三环减速器设计方案

三环减速器设计方案
三环减速器设计方案

三环减速器的设计

第一章绪论

三环减速器是少齿差内啮合行星齿轮传动中的一种。选用的是渐开线齿形,齿轮副由内齿轮和外齿轮组成,内外齿轮的齿数相差较小(一般为1、2、3、4),所以称为为少齿差传动。三环减速器是由我国科技人员发明的新型减速器,它的优点是,适用于一切工作条件、功率和一切速度范围,受到了广泛使用。

1.1 三环减速器的研究历史及发展现状

1.2 三环减速器的特点

相比较一般的减速器,三环减速器拥有的特点:

(1)体积比较小、结构较紧凑、重量相对较轻

(2)传动比范围相对较大单级传动比大于10

(3)效率比较高当传动比为10~200时,效率为80%~94%。效率受传动比影响,与传动成反比

(4)制造成本低、加工简单

(5)受到广泛应用、结构样式较多

(6)承载能力强、运转平稳由于是内啮合传动,两啮合为凹齿及凸齿,两齿轮曲率半径几乎相等,曲率中心位于同一方向。所以,接触面积的大小影响轮齿接触强度的强弱;另外选用短齿制,提高了轮齿的弯曲强度。在相同模数的情况下,它的传递力矩是普通圆柱齿轮减速器的178~648倍。三环减速器的啮合是多对轮齿的啮合,接触较多,传动较平稳,噪音也较小。根据以上特点,不管是冶金矿山机械,还是机器人的关节,亦或是印刷和国防工业,或者是农用、食品机械都有应用实例。

1.3 本课题研究的意义和内容

1.3.1 本课题研究的意义

1.3.2 本文研究的内容

设计计算偏置式三环减速器,绘制三环减速器零件图和装备图;

……….

1.4 三环减速器存在的问题

因为三环减速器出现时间不长,许多问题尚待解决,从它的使用情况及内部机构来看,存在几点问题:

噪声、振动比较大。

因承载能力强造成设计浪费。

(3)制造过程尚不成熟,理论知识也较贫乏。三环减速器使用时间较短,缺少系统的的设计理论知识和制造经验,当前只能使用普通行星齿轮减速器的设计理论进行设计。

2.1 三环减速器的传动原理

2.1.1 三环减速器的组成及工作原理

三环减速器是由内啮合齿轮机构和平行四边形机构组成的复

合传动机构。图2-1偏置式三环减速器的结构图2-2是传动简图。高速轴2和高速轴3各具有三个偏心轴,且两轴互相平行,通过其实任一或者两轴,将动力输出,输入轴2是有动力输出的曲柄,支撑轴是无动力输出的曲柄。偏心套的形式一般有平行四边形的曲柄6与7制成,它的结构见下图2-3,1为内环板,内环板是平行四边形连杆上带有内齿轮的结构,它的结构图式图2-4。传动的功率不大时,输出轴4和外齿轮5变成齿轮轴,一般制造成为一体。当输入轴2旋转时,行星轮内齿环板1由偏心套曲柄6和7带动的,作的不是摆线运动,而是通过一双曲柄机构(具有偏心轴颈的高速轴),引导下,作圆周平动,高速轴2和3上通过轴承装着三片并列的连杆行星齿板,即内齿环板1,此内齿环板与外齿轮5相啮合,输出动力,啮合时瞬间相位差为120。

死点位置是运动的不确定位置,即平行四边形连杆机构运动到与曲柄共线的位置(0和180),此时机构的运动是不确定的。为了避免机构在死点位置运动的不确定性,最常用的方法是用三块内齿环板并列并且各相环板之间互成120的相位角选用的方法是并列布置三

相平行四边形结构。也就是,当某一相平行四边形机构运动到死点位置时,动力由其它两相机构传递,从而克服死点位置运动的不确定性。采用这种并列方式,载荷可以由多相结构共同承担,并且使结构在运动平面内,保持平衡。

1.内齿环板

2.输入轴

3.支承轴

4.输出轴

5.输出轴外齿轮

6.输入轴偏心套

7.支承轴偏心套

图2-1 偏置式三环减速器基本结构图2-2 偏置式三环减速器传动简图

1. 内齿环板

2. 输入轴

3. 支承轴

4. 输出轴

5. 输出轴外齿轮

6. 输入轴偏心套

7. 支承轴偏心套

图2-5 对称式三环减速器基本结构图2-6 对称式三环减速器传动简图

由输入轴4和输入轴2(高速轴)与支撑轴3(高速轴)位置关系的不同,三环减速器有两个基本的形式:对称式和偏置式。偏置式三环减速器的支撑轴和输入轴处在输出轴的同一侧(见图2-1和图2-2)。对称式三环减速器是输入轴和支撑轴这两根高速轴对称布置于输出轴两侧,如图2-5和图2-6所示。

2.1.2 三环减速器的传动比

图2-7 三环减速器的传动比计算

得到三环减速器传动比的计算公式如下:

(2-1)

式中 i ——传动比

z1 ——外齿轮的齿数

z2 ——内齿轮的齿数

输入轴与输出轴的转动方向相反通过负号表示。当内、外齿轮的齿数相差不大(通常为1、2、3或4)时,三环减速器优点是结构紧凑、传动比大。

第三章三环减速器的结构设计

本章将对偏置式三环减速器进行结构设计,从理论分析的基础

上着手。由于三环减速器的内齿圈和外齿轮相啮合时的齿数相差比较小,一般为1~4。需要采用变位齿轮传动,使内、外齿轮之间的齿廓重迭干涉现象不发生,同时需要保证足够的重合度,所以三环减速器设计的重要内容之一是内、外齿轮变位系数的确定。本章将主要确定齿轮副的啮合参数,进行计算变位系数,以及计算和校核主要零部件的强度和进行设计结构。

3.1 三环减速器的设计计算步骤

由于缺乏专门的三环减速器方面相关的设计资料,在对三环减速器进行结构设计,通常参考少齿差行星齿轮减速器的结构设计步骤进行。本论文给出的已知条件:输出轴上外齿轮的齿数为z1 = 60,内齿环板的齿数为z2 = 63,输出的负载扭矩为T =4000Nm。

三环减速器结构设计的计算步骤:

(1)进行三环减速器总体结构的设计(在2.1三环减速器的结构中已经介绍过);

(2)计算配齿。本课题已给出,不需进行计算。Z1=60,Z2=63;

(3)对齿轮主要参数进行初步计算;

(4)对齿轮副啮合参数进行计算;

(5)设计计算三环减速器的结构;

(6)校核验算三环减速器行星齿轮传动的强度。

3.2 初步计算齿轮的主要参数

3.2.1 齿轮材料的类型、选择、齿数及精度等级

热处理和齿轮材料是影响齿轮使用寿命与承载能力的重要因素,也是影响齿轮加工成本和生产质量的重要因素。齿轮材料的选择应全方位的考虑到齿轮传动的加工工艺、工作情况、经济性和材料来源等条件。

(1)本论文选用直齿圆柱齿轮传动,作为传动方案;

(2)本设计的外齿轮、内齿环板材料都选用45号钢调质处理[43]。加工精度内齿圈为7级,加工精度外齿板为6级;

(3)内齿轮齿数z2=63,外齿轮齿数z1=60。齿数差为

zp=63-60=3。

3.2.2 齿轮传动主要参数的计算

按照齿根弯曲强度初算齿轮模数m或者按照齿面接触强度初算小齿轮的分度圆直径d1 作为确定三环减速器齿轮传动的主要参数,这是最简单、最常用的方法。

根据本课题给出的已知条件,按照齿根弯曲强度初算齿轮的模数为最佳方案:

(3-1)

式中

KF——综合系数,1.6~2.2,取KF =2.0

T1——啮合齿轮副中小齿轮的名义转矩,Nm;

Km——算式系数,对于直齿轮传动:Km=12.1

z1 ——齿轮副中小齿轮的齿数,即输出轴外齿轮的齿数z1=60;

KA ——使用系数,KA= 1.5,由《机械设计》,表10-2查得

Flim——试验齿轮弯曲疲劳极限;

d——小齿轮齿宽系数,d=0.6 ;

KFP——计算弯曲强度的行星轮间载荷分布不均匀系数,KHP=1.2

由公式KFP=1+1.5(KHP-1)=1+1.5(1.2-1)=1.3

YFa1——小齿轮齿形系数,YFa1=2.67,由《机械设计》表10-5查得

取齿轮模数为m=4 mm

3.3 三环减速器齿轮副啮合参数的计算

三环减速器齿轮副的啮合参数包括齿轮副啮合的变位系数和啮合角。选择合适的变位系数和啮合角可以设计出既不仅经济而且合理的三环减速器。

在设计时我们应该注意一些限制条件,由于三环减速器使用是少齿差内啮合传动,容易产生各种干涉。

3.3.1 三环减速器内啮合齿轮副的干涉

为了三环减速器传动中不产生干涉,我们需要避免一些限制条

件 [43]:

(1)具有足够的顶隙;

(2)使重合度大于1;

(3)使过渡曲线干涉现象不发生;

(4)使内、外齿轮不沿径向移动,不出现的径向干涉现象;

(5)内、外齿轮厚度要足够,轮齿的磨损情况要尽量避免,齿顶不能变尖,并且,齿顶厚度应该不小于(0.25-0.4)cm。

(6)齿廓重迭干涉与齿顶干涉尽量避免,必须达到Gs>0;

(7)满足渐开线齿廓要求,内齿轮的齿顶圆>基圆;

(8)避免节点对面的齿顶干涉;

(9)使渐开线干涉现象不发生;

3.3.2 变位系数选择时应该满足的主要限制条件:

满足内啮合的啮合方程式作为选择三环减速器变位系数的第一条件:

(3-2)

即便众多限制条件可能影响三环减速器的设计,但是在实际使用和设计中可以只考虑下面两个主要限制条件[30]:

(1)避免发生齿顶干涉,必须使内啮合齿轮副的重合度>1

(2)保证齿廓重叠干涉系数GS> 0,使齿廓重叠干涉现象不发生,按啮合中心距a装配时,:;

由公式(3-2)可知:变位系数的函数是啮合角,选择变位系数x1、x2,实质上是决定三环减速器是否可以消除干涉现象。在、z1、z2一定时,啮合角的大小由变位系数x1和x2决定。对于一对啮合齿轮,可把变位系数x1、x2视为自变量,然后把自己确定的参数作为常量,所以,可以得出限制条件是变位系数的函数。因此,满足两个主要限制条件的问题便是求解合适的变位系数的问题。

3.3.3 三环减速器变位系数的确定

独立变量是变位系数x1、x2,中间变量啮合角,变位系数x1、x2的值可以计算方程组以得出。下面用逐步逼近的迭代方法来求得同时满足两个限制条件的变位系数计算,避免超越方程的许多限制条件,直接求解变位系数是非常困难或是不能求解的现象。

计算步骤如下:

(1)确定、x1及x2

①初选ha*=0.6、=28.5、=20。三环减速器所选择的齿顶高系数可在0.5~0.8的范围内由设计者根据实际情况选定[55],没有统一的规定。但是应该考虑到采用变位与短齿相结合的方式才是避免干涉出现的最好办法。研究表明[54],为了提高行星轮轴承寿命和啮合效率,齿顶高系数应该选择合适的数据,啮合角也就随之降低。

(2)必须使Gs =[Gs]=0.05,ε =[ε]=1.0500。

[Gs] 、[ε]分别为设计要求达到的三环减速器内啮合的齿廓重叠干涉系数和重合度。

②取x1的初始值,计算几何尺寸及参数。模数为。

显然需要根据得出的数值按上述步骤重新进行设计计算,每一次迭代都能得出相应的结果,经四次迭代可以满足要求,最后得到的计算结果如下所示:

=28.1 ;GS=0.05;x1=0.338 ;x2=0.8084; =1.05 ;

表3-1 齿轮啮合参数表

序号名称符号外齿轮内齿轮

1 模数m 4

2 原始齿形角20

3 齿顶高系数ha* 0.6

4 啮合角28.1

5 齿轮的齿数z 60 63

6 变位系数 x 0.338 0.8084

7 实际啮合中心距 a 6.392

8 分度圆直径 d 240 252

3.4 三环减速器的结构设计

3.4.1 输出轴的结构设计及校核

应根据轴的应力情况和具体受载,采用适当的计算方法,并相应的选取其许用应力,进行轴的强度设计和校核。

(1) 初步确定输出轴的最小直径

首先确定轴的最小直径,可按照公式[18]

(3-18)

或 (3-19)

来确定。

式中:T——轴传递的扭矩(Nmm);

A0——按照[]定的系数

n——轴的转速(r/min)

P——轴传递的功率(kW)

[]——轴的许用扭转应力(MPa)

d——计算剖面处轴的直径(mm)

由已知条件带入公式(3-18),计算比较合适,得到轴的最小直径: dmin=A0

因为有一个键槽在轴上,考虑到安全问题,直径应该加大4~7,取dmin= 100mm。

(2) 输出轴的结构布置方案

为了使轴上零件装拆方便,把齿轮轴制作成阶梯轴,为了方便加工,输出轴直径外齿轮啮合处直径和三块内齿板直径相同。由于轴的直径不大,所以采用齿轮轴的结构,输出轴为实心轴,按照上式,初步确定截面处轴的直径,然后进行轴的其他部分的设计。为使内、外齿轮正常的进行啮合,外齿轮的宽度应该大于两端最外侧内齿环板3~10mm。轴上定位采用定距环和轴肩相结合的方式。轴的两端采用滚动轴承固定于减速器箱体。用键连接工作机和动力输出端的键槽,具

体结构及尺寸见零件图。

(3) 输出轴的强度校核

根据齿轮齿数和模数,分度圆直径为240mm,输出轴的受力分析如图2-10所示,得:

(3-20) Pi也就是输出轴上的外齿轮所受环板作用力的总和(N);

Pi ——每个啮合齿轮所受的啮合力。

由啮合力的变化规律可知(见第四章4.4.1内齿环板上啮合力的分布规律),当内齿环板所受的啮合力最大,工况角,也就是啮合齿轮受到最大的啮合力,为最危险工作情况,所以选择进行轴的强度校核。

将轴上的力先平移到输出轴的轴线上,后沿竖直和水平两个方向分解得:

(3-21) 其余两个环板施加的力与第一块环板施加的力相差,则对应的有: (3-22) 因为三块内齿环板的受力情况相同,所以可以只拿其中一块环板进行校核。

当时,作用在与第一、二、三内齿环板,相啮合的外齿轮上的啮合力,分别为:

上式中正(负)号表示该力与坐标轴正向相同(相反)。

根据上述数值画出输出轴在竖直平面内的受力图如图3-1所示。

竖直平面的约束反力:

图3-1 输出轴在竖直平面内的受力图

由平面力系的平衡方程:

得到轴承处的约束反力为

图3-2是输出轴在竖直平面内的弯矩图。竖直平面内拐点的弯矩值:

图3-3是输出轴在水平平面内的受力图。

由平面力系的平衡方程:

解得输出轴在水平平面内的轴承约束反力:

图3-4是输出轴在水平平面内的弯矩图。水平平面内拐点的弯矩值为:

图3-2 输出轴在竖直平面内的弯矩图

图3-3 输出轴在水平平面内的受力图

图3-4 输出轴在水平平面内的弯矩图

由弯矩图得1、2、3截面的合成弯矩为:

经比较得知,输出轴上的最大弯矩

扭矩最大值为T=4000Nm。由此可知,最危险截面在2或3处,其轴的强度校核应采用

; (3-23)

或 (3-24)

公式进行验算。

式中:

M——轴计算截面上的合成弯矩(N·mm);

T——轴计算截面上的扭矩(N·mm);

——轴计算截面上的工作应力(MPa);

二级同轴式圆柱齿轮减速器课程设计说明书

机械设计说明书 设计人:白涛 学号:2008071602 指导老师:杨恩霞

目录 设计任务书 (3) 传动方案的拟定及说明 (4) 电动机的选择 (4) 计算传动装置的运动和动力参数 (5) 传动件的设计计算 (5) 轴的设计计算 (12) 滚动轴承的选择及计算 (17) 键联接的选择及校核计算 (19) 连轴器的选择 (19) 减速器附件的选择 (20) 润滑与密封 (21) 设计小结 (21) 参考资料目录 (21)

机械设计课程设计任务书 题目:设计一用于螺旋输送机驱动装置的同轴式二级圆柱齿轮减速器 一.总体布置简图 1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器 二.工作情况: 载荷平稳、两班制工作运送、单向旋转

三. 原始数 螺旋轴转矩T (N ·m ):430 螺旋轴转速n (r/min ):120 螺旋输送机效率(%):0.92 使用年限(年):10 工作制度(小时/班):8 检修间隔(年):2 四. 设计内容 1. 电动机的选择与运动参数计算; 2. 斜齿轮传动设计计算 3. 轴的设计 4. 滚动轴承的选择 5. 键和连轴器的选择与校核; 6. 装配图、零件图的绘制 7. 设计计算说明书的编写 五. 设计任务 1. 减速器总装配图一张 2. 齿轮、轴零件图各一张 3. 设计说明书的编写 (一)传动方案的拟定及说明 由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。 本传动机构的特点是:减速器的轴向尺寸较大,中间轴较长,刚度较差,当两个大齿轮侵油深度较深时,高速轴齿轮的承载能力不能充分发挥。常用于输入轴和输出轴同轴线的场合。 (二)电动机的选择 1.电动机类型和结构的选择 因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y (IP44)系列的电动机。 2.电动机容量的选择 1) 工作机所需功率P w =Tn /9550,其中n=120r/min ,T=430N ·m , 得P w =5.4kW 2) 电动机的输出功率 Pd =Pw/η η=42 34221 ηηηη=0.904

二级斜齿圆柱齿轮减速器设计说明书DOC

目录 一课程设计书 2 二设计要求2三设计步骤2 1. 传动装置总体设计方案 3 2. 电动机的选择 4 3. 确定传动装置的总传动比和分配传动比 5 4. 计算传动装置的运动和动力参数 5 5. 设计V带和带轮 6 6. 齿轮的设计 8 7. 滚动轴承和传动轴的设计 19 8. 键联接设计 26 9. 箱体结构的设计 27 10.润滑密封设计 30 11.联轴器设计 30 四设计小结31 五参考资料32

一. 课程设计书 设计课题: 设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速器小批量生产,使用期限8年(300天/年),两班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V 表一: 二. 设计要求 1.减速器装配图一张(A1)。 2.CAD绘制轴、齿轮零件图各一张(A3)。 3.设计说明书一份。 三. 设计步骤 1. 传动装置总体设计方案 2. 电动机的选择 3. 确定传动装置的总传动比和分配传动比 4. 计算传动装置的运动和动力参数 5. 设计V带和带轮 6. 齿轮的设计 7. 滚动轴承和传动轴的设计 8. 键联接设计 9. 箱体结构设计 10. 润滑密封设计 11. 联轴器设计

1.传动装置总体设计方案: 1. 组成:传动装置由电机、减速器、工作机组成。 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀, 初步确定传动系统总体方案如:传动装置总体设计图所示。 选择V 带传动和二级圆柱斜齿轮减速器(展开式)。 传动装置的总效率a η 5423321ηηηηηη=a =0.96×3 98.0×295.0×0.97×0.96=0.759; 1η为V 带的效率,1η为第一对轴承的效率, 3η为第二对轴承的效率,4η为第三对轴承的效率, 5η为每对齿轮啮合传动的效率(齿轮为7级精度,油脂润滑. 因是薄壁防护罩,采用开式效率计算)。

三环减速机

三环减速机 百科名片 三环减速机 三环减速机由三片相同的内齿环板带动一个外齿齿轮输出,故称为三环减速器,属平行轴一动轴齿轮传动减速器,齿轮啮合运动属于动轴轮系,具有少齿差行星传动特征,输出与输入轴间平行配置,又有平行轴圆柱齿轮减速器的特征。具有承载和超载能力强、传动比大、分级密集、效率高、结构紧凑、体积小、质量轻、装拆维修方便、适用性宽广等优点。可用于矿山、冶金、石油、化工、橡塑、建筑、建材、起重、运输、食品、轻工等行业。 产品简介 三环减速机 高速轴转速不超过1500r/min;瞬时超载转矩不大于额定输出转矩的2.7倍;工作环境温度为-40~45℃,低于0℃时,启动前应对润滑油采取预热措施;正、反两向运转。产品型号 ZZSH桩孔钻机单级三环减速器,SHZP组合二级传动三环减速器,SHCDP组合二级传动三环减速器,SHZ组合二级三环减速器,SHL单级三环减速器,QXSH 起重机用三环减速器,MSH水泥磨三环减速器,SHC1组合二级传动三环减速器,S HLD单级三环减速器,SHC2组合二级传动三环减速器,SH基本型三环减速器,YP SH圆盘给料机用三环减速器,SHP单级三环减速器,LSHZ组合二级三环减速器,QSH起重机用三环减速器,STH单级三环减速器,LLSH连续铸钢拉矫三环减速器,SHS三环减速机,SHCD组合二级传动三环减速器,SHDK基本型三环减速器,SH D三环减速器, 产品形式 Y型:圆柱轴伸,单键平键联接; Z型:圆锥轴伸,单键平键联接; H型:渐开线花键轴伸;

C型:齿轮轴伸(仅QSH(QTR)和QXSH(QXTP)减速器用); K型:圆柱型轴孔,平键套装联结; K(Z)型:圆锥形轴孔,平键套装联结; K(H)型:花键轴孔,套装联结; D型:轴伸与电动机直联。 关于产品 减速器的工作条件: a、工作环境温度为-40℃C~+45℃,环境温度低于0℃时,启动前润滑油应预热。 b、高速轴转速不得超过功率表中规定的最高值。 c、瞬时允许尖锋转矩为额定转矩的2.7倍。 d、适用于连续,短时或断续工作制,可正反转。 e、减速器与原动机(常用电动机)和工作机之间应用非刚性联轴器且其轴心线应严格对中。 三环减速机使用及维护: 安装后用手转动高速轴,使低速轴正反两向灵活一周上。 减速器一般用油池溅油润滑,自然冷却,当长期连续运转热平衡功率不够时应采用取散热措施或用循环冷却润滑。润滑油采用N110-N200中极压齿轮油。对于断续工作制可用半流体润滑脂。 正式使用前应空运转两小时,然后按额定载荷的25%、50%、75%100%逐级加载。情况正常,应运转平稳,无冲击,最高油温不超过80℃,温升不超过60℃。 新减速器运转300小时后换润滑油,以后3000小时换一次。换油时应清选减速器内壁及传动件。 应经常检查固件有无松动,油位高低,油温和轴承温度,齿轮,轴承应无异常振动和噪声。 应保持减速器外表清洁,透气塞不得堵塞,以便散热。 使用中或开箱检查以及更换配件后减速器不得有渗漏现象。 配件应与制造厂联系,更换配件后经跑合以及加载试验再正式使用。

减速机分类及介绍

减速机分类及介绍 减速机概述: 减速机是一种动力传达机构,利用齿轮的速度转换器,将电机(马达)的回转数减速到所要的回转数,并得到较大转矩的机构。作用: 1)降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速机额定扭矩。 2)减速同时降低了负载的惯量,惯量的减少为减速比的平方。大家可以看一下一般电机都有一个惯量数值。 减速机和变频器区别:减速机是通过机械传动装置来降低电机(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。国内比较有名气的变频器生产企业有三晶、英威腾等等。 分类:减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥,圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。以下是常用的减速机分类: {市面上常用的齿轮减速机,蜗轮减速机,精密行星减速机,摆线针轮减速机及特殊开发用减速机}。 行星摆线针轮减速机蜗轮蜗杆减速机齿轮减速机行星齿轮减速机减速电机无级变速减速机特种专用减速机谐波减速机三环减速机带传动减速机企业标准减速机(器) 减速机配件精密减速机组合减速机台湾国外减速机凿井减速机平行轴减速电机微型直流减速电机正齿轮箱减速电机交流减速电机型号选择:尽量选用接近理想减速比:减速比=伺服马达转速/减速机出力轴转速

减速电机:是指减速机和电机(马达)直联的集成体。这种集成体通常也可称为齿轮马达或齿轮电机。通常由专业的减速机生产厂进行集成组装好后成套供货。使用的优点是简化设计、节省空间、延长使用寿命、降低噪音、提高扭矩和负载能力。减速电机的电机接线盒经过一定设计改造,可以直接连接变频器,适用于分布式控制应用,不仅可以完成简单驱动,还能够实现复杂定位控制。 1 减速机与变频器的区别:减速机是通过机械传动装置来降低电机(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。减速机国内比较有名气的变频器生产企业有三晶、英威腾等等 蜗轮蜗杆减速机特点:蜗轮蜗杆减速机的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。 蜗轮减速机和蜗轮蜗杆减速机的区别 蜗杆减速机和蜗轮蜗杆减速机其实没多大的区别,都是由蜗轮和蜗杆组成,不过蜗杆减速机比较粗造,没蜗轮蜗杆减速机的精密度好,同规格的蜗杆减速机的扭力就比蜗轮蜗杆减速机的大;蜗轮蜗杆减速机主要的是铝合金比较多,但蜗杆减速机就只有铸铁,更大的区别是蜗杆减速机的价格比蜗轮蜗杆减速机的价格便多了。 摆线针轮减速机特点: 1、高速比和高效率单级传动,就能达到1:87的减速比,效率在90%以上,如果采用多级传动,减速比更大。

二级减速器(机械课程设计)(含总结)

机械设计课程设计 : 班级: 学号: 指导教师: 成绩:

日期:2011 年6 月 目录 1. 设计目的 (2) 2. 设计方案 (3) 3. 电机选择 (5) 4. 装置运动动力参数计算 (7) 5.带传动设计 (9) 6.齿轮设计 (18) 7.轴类零件设计 (28) 8.轴承的寿命计算 (31) 9.键连接的校核 (32) 10.润滑及密封类型选择 (33) 11.减速器附件设计 (33) 12.心得体会 (34) 13.参考文献 (35)

1. 设计目的 机械设计课程是培养学生具有机械设计能力的技术基础课。课程设计则是机械设计课程的实践性教学环节,同时也是高等工科院校大多数专业学生第一次全面的设计能力训练,其目的是: (1)通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。 (2)学习机械设计的一般方法,掌握机械设计的一般规律。 (3)通过制定设计方案,合理选择传动机构和零件类型,正确计算零件工作能力,确定尺寸和掌握机械零件,以较全面的考虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和掌握机械零件,机械传动装置或简单机械的设计过程和方法。 (4)学习进行机械设计基础技能的训练,例如:计算,绘图,查阅设计资料和手册,运用标准和规等。 2. 设计方案及要求 据所给题目:设计一带式输送机的传动装置(两级展开式圆柱直齿轮减速器)方案图如下:

1—输送带 2—电动机 3—V带传动 4—减速器 技术与条件说明: 1)传动装置的使用寿命预定为8年每年按350天计算,每天16小时计算; 2)工作情况:单向运输,载荷平稳,室工作,有粉尘,环境温度不超过35度; 3)电动机的电源为三相交流电,电压为380/220伏; 4)运动要求:输送带运动速度误差不超过%5;滚筒传动效率 0.96; 5)检修周期:半年小修,两年中修,四年大修。 设计要求 1)减速器装配图1; 2)零件图2(低速级齿轮,低速级轴);

二级减速器毕业设计论文

兰州工业学院学院 毕业设计 题目二级直齿圆柱齿轮减速器系别机电工程学院 专业机械设计与制造 班级机设 姓名***** 学号****** 指导教师**** 日期2013年12月

设计任务书 题目: 带式运输机传动系统中的二级直齿圆柱齿轮减速器设计要求: 1:运输带的有效拉力为F=2500N。 2:运输带的工作速度为V=1.7m/s。 3:卷筒直径为D=300mm。 5:两班制连续单向运转(每班8小时计算),载荷变化不大,室内有粉尘。6:工作年限十年(每年300天计算),小批量生产。 设计进度要求: 第一周拟定分析传动装置的设计方案: 第二周选择电动机,计算传动装置的运动和动力参数: 第三周进行传动件的设计计算,校核轴,轴承,联轴器,键等: 第四周绘制减速器的装配图: 第五周准备答辩 指导教师(签名):

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

目录 1、引言 (1) 2、电动机的选择 (2) 2.1. 电动机类型的选择 (2) 2.2.电动机功率的选择 (2) 2.3.确定电动机的转速 (2) 3、计算总传动比及分配各级的传动比 (4) 3.1. 总传动比 (4) 3.2.分配各级传动比 (4) 4、计算传动装置的传动和动力参数 (5) 4.1.电动机轴的计算 (5) 4.2.Ⅰ轴的计算(减速器高速轴) (5) 4.3.Ⅱ轴的计算(减速器中间轴) (5) 4.4.Ⅲ轴的计算(减速器低速轴) (6) 4.5.Ⅳ轴的计算(卷筒轴) (6) 5、传动零件V带的设计计算 (7) 5.1.确定计算功率 (7) 5.2.选择V带的型号 (7) 5.3.确定带轮的基准直径d d1 d d2 (7) 5.4.验算V带的速度 (7) 5.5.确定V带的基准长度L d 和实际中心距a (7) 5.6.校验小带轮包角ɑ 1 (8)

三环减速器的结构原理

三环减速器设计 第一章绪论 三环减速器是少齿差行星齿轮传动中的一种。它由一个外齿轮与一个内齿轮组成一对内啮合齿轮副,采用的是渐开线齿形,内外齿轮的齿数相差很小(通常为1、2、3或4),故简称为少齿差传动。 三环减速器是由重庆钢铁设计院陈宗源高级工程师在1985年申请的发明专利,它以其适用与一切功率、速度范围和一切工作条件的优点而受到了广泛关注。 1.1三环减速器的概况: 齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。最近报导,日本住友重工研制的FA型高精度减速器,美国Alan-Newton公司研制的X-Y式减速器,在传动原理和结构上与本项目类似或相近,都为目前先进的齿轮减速器。当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。因此,除了不断改进材料品质、提高工艺水平外,还在传动原理和传动结构上深入探讨和创新,平动齿轮传动原理的出现就是一例。减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。目前,超小型的减速器的研究成果尚不明显。 在医疗、生物工程、机器人等领域中,微型发动机已基本研制成功,美国和荷兰近期研制的分子发动机的尺寸在纳米级范围,如能辅以纳米级的减速器,则应用前景远大。 1.3 课题研究意义: (1)减速比大,三环式单级减速比为11到99,双级传动比达9801。普通外啮合齿轮减速器单级减速比最大为10。 (2)体积小重量轻,外啮合齿轮只在一点捏合,接触应力是影响传动的瓶颈,三环式三点啮合,接触处两齿轮曲率半径在同侧,尺寸接近,接触面积大,接触应力小,设计是用不着核算接触应力,只要弯曲应力够就行了,由于三环式中间外齿轮齿数较多,其抗变曲性能也较,据有关资料介绍同扭矩的减速器,三环式重量只有普通减速器的1/3,体积只有1/4。这里无疑有巨大的经济效益。 (3)承载能力高,轴承寿命长。由于采用少齿差内啮合传动,三环式除了三点啮合外,在过载时由于齿的弹性变形,会有很多齿同时工作,所以齿轮的承载能力较高;另外由于接触应力小,有利于润滑,三根轴上的载荷都呈120度角均匀分布,转臂轴承位于内齿圈外,起布置空间大,所以轴的弯曲应力小,主轴承载小,有利于承受过载载荷,因而转臂轴承的寿命较高,可达到2万小时以上。

齿轮减速机型号对照表【大全】

齿轮减速机型号对照表 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 有NMRV蜗轮蜗杆减速机、R系列减速机、F系列减速机、K系列减速机、S系列减速机、TKM双曲面减速机、TRC硬齿面减速机、HG直交轴减速机、齿轮减速电机、行星减速机这几种型号。 NMRV蜗轮蜗杆减速机:PC80减速机+RV110减速机+0.75KW刹车电机 R系列减速机:同轴斜齿轮减速机 F系列减速机:F37减速机+KW三相异步电机,也就是平行轴斜齿轮减速机。 K系列减速机:三环式伞齿轮减速机(也是锥齿轮减速机) S系列减速机:斜齿轮蜗轮蜗杆减速机(除了NMRV减速机之外,第二款带自锁功能的减速机) TKM双曲面减速机:TKM38-0.37KW三相异步电动机。 TRC硬齿面减速机:铝合金斜齿轮减速机,箱体材质全是铝合金,耐磨抗压 HG直交轴减速机:也称为直角减速电机,是小型减速机,微型减速机。 齿轮减速电机:卧式齿轮减速机电机,和立式齿轮减速电机 行星减速机:体积非常小,高精密,多数用在机器人上。

齿轮减速机 1、齿轮减速机,结合国际技术要求制造,具有很高的科技含量。 2、节省空间,可靠耐用,承受过载能力高,功率可达90KW以上。 3、能耗低,性能优越,减速机效率高达95%以上。 4、振动小,噪音低,节能高,选用优质段钢材料,钢性铸铁箱体,齿轮表面经过高频热处理。 5、经过精密加工,确保轴平行度和定位的精度,这一切构成了齿轮传动总成的减速机配置了各类电机,形成了机电一体化,完全保证了产品使用质量特征。 摆线减速机 行星摆线减速机是一种应用行星传动原理,采用摆线针轮啮合,设计先进、结构新颖的减速机构。这种减速机在绝大多数情况下已替代两级、三级普通圆柱齿轮减速机及圆柱蜗杆减速机,在军工、航天、冶金、矿山、石油、化工、船舶、轻工、食品、纺织、印染、制药、橡胶、塑料、及起重运输等方面得到日益广泛的应用。 产品特点 1.传动比大。一级减速时传动比为1/6--1/87。两级减速时传动比为1/99--1/7569;三级传动时传动比为1/5841--1/658503。另外根据需要还可以采用多级组合,速比达到指定大。 2.传动效率高。由于啮合部位采用了滚动啮合,一般一级传动效率为90%--95%。 3.结构紧凑,体积小,重量轻。体积和普通圆柱齿轮减速机相比可减小2/1--2/3。 4.故障少,寿命长。主要传动啮合件使用轴承钢磨削制造,因此机械性能与耐磨性能均佳,又因其为滚动摩擦,因而故障少,寿命长。 5.运转平稳可靠。因传动过程中为多齿啮合,所以使之运转平稳可靠,噪声低。

三环减速器表面噪声的实验_朱才朝

文章编号:1000-582x(2000)04-0018-04 三环减速器表面噪声的实验* 朱才朝1,秦大同2,洪沙1,冉振亚1,谢永春2 (1.重庆大学机械工程学院,重庆400044; 2.重庆大学机械传动国家重点实验室,重庆400044) 摘要:三环减速器是我国独创的一种新型传动装置,利用三相并列双曲柄机构克服死点。以传动比为49.5的SH Q50三环减速器为研究对象,分析了其基本机构特点和传动机理。利用声强法对其表面噪声分布进行了详细的试验分析,绘制了该机输入和输出面、输入和输出侧面及顶面的三维声强分布图和等值线图。结合测点频谱图,得出其噪声评价指标及产生噪声的原因和机理,为正确设计三环减速器,减小其振动和噪声提供理论依据。 关键词:减速器;声强;振动;噪声 中图分类号:TH132.4文献标识码:A 三环减速器是我国首创的一种新型齿轮传动装置,与现有各种主要齿轮传动形式相比,具有结构简单、体积小、重量轻、传动比大、传动效率高、承载能力强、制造成本低等优点[1,2]。但由于三环减速器问世时间不长,目前的设计及系列化工作只能靠简单的类比进行,缺乏可靠的理论依据,在使用过程中普遍存在严重的振动、冲击和噪声,在重载、高速、大传动比情况下问题更为突出,影响了其推广进程。开展对三环减速器振动噪声的研究,找出振动噪声产生的原因、部位及随转速和载荷变化的规律,为正确设计三环减速器,减小其振动噪声具有重要的理论意义和实际应用价值。 1N型内齿行星齿轮传动的基本结构及传动原理 渐开线少齿差行星齿轮传动按传动形式可分为N 型(K-H型)和NN型(2K-H双内啮合型)两大类, N型内齿行星齿轮传动的基本结构形式之一)))三环减速器,如图1所示:两根互相平行且各具有三个偏心轴颈的高速轴3,动力通过其中任一轴或两轴同时传输,三个传动内齿轮1通过轴承2装在高速轴上,外齿轮7的轴4为低速轴,其轴线与高速轴3的轴线平行,低速轴通过轴承5支承在机体6上,三个内齿轮1与外齿轮7啮合,啮合瞬时相位差呈120b。其传动原理为输入轴旋转时,行星轮(内齿轮1)不是作摆线运动,而是通过一双曲柄机构(具有偏心轴颈的高速轴)引导作圆周平动[1] 。 1)内齿行星轮;2)转臂轴承 3)转臂偏心输入轴;4)输出轴 5)支承轴承;6)机架;7)外齿轮 图1三环减速器基本结构 2三环减速器振动噪声分析 2.1三环减速器振动分析 三环减速器实质是由平面四杆机构和内啮合齿轮副组成的齿轮连杆组合传动机构,因此引起减速机振动噪声的原因除了有齿轮机构产生的外,还应考虑平面四杆机构所引起的振动噪声。这里对造成三环减速器振动的激励频率加以分析。 a)内啮合齿轮副产生的激励频率 2000年7月重庆大学学报(自然科学版)V ol.23第23卷第4期Journal o f Cho ngqing U niversity(Natur al Science Edition)Jul.2000 *收稿日期:2000-03-29 基金项目:重庆市重点攻关项目(98-5021) 作者简介:朱才朝(1967-),男,湖北麻城人,博士。主要从事传动系统动力学及振动与噪声控制的研究。

二级减速器 课程设计 轴的设计

轴的设计 图1传动系统的总轮廓图 一、轴的材料选择及最小直径估算 根据工作条件,小齿轮的直径较小(),采用齿轮轴结构, 选用45钢,正火,硬度HB=。 按扭转强度法进行最小直径估算,即初算轴径,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 值由表26—3确定:=112 1、高速轴最小直径的确定 由,因高速轴最小直径处安装联 轴器,设有一个键槽。则,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机 轴径不得相差太大,否则难以选择合适的联轴器,取,为

电动机轴直径,由前以选电动机查表6-166:, ,综合考虑各因素,取。 2、中间轴最小直径的确定 ,因中间轴最小直径处安装滚动 轴承,取为标准值。 3、低速轴最小直径的确定 ,因低速轴最小直径处安装联轴 器,设有一键槽,则,参 见联轴器的选择,查表6-96,就近取联轴器孔径的标准值。 二、轴的结构设计 1、高速轴的结构设计 图2 (1)、各轴段的直径的确定 :最小直径,安装联轴器 :密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表6-85(采用毡圈密封), :滚动轴承处轴段,,滚动轴承选取30208。 :过渡轴段,取 :滚动轴承处轴段

(2)、各轴段长度的确定 :由联轴器长度查表6-96得,,取 :由箱体结构、轴承端盖、装配关系确定 :由滚动轴承确定 :由装配关系及箱体结构等确定 :由滚动轴承、挡油盘及装配关系确定 :由小齿轮宽度确定,取 2、中间轴的结构设计 图3 (1)、各轴段的直径的确定 :最小直径,滚动轴承处轴段,,滚动轴承选30206 :低速级小齿轮轴段 :轴环,根据齿轮的轴向定位要求 :高速级大齿轮轴段 :滚动轴承处轴段 (2)、各轴段长度的确定 :由滚动轴承、装配关系确定 :由低速级小齿轮的毂孔宽度确定 :轴环宽度 :由高速级大齿轮的毂孔宽度确定

带式运输机用的二级圆柱齿轮减速器设计

目录 1.题目 (1) 2.传动方案的分析 (2) 3.电动机选择,传动系统运动和动力参数计算 (2) 4.传动零件的设计计算 (5) 5.轴的设计计算 (16) 6.轴承的选择和校核 (26) 7.键联接的选择和校核 (27) 8.联轴器的选择 (28) 9.减速器的润滑、密封和润滑牌号的选择 (28) 10.减速器箱体设计及附件的选择和说 明 (29) 11.设计总结 (31) 12.参考文献 (31)

广东技术师范学院机电系 《机械设计课程设计》 设计任务书 题目:设计一带式输送机使用的V带传动或链传动及直齿圆柱齿轮减速器。设计参数如下表所示。 1、基本数据 数据编号QB-5 运输带工作拉力F/N2000 运输带工作速度 1.4 v/(m/s) 卷筒直径D/mm340 滚筒效率η0.96 2.工作情况两班制,连续单向运转,载荷平稳; 3.工作环境室内,灰尘较大,环境最高温度35度左右。 4.工作寿命15年,每年300个工作日,每日工作16小时 5.制作条件及生产批量: 一般机械厂制造,可加工7~8级齿轮;加工条件:小批量生产。生产30台 6.部件:1.电动机,2.V带传动或链传动,3.减速器,4.联轴器,5.输送带 6.输送带鼓轮 7.工作条件:连续单向运转,工作时有轻微振动,室内工作; 运输带速度允许误差±5%; 两班制工作,3年大修,使用期限15年。

(卷筒支承及卷筒与运输带间的摩擦影响在运输带工作拉力F中已考虑。) 8.设计工作量:1、减速器装配图1张(A0或sA1); 2、零件图1~3张; 3、设计说明书一份。 §2传动方案的分析 1—电动机,2—弹性联轴器,3—两级圆柱齿轮减速器,4—高速级齿轮,5—低速级齿轮6—刚性联轴器7—卷筒 方案分析:

B系列三环减速机

B系列三环减速机 用途 三环减速器是一种先进的传动机械,可以广泛地应用于矿山、冶金、石油、化工、起重运输、纺织印染、制药、造船、机械、环保及食品轻工等领域。一般可替代行星齿轮减速器、摆线针轮减速器、多级圆柱齿轮减速器和蜗轮蜗杆减速器等使用。 特点 ★承载能力强实现了多齿对称啮合传动,有9—18对齿同时进入啮合区,输出扭矩高并且能承受较强的过载力,可应用于重载、冲击、频繁启动等各种恶劣工况。 ★传动比大单级传动比11—99,双级传动比可达9801。 ★运转平稳各传动部件受力均匀、运转平稳、噪声低。 ★效率高单级传动效率可达92%—96%以上。 ★结构紧凑体积小,重量轻,其体积和重量比同等功率的齿轮减速器减小1/3—2/3。 ★适用性广外形及装配形式可根据用户实际使用性况进行配置,制成卧式、立式、法兰连接及组合传动等多种结构形式。 ★使用寿命长结构设计合理,具有很高的可靠性,使用寿命长,正常情况下无需特别维护。 轴伸型式: Y型:圆柱轴伸,单键平键联接; Z型:圆锥轴伸,单键平键联接; H型:渐开线花键轴伸; C型:齿轮轴伸(仅QBJ、QXBJ减速器使用) K型:圆柱形轴孔,平键套装联接; K(Z)型:圆锥形轴孔,平键套装联接; K(H)型:花键轴孔,套装联接; D型:轴伸与电机直联。 常用轴伸形式,高速轴与低速轴同为圆柱形轴伸或低速轴为套装孔的,可省略附加标识。非圆柱型轴伸或高速轴与低速轴的轴伸型式不同时,则按高速轴轴伸在前,低速轴轴伸在后的顺序标注轴伸型式标识。 型号表示法: BJ、BJD、BJDK、BJC、BJCD、MBJ、BJS型三环减速机装配型式

LLBJ型三环减速机装配型式 BJT、QBJ、QXBJ型三环减速机装配型式

西华大学 二级减速器课程设计说明书

课程设计说明书 课程名称:机械设计课程设计课程代码: 题目:二级斜齿圆柱齿轮减速器学生姓名:张伟荣 学号: 3120130316205 年级/专业/班: 13级机电2班 学院(直属系) :机械工程学院 指导教师:杜强

机械设计课程设计任务书 学院名称:机械工程学院专业:机械电子工程年级:2013级 学生姓名: 张伟荣学号: 3120130106205 指导教师: 杜强 一、设计题目带式运输机的减速传动装置设计 二、主要内容 ⑴决定传动装置的总体设计方案; ⑵选择电动机,计算传动装置的运动和动力参数; ⑶传动零件以及轴的设计计算;轴承、联接件、润滑密封和联轴器的选择及校验计算; ⑷机体结构及其附件的设计; ⑸绘制装配图及零件图;编写计算说明书并进行设计答辩。 三、具体要求 ⑴原始数据:运输带线速度v = 1.76 (m/s) 运输带牵引力F = 2700 (N) 驱动滚筒直径D = 470 (mm) ⑵工作条件: ①使用期5年,双班制工作,单向传动; ②载荷有轻微振动; ③运送煤、盐、砂、矿石等松散物品。 四、完成后应上交的材料 ⑴机械设计课程设计计算说明书; ⑵减速器装配图一张; ⑶轴类零件图一张; ⑷齿轮零件图一张。

五、推荐参考资料 ⑴西华大学机械工程与自动化学院机械基础教学部编.机械设计课程设计指导 书,2006 ⑵秦小屿.机械设计基础(第二版).成都:西南交大出版社,2012 指导教师杜强签名日期 2015 年 6 月 25日 系主任审核日期 2015 年 6 月 25 日

目录 一.传动方案的拟定……………………………………………………………………… 二.电动机的选择及传动装置的运动和动力参数计算………………………………… 三.传动零件的设计计算…………………………………………………………… 四.轴的结构设计及强度计算…………………………………………………………… 五.滚动轴承的选择与寿命计算…………………………………………………………… 六.键的强度计算…………………………………………………………… 七.联轴器的选择…………………………………………………………… 八.减速器机体结构设计及附件设计……………………………………………………………总结………………………………………………………………………………………… 参考文献……………………………………………………………………………………

二级展开式圆柱齿轮减速器设计2

目录 一.设计任务书 (1) 二.传动方案的拟定及说明 (3) 三.电动机的选择 (3) 四.计算传动装置的运动和动力参数 (4) 五.传动件的设计计算 (5) 六.轴的设计计算 (14) 七.滚动轴承的选择及计算 (26) 八.箱体内键联接的选择及校核计算 (27) 九.连轴器的选择 (27) 十.箱体的结构设计 (29) 十一、减速器附件的选择 (30) 十二、润滑与密封 (31) 十三、设计小结 (32) 十四、参考资料 (33)

一、设计任务书: 题目:设计一用于带式运输机传动装置中的展开式二级圆柱齿轮减速器 1.总体布置简图: 1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器 2.工作情况:

载荷平稳、单向旋转 3.原始数据: 输送带的牵引力F(kN):2.1 输送带滚筒的直径D(mm):450 输送带速度V(m/s):1..4 带速允许偏差(%):±5 使用年限(年):10 工作制度(班/日):2 4.设计内容: 1)电动机的选择与运动参数计算; 2)直齿轮传动设计计算; 3)轴的设计; 4)滚动轴承的选择; 5)键和联轴器的选择与校核; 6)装配图、零件图的绘制; 7)设计计算说明书的编写。 5.设计任务: 1)减速器总装配图一张; 2)齿轮、轴以及箱座零件图各一张; 3)设计说明书一份; 6.设计进度: 1)第一阶段:总体计算和传动件参数计算 2)第二阶段:轴与轴系零件的设计

3) 第三阶段:轴、轴承、联轴器、键的校核及草图绘制 4) 第四阶段:装配图、零件图的绘制及计算说明书的编写 二、传动方案的拟定及说明: 由题目所知传动机构类型为:展开式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。 本传动机构的特点是:减速器横向尺寸较小,两大齿轮浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴承受载荷大、刚度差,中间轴承润滑较困难。 三、电动机的选择: 1. 电动机类型和结构的选择: 因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y (IP44)系列的电动机。 2. 电动机容量的选择: 1) 工作机所需功率 P w P F V /1000w w η=?=3.1kW 2) 电动机的输出功率d P d P =P w /η 由于 3 2 0.86 ηηηηη=???=轴承齿轮链联轴器,故:d P =3.6kW

减速器工作原理及各部分结构

齿轮、螺纹及标准件的测量及计算方法 1.标准直齿圆柱齿轮测绘方法和步骤

①数出齿数 Z 。 ②测量齿顶圆直径d a : 如下图所示,如果是偶数齿,可直接测得,见图( a )。若是奇数齿,则可先测出孔的直径尺寸D1 及孔壁到齿顶间的单边径向尺寸H,见图( c ) , 则齿顶圆直径:da =2H+D1 ③计算和确定模数m: 根据公式m = da /( Z+2) 算出m的测得值,然后与标准模数值比较,取较接近的标准模数为被测齿轮的模数。 ( 同时要根据标准模数反推出理论da 值 ) ④计算分度圆直径d: d=mZ ,与相啮合齿轮两轴的中心距a校对,应符合 a=(d1+d2)/2 =m(Z1+Z2)/2 ⑤测量计算齿轮其它各部分尺寸。 2.测绘螺纹方法 :①外螺纹测绘 测螺纹公称直径: (1) 用卡尺或外径千分尺测出螺纹实际大径,与标准值比较,取较接近的标准值为被测外螺纹的公称直径。 (2) 测螺距: 可用螺纹规直接测量。无螺纹规时,可用压痕法测量,即用一张薄纸在外螺纹上沿轴向压出痕迹,再沿轴向测出几个(至少4个)痕迹之间的尺寸,除以间距数(痕迹数减去1)即得平均螺距,然后再与标准螺距比较,取较接近的标准值为被测螺纹的螺距。也可以沿外螺纹轴向用卡尺或直尺直接量出若干螺距的总尺寸,再取平均值,然后查表比较取标准值。 (3) 旋向: 将外螺纹竖直向上,观察者正对螺纹,若螺纹可见部分的螺旋线从左往右上升,则该外螺纹为右旋螺纹,若螺纹可见部分的螺旋线从右往左上升,则为左旋螺纹。 (4) 测螺纹其它尺寸。 ②内螺纹测绘: 内螺纹一般不便直接测绘,但可找一能旋入(能相配)的外螺纹,测出外螺纹的大径及螺距,取标准值即为内螺纹的相关尺寸。螺纹孔的深度可用卡尺直接量取。 3.标准件的测量 标准件一般不画零件图,但在装配图中应进行必要的标注,以便采购人员按其规格尺寸、数量进行采购。因此,对标准件也必须进行测量,按相关标准取其标准值,再按相关标准的标注示例在装配图中注出标记代号。 实训考核标准. 测绘有关附表及参考图零件的尺寸公差及配合要求 零件的表面粗糙读要求

二级减速器课程设计完整版

目录 1. 设计任务............................................... 2. 传动系统方案的拟定..................................... 3. 电动机的选择........................................... 3.1选择电动机的结构和类型.................................... 3.2传动比的分配............................................. 3.3传动系统的运动和动力参数计算............................... 4. 减速器齿轮传动的设计计算............................... 4.1高速级斜齿圆柱齿轮传动的设计计算............................ 4.2低速级直齿圆柱齿轮传动的设计计算............................ 5. 减速器轴及轴承装置的设计............................... 5.1轴的设计................................................ 5.2键的选择与校核........................................... 5.3轴承的的选择与寿命校核.................................... 6. 箱体的设计............................................. 6.1箱体附件................................................ 6.2铸件减速器机体结构尺寸计算表............................... 7. 润滑和密封............................................. 7.1润滑方式选择............................................. 7.2密封方式选择............................................. 参考资料目录..............................................

最新二级减速器课程设计书

目录 1 2 3 一课程设计书 2 4 5 6 二设计要求2 7 8 三设计步骤2 9 10 1. 传动装置总体设计方案 3 11 2. 电动机的选择 4 12 3. 确定传动装置的总传动比和分配传动比 5 13 4. 计算传动装置的运动和动力参数 5 14 5. 设计V带和带轮 6 15 6. 齿轮的设计 8 16 7. 滚动轴承和传动轴的设计 19 17 8. 键联接设计 26 18 9. 箱体结构的设计 27 19 10.润滑密封设计 30 1

20 11.联轴器设计 30 21 四设计小结31 22 23 五参考资料32 24 25 26 27 28 29 一. 课程设计书 30 设计课题: 31 设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速 32 33 器小批量生产,使用期限8年(300天/年),两班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V 34 35 表一: 2

36 二. 设计要求 37 1.减速器装配图一张(A1)。 38 2.CAD绘制轴、齿轮零件图各一张(A3)。39 3.设计说明书一份。 40 三. 设计步骤 41 42 1. 传动装置总体设计方案 2. 电动机的选择 43 44 3. 确定传动装置的总传动比和分配传动比45 4. 计算传动装置的运动和动力参数 46 5. 设计V带和带轮 47 6. 齿轮的设计 3

48 7. 滚动轴承和传动轴的设计 49 8. 键联接设计 50 9. 箱体结构设计 51 10. 润滑密封设计 52 11. 联轴器设计 53 54 1.传动装置总体设计方案: 55 56 1. 组成:传动装置由电机、减速器、工作机组成。 57 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀, 58 要求轴有较大的刚度。 59 3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速 级。 60 61 其传动方案如下: 4

二级减速器课程设计说明书

1 设计任务书 1.1设计数据及要求 表1-1设计数据 序号 F(N) D(mm) V(m/s) 年产量 工作环境 载荷特性 最短工 作年限 传动 方案 7 1920 265 0.82 大批 车间 平稳冲击 十年二班 如图1-1 1.2传动装置简图 图1-1 传动方案简图 1.3设计需完成的工作量 (1) 减速器装配图1张(A1) (2) 零件工作图1张(减速器箱盖、减速器箱座-A2);2张(输出轴-A3;输出轴齿轮-A3) (3) 设计说明书1份(A4纸) 2 传动方案的分析 一个好的传动方案,除了首先应满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、传动效率高、成本低廉以及使用维护方便。要完全满足这些要求是困难的。在拟定传动方案和对多种方案进行比较时,应根据机器的具体情况综合考虑,选择能保证主要要求的较合理的

传动方案。 现以《课程设计》P3的图2-1所示带式输送机的四种传动方案为例进行分析。方案a 制造成本低,但宽度尺寸大,带的寿命短,而且不宜在恶劣环境中工 作。方案b 结构紧凑,环境适应性好,但传动效率低,不适于连续长期工作,且制造成本高。方案c 工作可靠、传动效率高、维护方便、环境适应性好,但宽度较大。方案d 具有方案c 的优点,而且尺寸较小,但制造成本较高。 上诉四种方案各有特点,应当根据带式输送机具体工作条件和要求选定。若该设备是在一般环境中连续工作,对结构尺寸也无特别要求,则方案c a 、均为可选方案。对于方案c 若将电动机布置在减速器另一侧,其宽度尺寸得以缩小。故选c 方案,并将其电动机布置在减速器另一侧。 3 电动机的选择 3.1电动机类型和结构型式 工业上一般用三相交流电动机,无特殊要求一般选用三相交流异步电动机。最常用的电动机是Y 系列笼型三相异步交流电动机。其效率高、工作可靠、结构简单、维护方便、价格低,适用于不易燃、不易爆,无腐蚀性气体和无特殊要求的场合。此处根据用途选用Y 系列三相异步电动机 3.2选择电动机容量 3.2.1工作机所需功率w P 卷筒3轴所需功率: 1000Fv P W = =1000 82 .01920?=574.1 kw 卷筒轴转速: min /13.5914 .326582 .0100060100060r D v n w =???=?= π 3.2.2电动机的输出功率d P 考虑传动装置的功率耗损,电动机输出功率为 η w d P P = 传动装置的总效率:

相关文档
最新文档