高强混凝土及应用研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高强混凝土及应用研究
发表时间:2018-10-16T17:31:19.863Z 来源:《基层建设》2018年第27期作者:刘玉春[导读] 摘要:如今高强混凝土在高层结构中正大显身手。
黑龙江省肇东三环建筑工程有限责任公司黑龙江肇东 151100 摘要:如今高强混凝土在高层结构中正大显身手。但高强混凝土由于片面追求自身的高强度,而附带了一些负面影响。为了高强混凝土更好的发展,这些负面影响就是今后我们要逐步解决的问题。
关健词:超细活性掺合料、脆性、自收缩
1、高强混凝土的优越性
在一般情况下,混凝土强度等级从C30提高到C60,对受压构件可节省混凝土30-40%;受弯构件可节省混凝土10-20%。虽然高强混凝土比普通混凝土成本上要高一些,但由于减少了截面,结构自重减轻,这对自重占荷载主要部分的建筑物具有特别重要意义。再者,由于梁柱截面缩小,不但在建筑上改变了肥梁胖柱的不美观的问题,而且可增加使用面积。可见高强混凝土的密实性能好,抗渗、抗冻性能均优于普通混凝土。
2、高强混凝土施工技术
2.1现代高强混凝土在施工中要解决下列技术问题:
2.1.1低水灰比,较大坍落度及坍落度损失问题
高强混凝土一般要求低水灰比,由于混凝土在低水灰比的情况下,坍落度很小,甚至没有坍落度,其成型和捣实都很困难,无法在现浇混凝土施工中很好应用。
一般采用预搅或商品混凝土。混凝土在运输的过程中,其坍落度随时间的增加而减小,这对高强混凝土来说无疑又增加了施工难度。
2.1.2混凝土可泵性问题
泵送混凝土几乎是高层建筑施工的唯一方法。所以高强和泵送几乎是不可分割的。所以对高强混凝土要解决混凝土可泵送的要求。
2.2解决方法对策
2.2.1对原材料的选择
配置C60级高强混凝土,不需要用特殊的材料,但必须对本地区所能得到的所有原材料进行优选,它们除了要有比较好的性能指标外,还必须质量稳定,即在施工期内主要性能不能有太大的变化。
2.2.2施工时的质量控制和管理
一般来说,在试验室配置符合要求的高强混凝土相对比较容易,但是要在整个施工过程中,混凝土都要稳定在要求的质量水平功能上就比较困难了。一些在普通情况下不太敏感的因素,在低水灰比的情况下会变得相当敏感,这就要求在整个施工过程中必须注意各种条件、因素的变化,并且要根据这些变化随时调整配合比和各种工艺参数。这说明加强现场施工质量控制和管理的必要性。
2.2.3超细活性掺合料的应用
混凝土强度达到一定极限后就不可能再增加了,因为混凝土强度在水化时不可避免地会在其内部形成一些细微的毛细孔。如果要使其强度进一步提高,就必须采取措施把这些孔隙填满,进一步增加混凝土的密实性。这些极细的颗粒需水量很大,就需要大量高效减水剂加以塑化,否则难以施工。
3、高强混凝土在性能上尚存在的问题及其改善的途径
配制高强混凝土的特点是低水胶比并掺有足够数量的矿物细掺合料和高效减水剂,从而使混凝土具有综合的优异的技术特性,但由此也产生了两个值得重视的性能缺陷:(1)自干燥引起的自收缩;(2)脆性 3.1自干燥引起的自收缩
高强混凝土其早期的收缩开裂十分敏感。在混凝土内部水量较少的情况下,除水泥水化所需的水量外,在孔隙和毛细管中的水也被逐步吸收减少,在没有剩余自由水的情况下,就形成了空的孔隙,使水泥石的内部不再存在未结合水的平衡。因此,水泥石内部的相对湿度显著地降低。在处于难以水分蒸发而同时也是难以有水分渗滤的封闭状态中的粘弹性固态的胶凝材料系统中,由于水泥石内部相对湿度的降低而使孔中存在一定的气相,孔中水饱和蒸汽压随之而降低,毛细管中水呈现不饱和状态。此状况在长期处于封闭状态的情况下,随着水泥水化反应的进行越演越烈,其结果导致了毛细管中的液面形成变月面,使毛细管压升高而产生毛细管应力,使水泥石受负压作用,成为凝结硬化混凝土产生自收缩的主要因素。
自收缩对混凝土内部结构中裂缝的产生和扩展造成的损伤是一个值得重视的问题。由于硬化后高强混凝土的致密性高于普通混凝土,在减少了泌水的同时,也阻碍了外部养护水对混凝土的湿养护作用。因此,以适用于普通混凝土的传统养护措施来改善此类混凝土的自干燥、自收缩并无明显的效果。国内外学者曾提出一些技术措施如:掺入一定量的膨胀剂;以部分粉煤灰等量取代水泥;配以高弹性模量的纤维:选用高C2S和低C3A、C4AF的硅酸盐水泥等等,对降低混凝土的自收缩都有一定的效果。最近,国外学者提出了采用围水养护即在混凝土浇注后仍处于塑性状态时,尽快地立即进行水雾养护,对减少或防止混凝土的自收缩具有较明显的效果。另一技术措施是在混凝土中加入部分含水饱和的轻集料替代普通集料,含水饱和轻集料在混凝土中形成蓄水池,在混凝土内部供水起内养护作用。但此方法需根据混凝土强度要求而采用。
3.2脆性
脆性可以描述为混凝土无法防止的不稳定裂缝的扩展与增长。从混凝土承受轴向压荷载作用下的应力——应变曲线中,峰值后下降曲线段的陡斜程度可以反映出混凝土的脆性大小。众多的试验已表明,混凝土的强度愈高,其应力——应变曲线过峰值后的下降段曲线愈陡斜。这意味着该混凝土的脆性愈大。因此,高强混凝土的脆性已引起广泛的重视,混凝土脆性的增大会给工程结构特别是有抗震要求的工程结构带来很大的危害。在高强混凝土中掺加纤维是一种有效的措施。国外已有学者提出纤维增强高性能混凝土,而且将之与纤维增强传统混凝土和基材(未掺纤维的传统混凝土)进行拉伸应力——应变的对比。纤维增强传统混凝土比无纤维增强的基材仅仅是提高了延性,而纤维增强高强混凝土与无纤维增强的基材相比,在拉伸应力——应变曲线中有三个特征是值得重视的:(1)弹性极限显著提高了。强性极限反映宏观裂缝出现的起点。
(2)呈现出有一明显的应变强化段。应变强化段是反映宏观裂缝出现后,裂缝分散数量的增加,但这些裂缝的宽度很小。
(3)峰值后出现应变软化段。应变软化段反映了裂缝数量虽保持不变,但裂缝宽度增大了,最后导致纤维被拔出或断裂而破坏。因此,纤维增强高强混凝土不仅大大提高了拉伸应力而且显著改善了高强混凝土的脆性。
对于纤维品种的选用,试验表明,在同样纤维体积含量的情况下,钢纤维和碳纤维对改善高强混凝土的脆性比合成纤维更为有效。参考文献:
《土木工程材料》彭小芹重庆大学出版社
《建筑施工》应惠清同济大学出版社
《建筑施工技术》任继良清华出版社