圆周运动典型例题及答案详解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“匀速圆周运动”的典型例题
【例1】如图所示的传动装置中,A、B两轮同轴转动.A、B、C三轮的半径大小的关系是R A=R C=2R B.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?
【例2】一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么
[ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心
B.木块受到圆盘对它的摩擦力,方向指向圆盘中心
C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同
D.因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反
E.因为二者是相对静止的,圆盘与木块之间无摩擦力
【例3】在一个水平转台上放有A、B、C三个物体,它们跟台面间的摩擦因数相同.A的质量为2m,B、C各为m.A、B离转轴均为r,C为2r.则
[ ]
A.若A、B、C三物体随转台一起转动未发生滑动,A、C的向心加速度比B大
B.若A、B、C三物体随转台一起转动未发生滑动,B所受的静摩擦力最小
C.当转台转速增加时,C最先发生滑动
D.当转台转速继续增加时,A比B先滑动
【例4】如图,光滑的水平桌面上钉有两枚铁钉A、B,相距L0=0.1m.长L=1m 的柔软细线一端拴在A上,另一端拴住一个质量为500g的小球.小球的初始位置在AB连线上A的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上.
若细线能承受的最大张力T m=7N,则从开始运动到细线断裂历时多长?
【说明】圆周运动的显著特点是它的周期性.通过对运动规律的研究,用递推法则写出解答结果的通式(一般表达式)有很重要的意义.对本题,还应该熟练掌握数列求和方法.
如果题中的细线始终不会断裂,有兴趣的同学还可计算一下,从小球开始运动到细线完全绕在A、B两钉子上,共需多少时间?
【例5】如图(a)所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?
【说明】本题是属于二维的牛顿第二定律问题,解题时,一般可以物体为坐标原点,建立xoy直角坐标,然后沿x轴和y轴两个方向,列出牛顿第二定律的方程,其中一个方程是向心力和向心加速度的关系,最后解联立方程即可。
【例6】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?
【例7】如下图所示,自行车和人的总质量为M,在一水平地面运动.若自行车以速度v转过半径为R的弯道.(1)求自行车的倾角应多大?(2)自行车所受的地面的摩擦力多大?
【例8】用长L1=4m和长为L2=3m的两根细线,拴一质量m=2kg的小球A,L1和L2的另两端点分别系在一竖直杆的O1,O2处,已知O1O2=5m如下图(g=10m·s-2)
(1)当竖直杆以的角速度ω匀速转动时,O2A线刚好伸直且不受拉力.求此时角速度ω1.
(2)当O1A线所受力为100N时,求此时的角速度ω2.
【说明】向心力是一种效果力,在本题中O2A受力与否决定于物体A做圆周运动时角速度的临界值.在这种题目中找好临界值是关键.
[例9]一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动,有一台发出细光束的激光器装在小转台M上,到轨道的距离MN为d=10m,如图所示。转台匀速转动,使激光束在水平面内扫描,扫描一周的时间为T=60s,光束转动方向如图箭头所示。当光束与MN的夹角为45°时,光束正好射到小车上,如果再经过△t=2.5s光束又射到小车上,则小车的速度为多少?(结果保留二位数字)
[例10]图所示为测量子弹速度的装置,一根水平转轴的端部焊接一个半径为R的薄壁圆筒(图为其横截面),转轴的转速是每分钟n转,一颗子弹沿圆筒的水平直径由A点射入圆筒,在圆筒转过不到半圆时从B点穿出,假设子弹穿壁时速度大小不变,并在飞行中保持水平方向,测量出A、B两点间的孤长为L,写出子弹速度的表达式。
[说明]
解题过程中,物理过程示意图,是常用的方法,它可以使抽象的物理过程具体形象化,便于从图中找出各物理量之间关系,以帮助建立物理方程,最后求出答案。
典型例题答案
【例1】【分析】皮带不打滑,表示轮子边缘在某段时间内转过的弧长总是跟皮带移动的距离相等,也就是说,用皮带直接相连的两轮边缘各处的线速度大小相等.根据这个特点,结合线速度、角速度、向心加速度的公式即可得解.
【解】由于皮带不打滑,因此,B、C两轮边缘线速度大小相等,设v B=v C=v.由v=ωR得两轮角速度大小的关系
ωB∶ωC=R C∶R B=2∶1.
因A、B两轮同轴转动,角速度相等,即ωA=ωB,所以A、B、C三轮角速度之比
ωA∶ωB∶ωC=2∶2∶1.
因A轮边缘的线速度
v A=ωA R A=2ωB R B=2v B,
所以A、B、C三轮边缘线速度之比
v A∶v B∶v C=2∶1∶1.
根据向心加速度公式a=ω2R,所以A、B、C三轮边缘向心加速度之比
=8∶4∶2=4∶2∶1.
【例2】【分析】由于木块随圆盘一起作匀速圆周运动,时刻存在着一个沿半径指向圆心的向心加速度,因此,它必然会受到一个沿半径指向中心、产生向心加速度的力——向心力.
以木块为研究对象进行受力分析:在竖直方向受到重力和盘面的支持力,它处于力平衡状态.在盘面方向,可能受到的力只有来自盘面的摩擦力(静摩擦力),木块正是依靠盘面的摩擦力作为向心力使它随圆盘一起匀速转动.所以,这个摩擦力的方向必沿半径指向中心
【答】B.
【说明】常有些同学认为,静摩擦力的方向与物体间相对滑动的趋势方向相反,木块随圆盘一起匀速转动时,时时有沿切线方向飞出的趋势,因此静摩擦力的方向应与木块的这种运动趋势方向相反,似乎应该选D.这是一种极普遍的错误认识,其原因是忘记了研究运动时所相对的参照系.通常说做圆运动的物体有沿线速度方向飞出的趋势,是指以地球为参照系而言的.而静摩擦力的方向总是跟相对运动趋势的方向相反,应该是指相互接触的两个相关物体来说的,即是对盘面参照系.也就是说,对站在盘上跟盘一起转动的观察者,木块时刻有沿半径向外滑出的趋势,所以,木块受到盘面的摩擦力方向应该沿半径指向中心
【例3】【分析】A、B、C三物体随转台一起转动时,它们的角速度都等于转台的角速度,设为ω.根据向心加速度的公式a n=ω2r,已知r A=r B<r C,所以三物体向心加速度的大小关系为a A=a B<a C.
A错.
三物体随转台一起转动时,由转台的静摩擦力提供向心力,即f =F n=mω2r,所以三物体受到的静摩擦力的大小分别为
f A=m Aω2r A=2mω2r,
f B=m Bω2r B=mω2r,
f C=m cω2rc =mω2·2r=2mω2r.
即物体B所受静摩擦力最小.B正确.
由于转台对物体的静摩擦力有一个最大值,设相互间摩擦因数为μ,静摩擦力的最大值可认为是f m=μmg.由f m=F n,即
得不发生滑动的最大角速度为