共射极电压放大电路的分析.

合集下载

基本共射极放大电路电路分析

基本共射极放大电路电路分析

基本共射极放大电路电路分析共射极放大电路是一种常见的放大电路,其基本原理是将输入信号通过基极电容耦合到晶体管的基极,经过放大后输出到负载电阻。

本文将详细介绍共射极放大电路的电路分析。

首先,我们需要了解共射极放大电路的基本组成部分。

它由一个NPN型晶体管、一个输入电容、一个负载电阻、一个偏置电阻和一个电源组成。

偏置电阻用于提供适当的偏置电压,以确保晶体管工作在合适的工作区域。

接下来,我们将进行电路的直流分析。

在直流分析中,我们可以假设输入信号为零,即直流情况下没有输入信号。

在这种情况下,我们可以将输入电容视为开路。

根据基尔霍夫定律,我们可以得到以下方程:1.晶体管的输出特性方程:IC=βIB+(1+β)IB0其中,IC是晶体管的集电极电流,IB是基极电流,β是晶体管的放大倍数,IB0是逆向饱和电流。

2.输入回路的欧姆定律:VBB-IBRB-VBE=0其中,VBB是偏置电压,RB是偏置电阻,VBE是基极与发射极之间的电压。

根据晶体管的特性曲线,我们可以将VBE近似等于0.7V。

通过解这两个方程,我们可以得到基极电流IB和集电极电流IC,从而得到电流放大倍数β。

从而我们可以计算出输出电压的增益Av=ΔVO/ΔVD(其中ΔVO是输出电压变化,ΔVD是输入电压变化)。

接下来,我们进行电路的交流分析。

在交流分析中,我们考虑输入信号,并将输入电容视为闭路。

通常情况下,我们可以使用小信号模型来近似分析。

小信号模型的基本原理是将非线性的晶体管电路线性化,以便我们能够使用常见的线性电路分析方法。

在小信号模型中,我们可以使用一个等效电路来表示晶体管的特性。

该等效电路由一个输入电阻ri、一个输出电阻ro和一个电流放大倍数β组成。

根据这个等效电路,我们可以将输入信号与输入电阻串联,将输出信号与输出电阻并联。

根据这个等效电路,我们可以计算出电路的输入电阻Ri、输出电阻Ro和电压增益Av。

输入电阻Ri等于输入电阻ri与偏置电阻RB并联的结果。

基本共射极放大电路电路分析

基本共射极放大电路电路分析

基本共射极放大电路电路分析3.2.1基本共射放大电路1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。

a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。

b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。

■■童■ Br - - ■:必)iy, :信号慷:I ■t>A放大电路!»!2.电路组成:(1)三极管T;(2)VCC :为JC提供反偏电压,一般几〜几十伏;(3)RC :将IC的变化转换为Vo的变化,一般几K〜几十K。

VCE=VCC-ICRC RC,VCC同属集电极回路。

(4)VBB :为发射结提供正偏。

(习R十一般为儿1 K - JLT-Rb一般,程骨V開=e7V当%*宀只£时;,V B,I B A(6)Cb1,Cb2 :耦合电容或隔直电容,(7)Vi :输入信号(8)Vo :输出信号(9)公共地或共同端,电路中每一点的电位实际上都是该点与公共端之间的电位差。

图中各电压的极性是参考极性,电流的参考方向如图所示。

其作用是通交流隔直流。

V⑵输入电阻RiI£黒 b ZCKt亡/〒气V.V2^3.共射电路放大原理f' h : 1112V峠变化% %变化7变化 %尸%-叫好变化 > %变化SOOK A 4KTHl/cc/jt 躍—=40w/{ Ic = E h = \ .6rffA J cE = f4v-AVr = -bn y T M = —5 址44.放大电路的主要技术指标放大倍数/输入电阻Ri /输出电阻Ro /通频带(1)放大倍数放大电路的输出信号的电压和电流幅度得到 了念大,所以输出功零也龛筋「所肢大.对赦夫电ffilfilH'W:电压放人侣数;凰=峙电 电流放脸倚tt : ■半二扫冷 功率ttXMSi :心=£『尸=峡!鰹 通常它们蛊;fi 按F 张怙宦义的4放大俗数定 义式中各有其S 如图所示,慮频段九—中频段一■久高频詁(3)输出电阻Ro输出电阻是表明放大电路帯负栽的能力,饨大表明 放大电路带负载的能力差,心的宦义:R 、=4-g(町根捌图"}・在帯竝肘,测得!色 鶴 JF 跑时的繭dj 为J*畀 则;心人! 丁 乂(厂:=口}认C 」叫 / 4 K 10 — 1 : %注总:肚大倍数、输入电阻、输岀电阻通常^^;11在 E 弦信巧下的它渝琴®, iHr n-放k 电呂&处于威k 状态且输;IM 伙珥的条件卜V 们息义.(4)通频带放大电路的增率的歯数4在低预段和 高频段放大缶数祁要下降。

共发射极的放大电路为什么输入电压与输出电压是相位相反

共发射极的放大电路为什么输入电压与输出电压是相位相反

三极管接成共发射极电路时,输入信号与输出信号的相位相差180度,所以也称为反相器,也就是倒相。

这是因为集电极接一个电阻RC,集电极输出电压VCE与电源电压EC、集电极电阻电压VRC 之间有如下关系:EC=VRC+VCE,
因为VRC=IC*RC,
IC=βIB
当三极管基极输入一个正极性的信号时(正弦波的正半周信号),基极电流IB向增大方向变化,集电极电流IC随之增大,VRC=RC*IC也增大,使VCE减小,输出电压向减小方向变化。

所以说,基极电压输入正半周,集电极电压输出副半周。

这个就是倒相作用。

三极管接成共集电极(射级输出器)时,发射极接一个电阻RE,集电极没有电阻。

输出从RE上取出,由于IB增加IE也增加,VB上升VE也上升,方向相同,所以同相。

共射放大电路分析

共射放大电路分析
RS
+
ib + vi

iC ib RC RL + vo

由于信号源内阻R 的存在, 由于信号源内阻 S 的存在, vs 输入信号在R 输入信号在 S上损失了一部 分,使放大倍数下降。 使放大倍数下降。
RB rbe
RC=5K 例2:在图示电路中,R1=50K , R2=10K :在图示电路中, RE=1K RL=10K =80 rbb'=300 。 bb' 1.求电路的静态工作点; 1.求电路的静态工作点; 求电路的静态工作点 2.求电压放大倍数 2.求电压放大倍数AV ; 和输入电阻Ri , 输出电阻RO 。 求电压放大倍数A 和输入电阻R 输出电阻R 3.若 3.若vi = 5sinωt (mv)定性画出vb、vc和ib、ic的波形。 5sinω (mv)定性画出 定性画出v 的波形。 解:①求电路的静态工作点
v S = 0 , RL = ∞
ii
Ri
+ vi

RB rbe
ib RC RL
∵ 当 vi = 0 时 , i b = 0 , ib = 0 , 受控源开路。 受控源开路。 ∴ Ri = RB // rbe RO= RC
RS vs
+
ib + vi

RB rbe
ib RC
iO + vO

RO
′ βRL AV = − rbe
′ v0 βRL 40 × 2k AV = =− =− vi rbe 0.85k ≈ −94
RB RC 280k 280k 500Ω Ω RS + C vi 1 + vs

+VCC 12V 4k 12V + C2 RL vO 4k −

共射极放大电路实验报告

共射极放大电路实验报告

共射极放大电路实验报告共射极放大电路实验报告引言:共射极放大电路是一种常见的电子电路,广泛应用于放大信号的场合。

本实验旨在通过搭建共射极放大电路并对其进行实验验证,深入理解其原理与特性。

一、实验目的本次实验的主要目的是:1. 理解共射极放大电路的基本原理;2. 学会搭建并调试共射极放大电路;3. 测量并分析共射极放大电路的放大倍数、输入阻抗和输出阻抗等特性。

二、实验器材与原理1. 实验器材:(1)信号发生器(2)二极管(3)电阻、电容等元件(4)示波器(5)万用表2. 原理:共射极放大电路是一种三极管放大电路,其基本原理是利用三极管的放大作用,将输入信号放大后输出。

在共射极放大电路中,输入信号通过电容耦合方式进入基极,通过电阻与发射极相连,并通过电阻与负载电阻相连,输出信号从负载电阻中取出。

1. 搭建电路:按照实验原理,按照电路图搭建共射极放大电路。

注意连接正确,避免短路和接反等问题。

2. 调试电路:将信号发生器的输出端与输入端相连,设置合适的频率和幅度。

通过示波器观察输出信号的波形,并调整电路参数,使得输出波形达到最佳状态。

3. 测量电路特性:使用万用表测量电路中各个元件的电压和电流值,记录并计算输入阻抗、输出阻抗和放大倍数等特性参数。

四、实验结果与分析在实验中,我们搭建了共射极放大电路,并成功调试出了较好的输出波形。

通过测量和计算,得到了以下结果:1. 输入阻抗:根据测量数据,我们计算得到共射极放大电路的输入阻抗为XXX。

2. 输出阻抗:根据测量数据,我们计算得到共射极放大电路的输出阻抗为XXX。

3. 放大倍数:通过测量输入信号和输出信号的幅度,我们计算得到共射极放大电路的放大倍数为XXX。

通过对实验结果的分析,我们可以看出共射极放大电路具有较高的放大倍数和较低的输出阻抗,适用于需要放大信号的应用场合。

通过本次实验,我们深入了解了共射极放大电路的原理与特性,并成功搭建了该电路并进行了调试。

实验结果表明,共射极放大电路具有较高的放大倍数和较低的输出阻抗,具有重要的应用价值。

共射极基本放大电路分析

共射极基本放大电路分析

共射极基本放大电路分析为了更好地理解共射极基本放大电路,我们需要进行以下几个方面的分析:1.伏安特性分析:首先我们需要了解晶体管的伏安特性曲线,它描述了晶体管的电流与电压之间的关系。

晶体管的伏安特性曲线通常具有三个区域:截止区域、饱和区域和放大区域。

在截止区域,输入电压较低,晶体管处于截止状态,没有电流通过。

在饱和区域,输入电压较高,晶体管处于饱和状态,有最大的电流通过。

在放大区域,输入电压介于截止电压和饱和电压之间,晶体管将以放大信号的形式输出。

2.小信号模型分析:在共射极基本放大电路中,输入信号通常是小信号,我们可以将晶体管视为线性放大器。

我们可以使用小信号模型来简化电路,将晶体管视为电流放大器和电压放大器。

在这种情况下,共射极基本放大电路可以被看作是一个共射极放大器。

3.增益分析:共射极基本放大电路的放大增益是指输出电压与输入电压之间的比值。

放大增益通常用β表示,β是晶体管的电流放大因子或射极电流与基极电流之比。

增益值可以通过测量输入和输出信号的幅度来计算。

4.截止频率分析:共射极基本放大电路的截止频率是指输入信号频率超过该频率时,晶体管的放大增益开始下降。

截止频率可以通过晶体管的频率响应特性来确定。

5.稳定性分析:共射极基本放大电路的稳定性是指输出信号对于电源电压和温度变化的抗干扰能力。

稳定性分析可以通过电压分压器和电流源的设计来实现。

除了上述的分析,还可以对共射极基本放大电路进行功率分析、频率响应分析、电流增益分析等等。

这些分析可以帮助我们更好地理解共射极基本放大电路的工作原理,并且有助于我们进行电路设计和性能优化。

总结起来,共射极基本放大电路是一种重要的放大电路,需要对其伏安特性、小信号模型、增益、截止频率和稳定性等方面进行详细分析,以便更好地理解其工作原理并进行电路设计和优化。

共射极放大电路分析

共射极放大电路分析

共射极放大电路分析在分析共射极放大电路时,我们需要考虑以下几个方面:1.静态偏置:为了确保晶体管工作在合适的工作区间,我们需要为其提供适当的基极电压和发射极电压。

一般而言,基极电压应为0.6V(对于硅晶体管)和0.2V(对于锗晶体管),而发射极电压应为0.7V。

2.输入电阻:共射极放大电路的输入电阻较低,通常在几百欧姆以内。

这使得电路能够接收低阻抗信号源的输入,同时提供信号放大。

3.输入耦合:输入信号一般通过电容进行耦合。

这是因为晶体管具有极高的输入电容,而电容耦合可以阻隔直流偏置并传递交流信号。

4.输出电阻:共射极放大电路通常具有较高的输出电阻。

这是由于输出信号来自发射极,其内阻较高。

因此,为了降低输出电阻,需要添加一个负载电阻。

5.放大倍数:共射极放大电路的电压放大倍数较高,通常在几十到几百之间。

放大倍数可以通过负载电阻和输入电阻的比值来计算。

6.频率响应:晶体管具有本征的频率响应限制,这会影响共射极放大电路的带宽。

一般而言,为了确保电路的稳定性,需要选择一个合适的负载电阻和耦合电容。

通过以上分析,我们可以得出共射极放大电路的一般特点。

它具有较高的电压放大倍数和较宽的频率响应范围。

然而,由于输出信号是从发射极提取的,其相位非常相反。

因此,在实际应用中,我们需要注意相位问题,以确保信号的正确传递。

总的来说,共射极放大电路是一种常见且实用的电路,因其较高的增益和稳定性而得到广泛应用。

透彻理解和分析这个电路可以帮助我们更好地设计、调试和应用共射极放大电路。

共射极放大电路分析

共射极放大电路分析
思考题 P40 2、3、5 P52 2、3、6
3.输入电阻大小适中,一般为几kΩ;
4.输出电阻大小适中,一般为几kΩ。
2021/4/21
38
谢谢观赏
模拟电子技术
第2章 晶体三极管及其应用
2.微变等效电路法
为什么放大电路要用微变等效电路来分析?
2021/4/21
23
模拟电子技术
第2章 晶体三极管及其应用
1)三极管的微变线性模型
小功率三极管 的输入电阻
2021/4/21
rbe200(1)2I6m EQV
24
模拟电子技术
第2章 晶体三极管及其应用
故基极电流改为
I BQ
U CC RB
2)集电极电流
注:当UCC和RB确定后, IBQ即为固定值, 故 此电路称为固定偏置 式放大电路。
3)三极管输出电压
IC Q IB Q
UCE QUCC RCICQ
2021/4/21
13
模拟电子技术
第2章 晶体三极管及其应用
静态工作点Q的定位
2021/4/21
14
1.放大电路的基本组成
2021/4/21
5
模拟电子技术
第2章 晶体三极管及其应用
2.共射极放大电路的组成
2021/4/21
6
模拟电子技术
第2章 晶体三极管及其应用
电路中各元件的作用如下
⑴三极管:电流放大
⑵电容C1和C2:隔直耦合 ⑶基极偏置电阻: Rb ⑷基极回路电源:UBB ⑸集电极电源:UCC ⑹集电极负载电阻:Rc
模拟电子技术
第2章 晶体三极管及其应用
一、静态工作点确定
1. 近似估算法
由直流通路应用 KVL可算的静态时的 基极电流为

实验二 BJT共射极电压放大电路的分析

实验二  BJT共射极电压放大电路的分析
f/kHFra bibliotek VO/V 0.1
fL
1
10
100
fH
1000
典型幅频 特性曲线
Av Av0 0.707Av0
fL
fH
f
改变信号频率
观察波形
保持 vi为5mV
(四)常见故障的分析方法
(1)实验器件故障的判别
电位器好坏的判别
万用表作为测量电阻使用
探头线好坏的判别
探头线好坏的判别
(2)电路故障点的判别
共地(接地)
电源端
电路的设计分析
参见教材 P 59 – 62页
(三)实验内容
1、静态工作点的测量
调整RW,使静态集电极电流ICQ=2mA,测量静态时晶体 管集电极-发射极之间电压VCEQ 。
ICQ(mA)
2mA
VCEQ(V)
调节
ICQ
不加入任何信号 用直流电压表 测量VCEQ
IEQ
ICQ的确定:根据ICQ= IEQ,测量RE直流电压间接确定
加入正弦信号
观察波形不能失真
用交流毫伏表观察, Vi=5mV
数据表格:
静态工作点电流ICQ/mA
保持输入信号Vi/mV VS/mV 测量值 VO/V VO′/V AV (有负载 时) 由测量 数据 计算值 A’V (空载 时)
1.5
5
2
5
2.5
5 要弄清楚 各个参量 的含义
Ri/kΩ
RO/kΩ
其中:
为直流工作点信号, 要用万用表测
为交流信号, 用示波器测峰峰值
ICQ(mA)
VOP-P (V)
加大信号幅度
调节
观察波形
用电压表间接 测量ICQ

共射极基本放大电路分析解读

共射极基本放大电路分析解读

共射极基本放大电路分析解读共射极放大电路是一种常见的基本放大电路结构,由晶体管的射极连接到负载电阻,集电极通过电阻连接到直流电源。

在此结构下,输入信号为电压信号,输出信号也为电压信号。

在共射极放大电路中,晶体管的射极作为输出端,负载电阻通过集电极与直流电源相连。

输入信号通过耦合电容连接到基极。

该电路结构的特点是电流放大倍数大,输入阻抗小,输出阻抗大。

因此,它适合作为信号放大器使用。

下面我们将对共射极放大电路进行详细的分析和解读。

首先,我们来看放大电路的小信号模型,通过将晶体管的直流工作点移到集电极所连的负载电阻上,得到共射极放大电路的小信号模型。

在该模型中,集电极电阻、等效输入电阻和输出电阻在直流条件下都是无穷大,可以忽略。

这样可以简化电路分析,只需关注放大电路的增益和频率特性。

接下来,我们分析共射极放大电路的电压增益。

根据放大电路的小信号模型,我们可以得到电压增益的表达式。

通常情况下,共射极放大电路的电压增益为负值,可以通过对电路参数的调整来改变增益的值。

其中,负载电阻的值越大,电压增益越大,但同时输出阻抗也将变大。

除了电压增益外,我们还可以分析共射极放大电路的频率特性。

通常情况下,晶体管的集电极电容和输入电容将影响电路的频率特性。

为了获得更宽的频率响应范围,可以通过添加补偿电容来提高电路的频率响应。

此外,共射极放大电路还有一些特殊的应用。

例如,在无线电通信领域中,共射极放大电路常常用于放大电路和混频器电路中。

在音频放大器中,共射极放大电路也是常见的电路结构。

总体来说,共射极放大电路是一种常见的基本放大电路结构,具有电流放大倍数大、输入阻抗小和输出阻抗大的特点。

通过详细的分析和解读,我们可以更好地理解该电路的工作原理和性能特点。

完整版共射放大电路计算仿真测试分析报告

完整版共射放大电路计算仿真测试分析报告

完整版共射放大电路计算仿真测试分析报告一、引言共射放大电路是一种常用的电子放大电路,可以将输入信号的幅度放大到较大的输出信号。

本文将对共射放大电路进行计算、仿真和测试,并进行详细的分析和报告。

二、电路图和参数共射放大电路的电路图如下所示:(插入电路图)电路参数如下:输入信号幅度Vin = 0.1V输入信号频率f=1kHz直流输入电源Vcc = 12V直流电源温度T=25°CBJT参数:β = 100,Vbe = 0.7V三、计算分析1.静态工作点计算根据电路图,可以通过分压电路计算基极电压Vb,即:Vb = Vcc * (R2 / (R1 + R2))在此基础上,可以计算发射极电压Ve,即:Ve = Vb - Vbe根据等效电路模型,可以计算集电极电流Ic,即:Ic=β*Ib2.放大倍数计算共射放大电路的放大倍数Av可以通过下式计算:Av=-β*(Rc/Re)3.频率响应计算共射放大电路的截止频率fc可以通过下式计算:fc = 1 / (2π * Re * Ce)四、仿真测试在Multisim软件中,创建共射放大电路的电路图,并设置参数如上所述。

通过输入一个正弦信号,观察输出信号的波形,并测量输入输出信号的幅度和相位差。

五、仿真结果分析1.静态工作点分析通过计算,得到静态工作点的电压如下:Vb=4.8VVe=4.1VIc=10mA2.放大倍数分析通过计算,得到放大倍数Av=-100,即原始信号被放大了100倍。

3.频率响应分析通过计算,得到截止频率fc = 159Hz。

这意味着在这个频率以下,放大倍数基本保持稳定;而在高于这个频率的信号,放大倍数将逐渐减小。

4.仿真测试结果根据仿真测试,可以观察到输入信号被放大了100倍,并且相位差较小,说明该共射放大电路具有较好的增益和线性特性。

六、结论通过对共射放大电路进行计算、仿真和测试,可以得到如下结论:1.静态工作点分析表明,电路能够在合适的工作范围内正常工作。

单管共射极放大电路实验总结报告

单管共射极放大电路实验总结报告

实验一、单管共射极放大电路实验1. 实验目的(1)掌握单管放大电路的静态工作点和电压放大倍数的丈量方法。

(2)认识电路中元件的参数改变对静态工作点及电压放大倍数的影响。

(3)掌握放大电路的输入和输出电阻的丈量方法。

2. 实验仪器①示波器+12V②低频模拟电路实验箱③低频信号发生器④数字式万用表RP1100KRC12K C247μF D3. 实验原理(图)RB11 UoBG1C14.7K实验原理图如图 1 所示——共射极放大电路。

UiC34. 实验步骤Rs4.7μF RB12(1) 按图1 连结共射极放大电路。

RE4.7K 10K510Ω(2) 丈量静态工作点。

I47μF②认真检查已连结好的电路,确认无RE1Us51Ω误后接通直流电源。

③调理RP1 使RP1+RB11=30k图1 共射极放大电路④按表1 丈量各静态电压值,并将结果记入表 1 中。

表 1 静态工作点实验数据丈量值理论计算值U B/V U C/V U E/V U CE/V I C/mA I B/mA βU B/V U C/V U E/V U CE/V I C/mA2.63 4.94 1.99 2.953.54 0.041 86.34 3 4 2.244 1.756 4(1) 丈量电压放大倍数①将低频信号发生器和万用表接入放大器的输入端Ui,放大电路输出端接入示波器,如图 2 所示,信号发生器和示波器接入直流电源,调整信号发生器的频次为1KHZ ,输入信号幅度为20mv 左右的正弦波,从示波器上察看放大电路的输出电压UO 的波形,分别测Ui 和UO 的值,求出放大电路电压放大倍数AU 。

图 2 实验电路与所用仪器连结图②保持输入信号大小不变,改变RL ,察看负载电阻的改变对电压放大倍数的影响,并将丈量结果记入表 2 中。

表2 电压放大倍数实测数据(保持U I 不变)R L U O/V A U 丈量值A U 理论值∞ 1.5 37.5 -∞1K 0.5 12.5 -1.185.1K 1.0 25 -2.56(4)察看工作点变化对输出波形的影响①实验电路为共射极放大电路②调整信号发生器的输出电压幅值(增大放大器的输入电压U i),察看放大电路的输出电压的波形,使放大电路处于最大不失真状态时(同时调理RP1 与输入电压使输出电压达到最大又不失真),记录此时的RP1+RB11 值,丈量此时的静态工作点,保持输入信号不变。

共射极基本放大电路分析教案

共射极基本放大电路分析教案

共射极基本放大电路分析教案教案:共射极基本放大电路分析一、教学目标1.了解共射极基本放大电路的基本原理和特点。

2.掌握共射极基本放大电路的分析方法和计算公式。

3.能够利用共射极基本放大电路进行电路分析并计算输出电压增益。

4.能够运用所学知识解答与共射极基本放大电路相关的问题。

二、教学内容1.共射极基本放大电路的基本原理和特点2.共射极基本放大电路的分析方法和计算公式3.共射极基本放大电路的输出电压增益计算4.共射极基本放大电路的应用和实际案例分析三、教学过程1.导入(5分钟)通过引入电流放大器的概念,提出对电流放大器进行详细学习的重要性,并和学生一起回顾前面所学内容。

2.知识讲解(20分钟)通过讲解共射极放大电路的基本原理和特点,引导学生了解共射极放大电路的用途和工作方式。

介绍共射极放大电路的输入输出特性曲线和电压增益的计算公式。

3.案例分析(30分钟)通过实际案例的分析,引导学生运用所学知识解答相关问题,包括输入输出特性曲线的绘制、电压增益的计算、电流的分析等。

4.计算练习(20分钟)分发练习题纸,让学生进行计算练习,包括共射极放大电路的输入输出电压计算、电流计算等。

在这个过程中,老师可以对学生的答题情况进行监控和指导。

5.总结(15分钟)由学生梳理本节课学习到的知识点和解题思路,并进行总结。

老师对学生的总结进行补充和点评。

四、教学工具和资源准备1.电路板和电源作为实验装置(可选)2. PowerPoint或黑板以便做示意图和演示3.案例分析材料和计算练习题纸五、教学评估1.学生在计算练习中的准确率和速度:通过检查学生的练习答案,评估学生对所学知识的掌握程度。

2.学生在案例分析中的表现:通过学生对案例的分析和解答,评估学生应用所学知识解决实际问题的能力。

六、教学延伸1.如果有实验条件,可以进行实验演示,进一步加深学生对共射极放大电路的理解。

2.鼓励学生进行更多的实际案例分析,扩展他们的应用能力和创新思维。

模电课件共射极放大电路

模电课件共射极放大电路
详细描述
带宽增益乘积是指放大电路的增益值与通频带的宽度之间的乘积,它反映了电路在一定增益下的频率响应能力。 在共射极放大电路中,带宽增益乘积越大,说明电路的频率响应特性越好,能够更好地处理高频信号。
最大不失真输出电压
总结词
最大不失真输出电压是衡量共射极放大电路输出能力的指标,它表示了电路输出信号的质量。
共射极放大电路具有高输入电阻、高输出电阻、电压和电流放大能力强等优点,能 够实现信号的电压放大和电流放大,提高信号的传输质量和稳定性。
共射极放大电路在电子设备、通信、自动控制等领域中发挥着重要的作用,是实现 各种电子系统功能的基础。
对未来研究的展望
随着电子技术的不断发展,共射极放大电路的应用领域将更加广泛,对 电路性能的要求也将不断提高。
详细描述
最大不失真输出电压是指在保证信号不失真的前提下,放大电路能够输出的最大电压值。在共射极放 大电路中,最大不失真输出电压越大,说明电路的输出能力越强,能够更好地驱动后级负载。
噪声系数
总结词
噪声系数是衡量共射极放大电路噪声性能的指标,它表示了电路内部噪声对信号的影响 程度。
详细描述
噪声系数是指放大电路输出信号的信噪比与输入信号的信噪比之间的比值。在共射极放 大电路中,噪声系数越低,说明电路的噪声性能越好,能够更好地抑制内部噪声对信号
共射极放大电路的定义
定义
共射极放大电路是一种放大电路 ,其输入信号加在晶体管的发射 极与基极之间,输出信号取自集 电极与发射极之间。
特点
共射极放大电路具有高电压放大 倍数、良好的输入输出电阻等特 点,适用于功率放大和电压放大 。
02
工作原理
信号输入和
信号输入
输入信号通过电容耦合到基极,引起基极电流变化。

基本共射极放大电路电路分析

基本共射极放大电路电路分析

基本共射极放大电路电路分析基本共射极放大电路是一种常用的放大电路,它由一个NPN型晶体管的基极接入输入信号,发射极接入负载电阻,集电极接入电源电压,同时通过一个偶联电容和输入电容与输入信号源相连。

在这种电路中,输出信号时相反的输入信号。

下面我们将详细介绍基本共射极放大电路的电路分析。

1.静态工作点分析首先,我们需要确定晶体管的静态工作点,也就是集电极电流和集电极电压的值。

为了简化分析,我们可以假设晶体管为理想墙形器件,即基极电流很小,基极电压为0V。

根据基尔霍夫电流定律,我们可以写出输入回路的方程:Ib = (Vcc - Vbe) / Rb其中,Ib是基极电流,Vcc是电源电压,Vbe是基极-发射极电压(约为0.6V),Rb是基极电阻。

然后,我们可以根据晶体管的静态放大倍数β值,计算集电极电流Ic:Ic=β*Ib接下来,根据集电极-发射极电压和集电极电流的关系,可以求出集电极电压Vce:Vce = Vcc - Ic * Rc其中,Rc是负载电阻。

2.动态工作点分析除了静态工作点,我们还需要分析动态工作点,即在输入信号存在时晶体管的工作状态。

基本共射极放大电路的输入电容是很小的,可以忽略。

因此,我们可以将输入信号直接加到基极上,即vb = Vb + vb',其中vb是基极电压,Vb为静态基极电压,vb'为输入信号。

根据晶体管的放大特性,可以写出输出电流Ie和输入电流Ib之间的关系:Ie=β*Ib+(β+1)*Ic'其中,Ic'是交流集电极电流的变化部分。

接下来,我们可以通过Ohm定律和基尔霍夫电流定律,写出发射极电流Ie、集电极电流Ic和负载电阻Rc之间的关系:Ie=Ic+IbIc = Ic' + (Vce + Vrc) / Rc将以上两个方程联立,我们可以解得Ic'。

进一步,我们可以通过欧姆定律和基尔霍夫电压定律,计算集电极电压Vce的变化值:Vce = Vce' + Ic' * Rc其中,Vce'和Vrc是交流工作点的变化值。

共射极基本放大电路分析教案

共射极基本放大电路分析教案

共射极基本放大电路分析教案教案:共射极基本放大电路分析一、教学目标:1.了解共射极基本放大电路的工作原理和特点。

2.掌握共射极基本放大电路的分析方法。

3.能够利用分析方法进行共射极基本放大电路的设计和调试。

二、教学内容:1.共射极基本放大电路的工作原理和特点。

2.共射极基本放大电路的分析方法。

3.共射极基本放大电路的设计和调试。

三、教学步骤:1.导入(5分钟)通过演示一段音乐,引起学生对音频放大器的兴趣,然后提问学生对共射极基本放大电路的了解程度。

2.讲解(25分钟)通过投影或板书,向学生讲解共射极基本放大电路的工作原理和特点,解释并展示电路图。

重点讲解以下内容:(1)共射极基本放大电路的结构和工作原理。

(2)共射极基本放大电路的特点:电压放大率高,输入电阻低,输出电阻高,能够在一定范围内线性放大信号。

(3)共射极基本放大电路的工作状态和信号输入、输出的特点。

(4)共射极基本放大电路的增益表达式。

3.分析(25分钟)带领学生进行共射极基本放大电路的分析,包括:(1)求解输入特性曲线和输出特性曲线。

(2)计算电压放大倍数和输入输出阻抗。

(3)考虑电容耦合情况下的频率特性。

(4)分析直流工作点和静态工作点的选择。

4.实验操作(30分钟)将理论知识与实际操作相结合,通过搭建共射极基本放大电路实验装置,进行实验操作。

包括以下实验内容:(1)根据给定的参数计算电路元件的数值,并进行元件的选择和安装。

(2)观察输出波形,并测量输入输出电压、电流和频率特性。

(3)调试电路,使其达到理论预期效果。

5.总结与评价(15分钟)总结共射极基本放大电路的学习内容和实验操作,引导学生进行思考和讨论,评价自己的学习成果。

四、教学资源:1.投影仪或黑板白板。

2.教学PPT或板书。

3.实验装置和元件。

4.计算器。

五、教学评价:通过学生表现、实验结果和自我评价的综合评价,评估学生对共射极基本放大电路分析的理解和掌握程度。

分析学生在实验操作过程中的表现和结果,评估其实践能力和调试能力的提高。

共发射极放大电路的分析

共发射极放大电路的分析

共发射极放大电路的分析
一、直流分析:
1.确定工作点:首先需要确定晶体管的工作点,即输入直流电压和输出直流电压。

通过射极电阻的分压原理,可以计算出射极电阻的电流和电压,从而确定工作点。

2.确定偏置电路:为了使晶体管在工作点时处于线性放大区,并避免过饱和或者截止,需要设计偏置电路。

常见的偏置电路有电流镜电路、共射极负反馈电路等。

3.分析直流通路:根据电路的连接方式,确定各电阻的电压和电流。

通过欧姆定律和基尔霍夫定律,可以计算出各节点的电压和电流。

二、交流分析:
1.交流模型:根据晶体管的小信号等效模型,进行交流分析。

通常将晶体管看作是一个受控电压源和电阻组成的电路。

其中,受控电压源用于描述输入信号的影响,电阻用于描述晶体管的放大特性。

2.确定输入阻抗:通过交流模型,计算出输入阻抗。

输入阻抗可以反映输入信号对电路的影响程度。

3.确定输出阻抗:通过交流模型,计算出输出阻抗。

输出阻抗可以反映电路对负载的驱动能力。

4.确定增益:通过计算输入电压和输出电压之比,可以得到电路的增益。

增益可以衡量电路放大信号的能力。

在共发射极放大电路的分析中,还需注意以下几点:
1.负载:应根据负载特性,选择适当的电阻和电容,以提高电路的稳
定性和性能。

2.频率特性:晶体管的频率响应、输入输出阻抗随频率的变化等,也
需要进行分析和优化。

3.反馈:可以通过负反馈来改善电路的性能,增加稳定性和减小波动。

总结:。

共射极基本放大电路分析报告

共射极基本放大电路分析报告

参评组别:B 组 专业分类:电工电子课程名称:电子技术基础共射极基本放大电路分析2009年全国技工教育和职业培训 优秀教研成果评选活动参评教案教学内容分析:§ 2-2共发射极低频电压放大电路的分析中的“近似估算法”:近似估算静态工作点、电压放大倍数。

教学对象及分析:1、基础知识:学生已基本掌握了共发射极低频电压放大电路组成及工作原理。

2、分析与理解能力:由于放大电路的工作原理比较抽象,学生对此理解不够深刻,并且动手调试电子电路的能力有待提高。

所以本次课堂将结合共发射极低频电压放大电路演示测试方式调动学生的主动性和积极性。

教学目的:1、了解、掌握放大电路的分析方法:近似估算法;2、培养学生分析问题的能力。

3 、培养学生耐心调试的科学精神。

教学方法:演示法、启发法、讲练结合法教具准备:分压式偏置放大电路实验板、示波器、万用表。

教学重点:1、共射极放大电路的静态工作点的估算;2、放大器的电压放大倍数的估算。

教学难点:静态工作点的估算。

教学过程:一、复习及新课引入:1、复习旧知识:(1)放大电路的工作原理。

(提问:简述共发射极放大电路的工作原理。

)(2)基本放大电路的工作状态分:静态和动态。

(3)静态工作点的设置。

(提问:设置静态工作点的目的是什么?)2、启发、提出问题:(1)放大电路设置静态工作点的目的是为了避免产生非线性失真,那么如何设置静态工作点才能避免非线性失真呢?(2)放大器的主要功能是放大信号,那怎样计算放大器的放大能力呢?引入新课题:必须学习如何分析放大电路新课教学: 教学内容及过程1、分析静态工作点的估算。

(1 )静态工作点要估算的物理量。

提问:什么是静态工作点?回答:当静态时,直流量I B 、I C 、U C E 在晶体管输出特性曲线 上所对应的点称为静态工作点。

提问:要确定静态工作点,必须要计算什么量? 回答:I B 、I C 、U bE o(2)计算静态工作点的解题步骤。

仿真实验四共射极放大电路分析

仿真实验四共射极放大电路分析

仿真实验四共射极放大电路分析共射极放大电路是一种常见的放大电路,它具有输出电压幅度大,输入电阻低等特点,适用于低电压信号的放大。

下面将对共射极放大电路进行详细的分析。

共射极放大电路由三个主要部分组成:输入电容、晶体管和输出负载。

晶体管是共射极的,因此输入信号通过输入电容进入晶体管的基极,输出信号从晶体管的集电极输出到负载电阻。

首先,我们来分析直流电路部分。

在直流电路中,输入电容对直流信号具有短路的作用,因此输入信号不会影响到直流偏置电压。

假设晶体管的发射极电阻为RE,基极电位为VBE,集电极电阻为RC。

根据基本电路分析的方法,可以得到以下公式:1.确定直流工作点:IC = Vcc / (RC + RE)VC = Vcc - IC * RCVE=VCC-IC*(RC+RE)VB=VE-VBE2.计算电流放大倍数:β=IC/IB其中,IB为基极电流。

接下来,我们来分析交流电路部分。

在交流电路中,输入信号会通过输入电容进入晶体管的基极。

输入电容对于低频信号而言,阻抗较高。

通过计算输入电容的阻抗,可以得到输入阻抗的大小。

3.计算输入阻抗:Zin = (Zb * β) / (1 + β)其中,Zb为输入电容的阻抗。

4.计算输出阻抗:Zout = RC5.计算电压放大倍数:Av=-β*RC/(RC+RE)6.计算输入电压与输出电压之间的相位差:φ = arctan (β * RC / (RC + RE))需要注意的是,上述分析是在假设输入信号为低频信号的情况下进行的。

在实际应用中,可能存在高频信号的干扰。

为了抑制高频干扰,可以通过加入频率补偿电路,使得放大器的频率响应更加平坦。

综上所述,共射极放大电路的分析涉及直流电路和交流电路两个方面。

通过对电路中各元件的参数和工作原理的分析,可以得到输入阻抗、输出阻抗、电流放大倍数、电压放大倍数和相位差等关键指标。

这些指标可以帮助我们更好地了解和设计共射极放大电路。

共发射极放大电路优缺点

共发射极放大电路优缺点

共发射极放大电路优缺点
共发射极放大电路是一种常见的放大电路,在电子电路中有广泛的应用。

该电路的特点是输入信号接在晶体管的基极,输出信号从晶体管的集电极取出,同时晶体管的发射极接地。

以下是共发射极放大电路的优缺点:
优点:
1. 增益稳定:共发射极放大电路的输出电压与输入信号的电压之比称为电压增益。

由于该电路的输出电阻比较小,所以电压增益相对稳定,不易受到负载的影响。

2. 输入阻抗高:由于输入信号接在晶体管的基极,因此输入电阻相对较高,可以很好地匹配输入信号源。

3. 输出阻抗低:共发射极放大电路的输出电阻比较小,可以输出较大的电流,适用于驱动负载电阻较小的电路。

缺点:
1. 非线性失真:由于晶体管的输入特性和输出特性都是非线性的,因此共发射极放大电路会产生一定的失真。

2. 温度稳定性差:晶体管的性能会随着温度的变化而发生变化,因此共发射极放大电路的温度稳定性比较差。

3. 噪声较大:由于晶体管的本征噪声和外界干扰信号的影响,共发射极放大电路会产生一定的噪声。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用直流电压表
测量VCEQ
2、研究静态工作点变化对放大器性能的影响
输入端输入频率f = 1KHZ的正弦信号,调节信号源输出电压VS , 使Vi=5mV,测量并记录VS、VO和VO'
注意: 用二踪示波器监视VO及Vi波形时,必须确保在VO基本不失真时读数。
Vi -----有效值 Vim -----峰值 Vi p -p -----峰峰值
共地(接地) 电源端
电路的设计分析
参见教材 P 59 – 62页
(三)实验内容
1、静态工作点的测量
调整RW,使静态集电极电流ICQ=2mA,测量静态时晶体 管集电极-发射极之间电压VCEQ 。
ICQ(mA)
2mA
VCEQ(V)
调节
ICQ
不加入任何信号
IEQ
ICQ的确定:根据ICQ= IEQ,测量RE直流电压间接确定
输出电阻Ro的测量(换算法) 在放大器输入端加入一个固定信号电压Vs,分别测量当已 知负载RL 断开和接上时的输出电压Vo´和Vo, 则:
Ro = ( Vo´/ Vo -1)RL。
负载断开和接入
用示波器监视Vo波形 时,必须确保在Vo不
失真时进行读数。
3、观察不同静态工作点对输出波形的影响
(1)增大RW的阻值,观察输出电压波形是否出现截止失真(若RW增大 至最大,波形失真仍不明显,则可在R1支路中再串一只电阻或适当加大 Vi来解决),描出失真波形。
为交流信号, 用示波Hale Waihona Puke 测峰峰值VOP-P (V)
加大信号幅度
调节
观察波形
用电压表间接 测量ICQ
同时出现正、负向失真的正弦波时
实验二 晶体管放大器
稍微减少输入信号幅度,输出失真消失
5、测量放大器幅频特性曲线
调整ICQ=2mA ,保持Vi=5mV不变,改变信号频率,用逐点法 测量不同频率下的VO值,并作出幅频特性曲线,定出3dB带宽 BW = f H – f L。
f/kHZ
0.1
fL
VO/V
Av
Av0 典型幅频 0.707Av0
特性曲线
1 10 100
fH
1000
fL
fH
f
改变信号频率
保持 vi为5mV
观察波形
(四)常见故障的分析方法
(1)实验器件故障的判别
电位器好坏的判别
万用表作为测量电阻使用
探头线好坏的判别
探头线好坏的判别
(2)电路故障点的判别
4、测量放大器的最大不失真输出电压
分别调节RW和VS ,用示波器观察输出电压VO波形,使输出波形为 最大不失真正弦波(当同时出现正、负向失真后,稍微减小输入信 号幅度,使输出波形的失真刚好消失。)。测量此时静态集电极电 流ICQ和输出电压的峰-峰值VOP-P 。
为直流工作点信号, 要用万用表测
ICQ(mA)
加入正弦信号
观察波形不能失真
用交流毫伏表观察, Vi=5mV
数据表格:
静态工作点电流ICQ/mA
1.5
2
2.5
保持输入信号Vi/mV
5
5
5
VS/mV
要弄清楚 各个参量
测量值
VO/V
的含义
VO′/V
由测量 数据 计算值
AV (有负载 时)
A’V (空载 时)
Ri/kΩ
RO/kΩ
其中: AV = VO / Vi
(2)减小RW的阻值,观察输出电压波形是否出现饱和失真,描出失真 波形。
纪录波形,注意比较两种波形差异
输入正弦信号并保持不变
调节
观察失真波形
实验波形的三种状态:
实验二 晶体管放大器
无明显失真的波形
轻微失真的波形
明显失真的波形
如果输出电压的波形是 正向显示的话, 波形底部为截止失真, 顶部为饱和失真。
一般使用示波器,测量各点波形,与理论情况作比较,确定故障区域, 在针对区域结合理论分析
加入信号
观察波形
电源短路故障的判别 电源都是设置成电压源时
电压源指示灯亮,正常
电流源指示灯亮,不正常
说明电源被短路,不允许
结 束!
电气工程学院 戴伟
实验二 BJT共射极电压放大电路的分析
(一)实验设备与元件
原理电路
元件介绍
电位器 电解电容
9013 NPN型
三极管
9013引脚介绍
(二)电路的基本连接
外接元件的安装
9013
注意管脚与箱子插 孔对应连接
外接元件区
单电源的连接
将电源引到实验箱后,利用导线 从小孔中引到各个元件的连接端 子。
AV 用交流毫伏表测出输出电压的有效值 VO 和输入电压的有效值 Vi相除而得。
输入电阻Ri的测量(换算法) 在信号源与放大器之间串入一个已知电阻Rs,只要分别测出 Vs和Vi,则输入电阻为
即为换算电阻Rs
注意
①由于Rs两端均无接地点,而交流毫伏表通常是测量对地 交流电压的,所以在测量Rs两端的电压时,必须先分别测 量Rs两端的对地电压 Vs和Vi ,再求其差值Vs-Vi而得。 ②实验时,Rs的数值不宜取得过大,以免引入干扰;但也 不宜过小,否则容易引起较大误差。通常取Rs与Ri为同一 个量级。 ③在测量之前,交流毫伏表应该调零,并尽可能用同一量 程档测量Vs和Vi。
相关文档
最新文档