相位关系保持非常稳定。

这种高相干性使得激光在干涉、全息术、光学存储等领域有重要应用。

激光的应用非常广泛,涵盖了许多不同的领域。

以下是一些常见的激光应用:1. 制造业:激光在制造业中的应用非常广泛。

激光可用于切割金属、焊接零部件、打孔、表面处理等工艺,以提高生产效率和产品质量。

2. 医疗领域:激光在医疗领域有许多应用。

例如,激光可用于眼科手术中的近视矫正、白内障手术,以及皮肤病治疗中的切割、去除和焦化。

3. 通信:激光在光通信中起着重要作用。

激光光束可以传输更大的信息容量,并且具有高速传输速度和低损耗。

激光光纤通信已成为现代通信系统的核心技术。

4. 雷达:激光用于雷达系统中的目标探测和跟踪。

由于激光具有高指向性和高强度,因此它可以提供更好的分辨率和探测能力。

5. 仪器测量:激光在测距、测速、光学测量等领域有广泛应用。

例如,激光雷达可以用于测量目标的距离和速度,激光干涉仪可用于精密长度测量。

6. 光存储:激光在光存储领域有重要应用。

激光的特性及其应用

激光的特性及其应用
利用激光准直仪可使长为2.5km的 隧道掘进偏差不超过16nm.
2.单色性好
光波的单色性可表示为
谱宽度 中心波长
or

I0
I0 2
2
2
单色性最好的氪灯Kr86 Δ=4.7×10-3 nm
稳频He—Ne激光器
109nm
3.亮度高
激光器能产生宽度极窄的光脉冲,使用锁模技术,可 产生10-14s的光脉冲。由于能量被集中在极短的时间 内发射出来,因此光功率极高。
B

P
A
4.相干性好
相干时间: c

Lc c

1

相干长度:Lc

c

干的
特制的氦氖激光器输出的光束,相干长度达2107km。氪 灯只有38.5cm。
地基激光炮 (USA)
ABL设想图
机载激光武器(ABL,USA)
舰载激光武器
舰载激光武器 辽宁舰
3.信息领域
激光信息处理:光存储(光盘),激光通信(或光纤通信)
电缆
光纤
卫星通信
4.医疗应用
最早的激光医疗应用:1961年12月在美国哥伦比亚长老会 医院用红宝石激光器进行了视网膜肿瘤治疗
激光制导炸弹
空地导弹
防空导弹
火箭弹
激光制导的优点:
1. 命中率高。经多次实验证明命中率可在97%。 2. 抗电磁干扰能力强。激光属于可见光,故不受电磁波干扰。 3. 制导系统体积小,重量轻、结构简单、造价低廉。
但是,激光制导也存在其缺点:主要是受天气影响较大。 大雨浓雾、扬尘(烟幕)使激光传输受限制难以正常工作。
二、激光的应用 1.工业领域
激光打孔
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光主要有四大特性:激光高亮度、高方向性、高单色性和高相干性
激光的高亮度:固体激光器的亮度更可高达1011W/cm2Sr。

不仅如此,具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。

激光的高方向性:激光的高方向性使其能在有效地传递较长的距离的同时,还能保证聚焦得到极高的功率密度,这两点都是激光加工的重要条件
激光的高单色性:由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。

激光的高相干性:相干性主要描述光波各个部分的相位关系。

正是激光具有如上所述的奇异特性因此在工业加工中得到了广泛地应用。

目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等
激光加工的特点
由于激光具有高亮度、高方向性、高单色性和高相干性的特性,因此就给激光加工带来如下一些其它方法所不具备的可贵特点
● 由于它是无接触加工,对工件无直接冲击,因此无机械变形;
● 激光加工过程中无"刀具"磨损,无"切削力"作用于工件;
● 激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有或影响极小。

因此,其热影响的区小工件热变形小后续加工最小;
● 由于激光束易于导向、聚焦、实现方向变换,极易与数控系统配合、对复杂工件进行加工因此它是一种极为灵活的加工方法;
● 生产效率高,加工质量稳定可靠,经济效益和社会效益好激光加工的优势
激光具有的宝贵特性决定了激光在加工领域存在的优势:
①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。

②它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。

③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。

④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。

因此,其热影响区小,工件热变形小,后续加工量小。

⑤它可以通过透明介质对密闭容器内的工件进行各种加工。

⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。

⑦使用激光加工,生产效率高,质量可靠,经济效益好。

虽然激光加工拥有许多优点,但不足之处也是很明显的,例如激光加工设备目前还比较昂贵。

奥华激光为国内外客户提供一整套设施,主要产品包括:激光模具烧焊机、激光自动焊接机、YAG激光打标机、CO2激光打标机、半导体激光打标机、激光点焊机、激光切割机、激光打孔机、激光调阻机、激光划片机、激光快整成型机等几十种工业激光设备。

广泛应用于模具、电子电路、IC集成电路、仪器仪表、金银首饰、精密器械、手机通讯、汽车配件、服饰、工艺品等行业。

相关文档
最新文档