《现代心理与教育统计学》第4版笔记和课后习题详解
现代心理与教育统计学(张厚粲)课后习题答案

现代⼼理与教育统计学(张厚粲)课后习题答案现代⼼理与教育统计学(张厚粲)课后习题答案第⼀章绪论(略)第⼆章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业⼈数约有3180⼈8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异⽐10cm组的离散程度⼤8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第⼀四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该⽤肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适⽤条件是有30对以上数据,因此这份资料适⽤等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069⼩于0.2.成绩A与成绩B的相关很⼩,成绩A与成绩B的变化⼏乎没有关系。
10、测验成绩与教师评定之间有⼀致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔⼀致性叙述为0.31。
第六章概率分布4、抽得男⽣的概率是0.355、出现相同点数的概率是0.1676、抽⼀⿊球与⼀⽩球的概率是0.24;两次皆是⽩球与⿊球的概率分别是0.36和0.167、抽⼀张K的概率是4/54=0.074;抽⼀张梅花的概率是13/54=0.241;抽⼀张红桃的概率是13/54=0.241;抽⼀张⿊桃的概率是13/54=0.241;抽不是J、Q、K的⿊桃的概率是10/54=0.1858、两个正⾯,两个反⾯的概率p=6/16=0.375;四个正⾯的概率p=1/16=0.0625;三个反⾯的概率p=4/16=0.25;四个正⾯或三个反⾯的概率p=0.3125;连续掷两次⽆⼀正⾯的概率p=0.18759、⼆项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级⼈数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5⾄10到题的概率是0.002,⽆法确定答对题数的平均数18、说对了5个才能说看清了⽽不是猜对的19、答对5题的概率是0.015;⾄少答对8题的概率为0.1220、⾄少10⼈被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,⼤于Z的概率是0.0013525、⼤于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,⼩于该χ2值以下概率是0.8628、χ2值是12.32,⼤于这个χ2值的概率是0.2129、χ2值是15.92,⼤于这个χ2值的概率是0.0730、两⽅差之⽐⽐⼩于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
张厚粲《现代心理与教育统计学》(第4版)章节题库-差异量数(圣才出品)

6.已知一组数据 6,5,7,4,6,8 的标准差是 1.29,把这组中的每一个数据都加上
3 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台
5,然后再乘以 2,那么得到的新数据组的标准差是( )。 A.1.29 B.6.29 C.2.58 D.12.58 【答案】C 【解析】标准差有三个特性:①每一个观测值都加同一个常数 c 之后,得到的标准差等
2.研究者决定通过每一个分数除以 10 来对原始分数进行转换。原始分数分布的平均 数为 40,标准差为 15。那么转换以后的平均数和标准差将会是( )。
A.4,1.5 B.0.4,0.15 C.40,1.5 D.0.4,1.5 【答案】A
1 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台
5 1.92
5.某学生某次数学测验的标准分为 2.58,这说明全班同学中成绩在他以下的人数百分 比是( ),如果是-2.58,则全班同学中成绩在他以上的人数百分比是( )。
A.99%,99% B.99%,1% C.95%,99% D.95%,95% 【答案】A 【解析】Z=2.58,查正态分布表可得 p=0.99,即该生的数学测验标准分为 2.58 时, 全班同学中成绩在他以下的人数百分比为 99%;同理,当该生的数学测验标准分为-2.58 时,全班同学中成绩在他以上的人数百分比也为 99%。
【解析】平均数的特点是在一组数据中,每一个数都乘以一个常数 c 所得的平均数为原 来的平均数乘以常数 c,因此转换后的平均数为 4;标准差的特点是每一个观测值都乘以一 个相同的常数 c,则所得的标准差等于原标准差乘以这个常数,因此转换后的标准差为 1.5。
3.已知平均数 M=4.0,S=1.2,当 X=6.4 时,其相应的标准分数为( )。
张厚粲现代心理与教育统计学第4版知识点总结课后答案

第1 章绪论1.1 复习笔记本章重点✓心理与教育统计的研究内容✓选择使用统计方法的基本步骤✓统计数据的基本类型✓心理与教育统计的基本概念一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(appliedstatistics)两部分。
前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。
心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。
类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。
(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现。
2.心理与教育科学研究数据具有随机性和变异性。
3.心理与教育科学研究数据具有规律性。
4.心理与教育科学研究的目标是通过部分数据来推测总体特征。
(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题:(1)学习心理与教育统计学时,必须要克服畏难情绪。
心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。
(2)在学习时要注意重点掌握各种统计方法使用的条件。
(3)要做一定的练习。
2.应用心理与教育统计方法时要做到:(1)克服“统计无用”与“统计万能”的思想,注意科研道德。
(2)正确选用统计方法,防止误用和乱用统计。
二、心理与教育统计学的内容心理与教育统计学的研究内容,可依不同的分类标志划分为不同的类别:(一)分类一依据统计方法的功能进行分类,统计学可分为下述三种类别,这是由于数理统计的发展历史所决定的,也是最常见的分类方法。
张厚粲《现代心理与教育统计学》(第4版)章节题库-参数估计(圣才出品)

第7章参数估计一、单项选择题1.()表明了从样本得到的结果相比于真正总体的变异量。
A.信度B.效度C.置信区间D.取样误差【答案】D【解析】A项,信度是指测量结果的稳定性程度。
B项,效度是指一个测验或量表实际能测出其所要测的心理特质的程度。
C项,置信区间,也称置信间距,是指在某一置信度时,总体参数所在的区域距离或区域长度。
D项,取样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全局指标的绝对离差。
抽样误差不是由调查失误所引起的,而是随机抽样所特有的误差。
2.样本平均数的可靠性和样本的大小()。
A.没有一定关系B.成反比C.没有关系D.成正比【答案】D【解析】样本平均数的标准差与总体标准差成正比,与样本容量的平方根成反比。
计算公式为:x SE Nσ=式中σ为总体标准差,N 为样本的大小。
在一定范围内,样本量越大,样本的标准误差越小,则该样本平均数估计总体平均数的可靠性越大。
因此样本平均数的可靠性与样本的大小成正比。
3.样本容量均影响分布曲线形态的是()。
A.正态分布和F 分布B.F 分布和t 分布C.正态分布和t 分布D.正态分布和χ2分布【答案】B【解析】t 分布是一种左右对称、峰态比较高狭,分布形状会随样本容量n-1的变化而变化的一族分布:①当样本容量趋于∞时,t 分布为正态分布,方差为1;②当n-1>30以上时,t 分布接近正态分布,方差大于1,随n-1的增大而方差渐趋于1;③当n-1<30时,t 分布与正态分布相差较大,随n-1减少,离散程度(方差)越大,分布图的中间变低但尾部变高。
χ2分布是一个正偏态分布,随每次所抽取的随机变量X 的个数(n 的大小)不同,其分布曲线的形状不同,n 或n-1越小,分布越偏斜。
df 很大时,接近正态分布,当df→∞时,χ2分布即为正态分布。
F 分布形态是一个正偏态分布,它的分布曲线随分子、分母的自由度不同而不同,随df 1与df 2的增加而渐趋正态分布。
第四版统计学课后习题答案

第四版统计学课后习题答案《统计学》第四版统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
张厚粲《现代心理与教育统计学》(第4版)配套题库【考研真题精选+章节题库】

目 录第一部分 考研真题精选一、单项选择题二、多项选择题三、简答题四、综合题第二部分 章节题库第1章 绪 论第2章 统计图表第3章 集中量数第4章 差异量数第5章 相关关系第6章 概率分布第7章 参数估计第8章 假设检验第9章 方差分析第10章 χ2检验第11章 非参数检验第12章 线性回归第13章 多变量统计分析简介第14章 抽样原理及方法第一部分 考研真题精选一、单项选择题1已知某小学一年级学生的体重平均数21kg,标准差3.2kg,身高平均数120cm,标准差6.0cm,则下列关于体重和身高离散程度的说法正确的是( )。
[统考2019研]A.体重离散程度更大B.身高离散程度更大C.两者离散程度一样D.两者无法比较【答案】A【解析】计算体重和身高的变异系数,CV体重=(3.2/21)×100%=15.2%,CV身高=(6/120)×100%=5%。
由此可知体重离散程度更大。
2已知某正态总体的标准差为16,现从中随机抽取一个n=100的样本,样本标准差为16,则样本平均数分布的标准误为( )。
[统考2019研]A.0.16B.1.6C.4D.25【答案】B【解析】总体正态,且方差已知,则样本平均数的分布为正态分布,标准误SE=σ/sqr(n)=16/10=1.6。
3如果学生参加压力量表测试的分数服从正态分布,平均数为5,标准差为2,那么分数处在5和9之间的学生百分比约为( )。
[统考2019研]A.34%B.48%C.50%D.68%【答案】B【解析】计算原始分数为5的标准分数Z1=0,原始分数为9的标准分数Z2=2,已知±1.96包含95%的个体,则可估计p(0<Z<2)=0.48。
4对样本平均数进行双尾假设检验,在α=0.10水平上拒绝了虚无假设。
如果用相同数据计算总体均值的置信区间,下列描述正确的是( )。
[统考2019研]A.置信区间不能覆盖总体均值B.置信区间覆盖总体均值为10%C.置信区间覆盖总体均值为90%D.置信区间覆盖总体均值为0.9%【答案】C【解析】置信度即置信区间覆盖总体均值的概率,题干说明置信度为1-α=0.90。
现代心理与教育统计学课后题完整版

第一章绪论1.名词解释随机变量:在统计学上,把取值之前不克不及预感取到什么值的变量称之为随机变量总体:又称为母全部.全域,指据有某种特点的一类事物的全部样本:从总体中抽取的一部分个别,称为总体的一个样本个别:构成总体的每个根本单元称为个别次数:指某一事宜在某一类别中消失的数量,又成为频数,用f 暗示频率:又称相对次数,即某一事宜产生的次数被总的事宜数量除,亦即某一数据消失的次数被这一组数据总个数去除.频率通行用比例或百分数暗示概率:又称机率.或然率,用符号P暗示,指某一事宜在无穷的不雅测中所能预感的相对消失的次数,也就是某一事物或某种情形在某一总体中消失的比率统计量:样本的特点值叫做统计量,又叫做特点值参数:总体的特点成为参数,又称总体参数,是描写一个总体情形的统计指标不雅测值:在心理学研讨中,一旦肯定了某个值,就称这个值为某一变量的不雅测值,也就是具体数据2.何谓心理与教导统计学?进修它有何意义心理与教导统计学是专门研讨若何应用统计学道理和办法,汇集.整顿.剖析心理与教导科学研讨中获得的随机数据材料,并根据这些数据材料传递的信息,进行科学推论找出心理与教导运动纪律的一门学科.3.选用统计办法有哪几个步调?起首要剖析一下实验设计是否合理,即所获得的数据是否合实用统计办法行止理,精确的数量化是应用统计办法的起步,假如对数量化的进程及其意义没有懂得,将一些不着边沿的数据加以统计处理是毫无意义的其次要剖析实验数据的类型,不合数据类型所应用的统计办法有很大不同,懂得实验数据的类型和程度,对选用恰当的统计办法至关重要第三要剖析数据的散布纪律,如总体方差的情形,肯定其是否知足所选用的统计办法的前提前提4.什么叫随机变量?心理与教导科学实验所获得的数据是否属于随机变量随机变量的界说:①率先无法肯定,受随机身分影响,成随机变更,具有有时性和纪律性②有纪律变更的变量5.如何懂得总体.样本与个别?总体N:据有某种特点的一类事物的全部,又称为母体.样本空间,经常应用N暗示,其构成的根本单元为个别.特色:①大小随研讨问题而变(有.无穷)②总体性质由构成的个别性质而定样本n:从总体中抽取的一部分交个别,称为总体的一个样本.样本数量用n暗示,又叫样本容量.特色:①样本容量越大,对总体的代表性越强②样本不合,统计办法不合总体与样本可以互相转化.个别:构成总体的每个根本单元称为个别.有时个别又叫做一个随机事宜或样本点6.何谓次数.频率及概率次数f:随机事宜在某一类别中消失的数量,又称为频数,用f 暗示频率:即相对次数,即某个事宜次数被总事宜除,用比例.百分数暗示概率P:又称机率或然率,用P暗示,指某事宜在无穷管着重所能预感的相对消失次数.估量值(后验):几回不雅测中消失m 次,P(A)=m/n真实值(先验):特别情形下,直接盘算的比值(成果有限,消失可能性相等)7.统计量与参数之间有何差别和关系?参数:总体的特点称参数,又称总体参数,是描写一个总体情形的统计指标统计量:样本的特点值叫做统计量,又称特点值二者关系:参数是一个常数,统计量随样本而变更参数经常应用希腊字母暗示,统计量用英文字母暗示当实验次数=总体大小时,二者为统一指标当总体无穷时,二者不合,但统计量可在某种程度上作为参数的估量值8.试举例解释各类数据类型之间的差别?9.下述一些数据,哪些是测量数据?哪些是计数数据?其数值意味着什么?17人 25本是计数数据10.解释下面符号代表的意义μ反应总体分散情形的统计指标,即总体平均数或期望值ρ暗示某一事物两个特点总体之间关系的统计指标,相干系数r 样底细关系数σ反应总体疏散情形的统计指标尺度差s样本尺度差β暗示两个特点中体之间数量关系的回归系数Nn第二章统计图表1.统计分组应留意哪些问题?①分类要精确,以被研讨对象的本质为基本②分类标记要明白,要包含所稀有据③如删除过掉所造成的变异数据,要遵守3σ原则2.直条图合适哪种材料?条形图也叫做直条图,重要用于暗示离散型数据材料,即计数材料.3.圆形图合适哪种材料又称饼图,重要用于描写间断性材料,目标是为显示各部分在整体中所占的比重大小,以及各部分之间的比较,显示的材料多以相对数(如百分数)为主4.将下列的反响时测定材料编制成次数散布表.累积次数散布表.直方图.次数多边形.177.5 167.4 116.7 130.9 199.1 198.3 225.0 212.0 180.0 171.0 144.0 138.0 191.0 171.5 147.0 172.0 195.5 190.0 206.7 153.2 217.0 179.2 242.2 212.8 171.0 241.0 176.5 165.4 201.0 145.5 163.0 178.0 162.0 188.1 176.5 172.2 215.0 177.9 180.5 193.0 190.5 167.3 170.5 189.5 180.1 217.0 186.3 180.0 182.5 171.0 147.0 160.5 153.2 157.5 143.5 148.5 146.4 150.5 177.1 200.1 137.5 143.7 179.5 185.5 181.6N=65 代入公式K=1.87(N-1)2/5=9.8 所以K取10定组距13 最低组的下限取115表2-1 次数散布表分组区间组中值(Xc)次数(f)频率(P)百分次数(%)232~ 238 2 3 219~ 225 1 2 206~ 212 6 9 193~ 199 6 9 180~ 186 14 22 167~ 173 16 25 154~ 160 5 8 141~ 147 11 17 128~ 134 3 5 115~ 121 1 2 合计65 100表2-2 累加次数散布表分组区间次数(f)向上累加次数向下累加次数现实累加次数(cf)相对累加次数现实累加次数(cf)相对累加次数232~ 2 65 2219~ 1 63 3206~ 6 62 9193~ 6 56 15180~ 14 50 29167~ 16 36 45154~ 5 20 50141~ 11 15 61128~ 3 4 64115~ 1 1 657.下面是一项美国高中生打工方法的查询拜访成果.根据这些数据用手工方法和盘算方法个制造一个条形图.并经由过程本身的领会解释两种制图方法的不同和优缺陷打工方法高二(%)高三(%)关照孩子市肆发卖餐饮办事其他零工左侧Y轴名称为:打工人数百分比下侧X轴名称为:打工方法第三章分散量数1.应用算术平均数暗示分散趋向要留意什么问题?应用算术平均数必须遵守以下几个原则:①同质性原则.数据是用统一个不雅测手腕采取雷同的不雅测尺度,能反应某一问题的统一方面特质的数据.②平均数与个别数据相联合的原则③平均数与尺度差.方差相联合原则2.中数.众数.几何平均数.折衷平均数个实用于心理与教导研讨中的哪些材料?中数实用于:①当一组不雅测成果中消失两个极端数量时②次数散布表两头数据或个别数据不清晰时③要快速估量一组数据代表值时众数实用于:①要快速且粗略的求一组数据代表值时②数据不合质时,暗示典范情形③次数散布中有南北极端的数量时④粗略估量次数散布的形态时,用M-Mo作为暗示次数散布是否偏态的指标(正态:M=Md=Mo; 正偏:M>Md>Mo; 负偏:M<Md<Mo)⑤当次数散布中消失双众数时几何平均数实用于①少数数据偏大或偏小,数据的散布成偏态②等距.等比量表实验③平均增长率,按必定比例变更时折衷平均数实用于①工作量固定,记载各被试完成雷同工作所用时光②进修时光必定,记载一准时光内各被试完成的工作量3.对于下列数据,应用何种分散量数暗示分散趋向其代表性更好?并盘算它们的值.⑴ 4 5 6 6 7 29 中数=6⑵ 3 4 5 5 7 5 众数=5⑶4.求下列次数散布的平均数.中数.解:组中值由“精确高低限”算得;设估量平均值在35~组,即AM=37;中数地点组为35~,f MD=34,其精确下限Lb=34.5,该组以下各组次数累加为Fb=21+16+11+9+7=645.求下列四个年级的总平均成绩.n2363182152006.三个不合被试对某词的联想速度如下表,求平均联想速度被试 联想词数 时光(分)词数/分(Xi )A 13 2 13/2B 13 3 13/3 C1325-解:C 被试联想时光25分钟为平常数据,删除7.下面是某校几年来毕业生的人数,问平均增长率是若干?并估量10年后的毕业人数有若干.年份 1978 1979 1980 1981 1982 1983 1984 1985 毕业人数54260175076081093010501120解:用几何平均数变式盘算:所以平均增长率为11%10年后毕业人数为1120×10=3159人8.盘算第二章习题4中次数散布表材料的平均数.中数及原始数据的平手数.解:组中值由“精确高低限”算得;设估量平均值在167~组,即设AM=173;中数地点组为167~,f MD=16,其精确下限Lb=166.5,该组以下各组次数累加为Fb=1+3+11+5=20分组区间组中值(Xc)次数(f)d=(Xi-AM)/i fd 232~ 238 2 5 10 219~ 225 1 4 4 206~ 212 6 3 18 193~ 199 6 2 12 180~ 186 14 1 14 167~ 173 16 0 0 154~ 160 5 -1 -5 141~ 147 11 -2 -22 128~ 134 3 -3 -9 115~ 121 1 -4 -4 合计∑N=65 ∑fd=18第四章差别量数1.器量离中趋向的差别量数有哪些?为什么要器量离中趋向?器量离中趋向的差别量数有全距.四分位差.百分位差.平均差.尺度差与方差等等.在心理和教导研讨中,要周全描写一组数据的特点,不单要懂得数据的典范情形,并且还要懂得特别情形.这些特别性常表示为数据的变异性.如两个样本的平均数雷同但是整洁程度不合,假如只比较平均数其实不克不及真实的反应样本全貌.是以只有分散量数不成能真实的反应出样本的散布情形.为了周全反应数据的总体情形,除了必须求出分散量数外,这时还须要应用差别量数.2.各类差别量数各有什么特色?见教材103页“各类差别量数优缺陷比较”3.尺度差在心理与教导研讨中除器量数据的离散程度外还有哪些用处?可以盘算差别系数(应用)和尺度分数(应用)4.应用尺度分数求不合质的数据总和时应留意什么问题?请求不合质的数据的次数散布为正态5.盘算下列数据的尺度差与平均差6.盘算第二章习题4所列次数散布表的尺度差.四分差Q设估量平均值在167~组,即AM=173, i=13分组区间Xc f d=(Xc-AM)/i fd fd2232~ 238 2 5 10 50219~ 225 1 4 4 16206~ 212 6 3 18 54193~ 199 6 2 12 24180~ 186 14 1 14 14167~ 173 16 0 0 0154~ 160 5 -1 -5 5141~ 147 11 -2 -22 44128~ 134 3 -3 -9 27115~ 121 1 -4 -4 16合计65 18 25065×75%=48.75 所以Q1.Q3分离在154~组(小于其组精确下限的各组次数和为15)和180~组(小于其组精确下限的各组次数和为36),其精确下限分离为153.5和179.5,所以有:7.今有一画线实验,尺度线分离为5cm和10cm,实验成果5cm组的误差平均数为1.3cm,尺度差为0.7cm,10cm组的误差平均数为4.3cm,尺度差为 1.2cm,请问用什么办法比较其离散程度的大小?并具体比较之.用差别系数来比较离散程度.×100%=()×100%=53.85%×100%=(1.2/4.3) ×100%=27.91%<CV1所以尺度线为5cm的离散程度大.8.求下表所列各班成绩的总尺度差班级平均数尺度差人数di1 402 513 489.求下表数据散布的尺度差和四分差设估量平均数AM=52,即在50~组,d=(Xc-AM)/I盘算各值如下表所示:分组 f Xc 累加次数 d d2fd2fd 75~80 1 77 55 5 25 25 5 70~ 2 72 54 4 16 32 8 65~ 4 67 52 3 9 36 12 60~ 5 62 48 2 4 20 10 55~ 8 57 43 1 1 8 8 50~ 10 52 35 0 0 0 0 45~ 9 47 25 -1 1 9 -940~ 7 42 16 -2 4 28 -14 35~ 4 37 9 -3 9 36 -12 30~ 2 32 5 -4 16 32 -8 25~ 2 27 3 -5 25 50 -10 20~ 1 22 1 -6 36 36 -6 合计55 312 -1655×25%=13.75 55×75%=41.25 所以Q1在40~组,其精确下限Lb1=39.5,小于其组的次数为Fb1=9,其组次数f1=7;Q2在55~组,其精确下限Lb2=54.5,小于其组的次数为Fb2=35,其组次数f2=8.盘算Q1.Q2如下:第五章相干关系1.解释相干系数时应留意什么?(1)相干系数是两列变量之间相干成都的数字表示情势,相干程度指标有统计特点数r和总系统数ρ(2)它只是一个比率,不是相干的百分数,更不是等距的器量值,只能说r大比r小相干亲密,不克不及说r大小=0.4的两倍(不克不及用倍数关系来解释)(3)当消失强相干时,能用这个相干关系根据一个变量的的值猜测另一变量的值(4)-1≤r≤1,正负号暗示相干偏向,值大小暗示相干程度;(0为无相干,1为完整正相干,-1为完整负相干)(5)相干系数大的事物间不必定有因果关系(6)当两变量间的关系收到其他变量的影响时,两者间的高强度相干很可能是一种假象(7)盘算相干要成对数据,即每个个别有两个不雅测值,不克不及随意2个个别盘算(8)非线性相干的用r得可能性小,但其实不克不及说不亲密2.假设两变量为线性关系,盘算下列各情形的相干时,应用什么办法?(1)两列变量是等距或等比的数据且均为正态散布(积差相干)(2)两列变量是等距或等比的数据且不为正态散布(等级相干)(3)一变量为正态等距变量,另一列变量也为正态变量,但工资分为两类(二列相干)(4)一变量为正态等距变量,另一列变量也为正态变量,但工资分为多类(多列相干)(5)一变量为正态等距变量,另一列变量为二分称名变量(点二列相干)(6)两变量均以等级暗示(等级相干.交织系数.相容系数)3.若何区分点二列相干与二列相干?重要差别在于二分变量是否为正态.二列相干请求两列数据均为正态,个中一列被工资地分为两类;点二列相干一列数据为等距或等比测量数据,且其总体散布为正态,另一列变量是二分称名变量,且两列数消失一一对应关系.4.品德相干有哪几种?各类品德相干的应用前提是什么?品德相干剖析的总前提是两身分多项分类之间的联系关系程度,分为一下几类:(1)四分相干,应用前提是:两身分都为正态持续变量(eg.进修才能,身材状况))工资分为两个类别;统一被试样品中,分离查询拜访两个不合身分两项分类情形(2)Φ系数:除四分相干外的2×2表(最经常应用)(3)列联表相干C:R×C表的计数材料剖析相干程度5.预考核甲乙丙丁四人对十件工艺美术品的等级评定是否具有一致性,用哪种相干办法?等级相干6.下表是日常平凡两次测验成绩分数,假设其散布成正态,分离用积差相干与等级相干办法盘算相干系数,并答复,就这份材料用哪种相干法更恰当?被试 A B A2B2AB R A R B R A R B D=R A-R B D21 86 83 7396 6889 7138 236-112 58 52 3364 2704 3016 7856-113 79 89 6241 7921 7031 414394 64 78 4096 6084 4992 6424245 91 85 8281 7225 7735 122-116 48 68 2304 4624 3264 9654397 55 47 3025 2209 2585 8972-118 82 76 6724 5776 6232 3515-249 32 25 1024 625 800 10101000010 75 56 5625 3136 4200 5735-24555536834用积差相干的前提成立,故用积差相干更精确7.下列两列变量为非正态,选用恰当的办法盘算相干本题应用等级相干法盘算,且含有相一致级X有3个数据的等级雷同,等级3.5的数据中有2个数据的等级雷同,等级为6.5和8.5的数据中也分离有2个数据雷同;Y有3个数据等级雷同,等级为3的数据中有3个数据等级雷同,等级为5.5的数据中有2个数据等级雷同,等级为9的数据中有3个数据等级雷同.被试X Y RX RYD=RX-RYD21 13 14 1 1 0 02 12 11 23 -1 13 10 11 34 10 11 35 8 7 56 67 1 17 6 5 78 5 4 99 5 4 910 2 4 10 9 1 1N=108.问下表中成绩与性别是否相干?被试性别成绩男成绩女成绩成绩的平方1 男83 83 68892 女91 91 82813 女95 95 90254 男84 84 70565 女89 89 79216 男87 87 75697 男86 86 73968 男85 85 72259 女88 88 774410 女92 92 8464∑880 425 455 77570实用点二列相干盘算法.p为男生成绩,q为女生成绩平均成绩从表中可以盘算得:p=0.5 q=0.5相干系数为-0.83,相干较高9.第8题的性别若是改为另一成绩A()正态散布的合格.不合格两类,且知1.3.5.7.9被试的成绩A为合格,2.4.6.8.10被试的成绩A为不合格,请选用恰当的办法盘算相干,并解释之.被试成绩A 成绩B 合格成绩不合格成绩成绩的平方1 合格83 83 68892 不合格91 91 82813 合格95 95 90254 不合格84 84 70565 合格89 89 79216 不合格87 87 75697 合格86 86 73968 不合格85 85 72259 合格88 88 774410 不合格92 92 8464∑880 441 439 77570实用二列相干B的尺度差和平均数离是成绩A合格和不合格时成绩B的平均数,p为成绩A合格的比率,y为尺度正态曲线中p值对应的高度或者10.下表是9名被试评价10名有名的天文学家的等级评定成果,问这9名被试的等级评定是否具有一致性?被评价者被试∑R i∑R i2 1 2 3 4 5 6 7 8 9A 1 1 1 1 1 1 1 1 1 9 81B 2 4 3 3 9 4 3 3 2 33 1089C 4 2 4 4 2 9 5 5 8 43 1849D 3 5 5 5 5 2 10 7 4 46 2116E 9 6 2 2 6 5 2 6 9 47 2209F 6 7 8 6 3 6 6 4 6 52 2704G 5 3 9 10 4 7 9 8 3 58 3364H 8 10 6 8 8 3 7 10 7 67 4489I 7 8 10 7 10 10 8 2 5 67 4489 J 10 9 7 9 7 8 4 9 10 73 5329 ∑495 27719实用肯德尔W系数.即消失必定关系但不完整一致11.将11题的成果转化为对偶比较成果,并盘算肯德尔一致性系数ABCDEFGHIJ已知N=10,K=9 选择对角线以下的择优分数或者选择对角线上的择优分数第六章概率散布1.概率的界说及概率的性质标明随机事宜产生可能性大小的客不雅指标就是概率2.概率散布的类型有哪些?简述心理与教导统计中经常应用的概率散布及其特色概率散布是指对随机变量取值的概率散布情形用数学办法(函数)进行描写.概率散布根据不合的尺度可以分为不合的类型:(一)离散散布与持续散布持续散布指持续随机变量的概率散布,即测量数据的概率散布,如正态散布离散散布是指离散随机变量的概率散布,即计数数据的概率散布,如二项散布(二)经验散布与理论散布经验散布指根据不雅察或实验所获得的数据而编制的次数散布或相对频率散布理论散布有两个寄义,一是随机变量概率散布的函数-数学模子,二是指按某种数学模子盘算出的总体的次数散布(三)根本随机变量散布与抽样散布根本随机变量散布指理论散布中描写构成总体的根本变量的散布,经常应用的有二项散布与正态散布抽样散布是样本统计量的理论散布,又称随机变量函数的散布,如平均数,方差等3.何谓样本平均数的散布所谓样本平均数的散布是指从根本随机变量为正态散布的总体(又称母总体)中,采取有放回随机抽样办法,每次从这个总体中抽取大小为n的一个样本,然后将这些个别放归去,再次取n个个别,……再将n 个个别放归去,再抽取n个个别……,如许如斯反复,可盘算出理论及实验证实这无穷多个平均数的散布为正态散布.4.从N=100的学生中随即抽样,已知男生人数为35,问每次抽取1人,抽的男生的概率是若干?(35/10)5.两个骰子掷一次,消失雷同点数的概率是若干?6.从30个白球20个黑球共50个球中随机抽取两次(放回抽样),问抽一黑球与一白球的概率是若干?两次皆是白球与两次皆是黑球的概率各是若干?(一黑一白)(皆是黑球)(皆是白球)7.自一副洗好的纸牌中每次抽取一张.抽取下列纸牌的概率是若干?(1)一张K 4/54(2)一张梅花 13/54(3)一张红桃 13/54(4)一张黑心 13/54(5)一张不是J.Q.K牌的黑桃 10/548.掷四个硬币时,消失一下情形的概率是若干?屈服二项散布b(4, 0.5)(1)(2)(3)(4)(5)9.在特异功效实验中,五种符号不合的卡片在25张卡片中各反复5次,每次实验自25张卡片中抽取一张,记下符号,将卡片送回.共抽25次,每次精确的概率是1/5.写出实验中的二项式.问这个二项式散布的平均数和尺度差各等于若干?屈服二项散布b(25, 0.2)10.查正态表求:(1)Z=±×2=(2)P=0.78 Z=? Y=? Z=0.77 Y=0.29659(3)P11.在单位正态散布中,找出有下列个案百分数的尺度测量Z的分值12.在单位正态散布中,找出有下列个案百分数的尺度测量的Z值13.今有1000人经由过程一数学才能磨练,欲评为六个等级,问各个等级评定人数应是若干?解:6σ÷6=1σ,要使各等级等距,每一等级应占1个尺度差的距离,肯定各等级的Z分数界线,查表盘算如下:分组各组界线比率p 人数散布p×N1 2σ以上232 1σ~2σ1363 0~1σ3414 -1σ~0 3415 -2σ~-1σ1366 -2σ以下23 14.将下面的次数散布表正态化,求正态化T分数分组组中值 f 上限以下累加各组中点以下累加次数累积百分比Z正态化T分数T=10Z+5055~ 52 2 100 99 99%50~ 47 2 98 97 97%45~ 42 6 96 93 93%40~ 37 8 90 86 86%35~ 32 12 82 76 76%30~ 27 14 70 63 63%25~ 22 24 56 44 44%20~ 17 12 32 26 26%15~ 12 16 20 12 12%10~ 7 4 4 2 2%15.掷骰子游戏中,一个骰子掷6次,问3次及3次以上6点向上的概率各是若干?屈服二项散布:33次以上:16.今有四择一选择磨练100题,问答对若干题才干说是真的会答而不是猜测?解:屈服二项散布,p=1/4, q=3/4, np=100×1/4=25>5,此二项散布接近正态,故:根据正态散布概率,当Z=1.645时,该点以下包含了全部的95%.假如用原是分数暗示,即完整凭猜测,100题中猜对33题以下的可能性为95%,猜对33题及以上的概率仅为5%.所以答对33题才干说是真的会而不是猜测.17.一张考卷中有15道多重选择题,每题有4个可能的答复,个中至少有一个是精确答案.一考生随机答复,(1)答对5至10题的概率,(2)答对的平均题数是若干?18.E字形试标检讨儿童的视敏度,每种目力值(1.0,1.5)有4个偏向的E字各有两个(共8个),问:说对几个才干说真看清了而不是猜测对的?解:屈服二项散布,n=8,p=1/4,np=2<5,所以不克不及用正态散布概率算,而直接用二项散布算:由以上盘算可知说对5个及5个以上的概率总和为0.000015+0.000366+0003845+0.023071=0.027297=2.73%<5%而说对4个及以上概率总和为0.027297+0.0865=0.1138=11.38% 大大超出5%的误差规模,不成取.所以至少说对5个才干才干以为是看清了而不是猜测对的,作此结论犯错误的概率为2.73%.19.一学生毫无预备介入一项磨练,个中有20道长短题,他纯粹是随机地选择“是”和“非”,试盘算:(1)该学生答对5题的概率;(2)该学生至少答对8题的概率解:屈服二项散布 n=20, p=0.5 np=10>5,可用正态散布概率作近似值.答对5至少答对8题的概率用正态散布概率近似盘算如下:所以答对8题的Z20.设某城市大学登科率是40%,求20个介入高考的中学生中至少有10人被登科的概率.解:屈服二项散布 n=20,p=0.4,q=0.6.因为np=5,可以用正态散布概率作近似盘算人被登科时的Z至少10人被登科的概率即为Z=2.283以上的概率,查表得Z=2.283时p=0.48870,所以Z=2.283以上的概率为0.5-0.48870=0.0113,即至少10人被登科的概率为1.13%解2:设X为登科人数,则21.已知一正态总体μ=10,σ=2.今随机取n=9的样本求Z值,及大于该Z以上的概率是若干?解:属于样本分布中总体正态,方差已知的情形:22.从方差未知的正态总体(μ=50)中抽取n=10的样本,算得平问大于该平均数以上的概率?解:总体正态方差未知,屈服t散布查表当df=9时没有精确的p对应,采取内插法单侧界线概率:t=1.383以上概率为p=0.1,t=1.833以上概率为p=0.05,令t=1.581以上概率为p,则:23.解,查表得df=7时24.抽取样本n=15解:不知总体平均数时,df=n-1=14查表得df=14时0.25,采取内插法,p,则解得p=0.27,25.从的正态总体中,随机抽取n=10的样本为:10.20.17.19.25.24.22.31.26.26,,并求大于该值的概率?解:正态总体平均数未知查df=9时26.,,大于该值以上的概率又是若干?解,正态总体平均数已知27.解:统一总体方差相等样本方差比为第七章参数估量第八章假设磨练第九章方差剖析第十章X2磨练第十一章非参数磨练第十二章线性回归第十三章多变量统计剖析简介第十四章抽样道理及办法O50IZF6l3OlC。
张厚粲《现代心理与教育统计学》(第4版)章节题库-概率分布(圣才出品)

第6章概率分布一、单项选择题1.对随机现象的一次观察为一次()。
A.随机实验B.随机试验C.教育与心理实验D.教育与心理试验【答案】B【解析】在一定条件下可能发生也可能不发生的现象称为随机现象。
对于随机现象的一次观察可以看做一次试验,这样的试验称为随机试验。
随机试验的结果称为随机事件。
2.让64位大学生品尝A,B两种品牌的可乐并选择一种自己比较喜欢的。
如果这两种品牌的可乐味道实际没有任何区别,有39人或39人以上选择品牌B的概率是(不查表)()。
A.2.28%B.4.01%C.5.21%D.39.06%【答案】B【解析】二项分布是指试验仅有两种不同性质结果的概率分布。
即各个变量都可归为两个不同性质中的一个,两个观测值是对立的,因而二项分布又可说是两个对立事件的概率分布。
已知μ=np=64×0.5=32,σ==⨯⨯=640.50.54npqZ=(X-μ)/σ=(39-32)/4=1.75;又因为Z0.05=1.65,Z0.05/2=1.96,所以有39人或39人以上选择品牌B的概率应该在2.5%~5%之间。
3.某个单峰分布的众数为15,均值是10,这个分布应该是()。
A.正态分布B.正偏态分布C.负偏态分布D.无法确定【答案】C【解析】平均数(M)、中数(M d)和众数(M o)三者的关系:①在正态分布中,M、M d和M o相等,在数轴上完全重合;②在正偏态分布中M>M d>M o;③在负偏态分布中M<M d<M o。
众数大于均值,该分布为负偏态分布。
4.t分布比标准正态分布()。
A.中心位置左移,但分布曲线相同B.中心位置右移,但分布曲线相同C.中心位置不变,但分布曲线峰高D.中心位置不变,但分布曲线峰低,两侧较伸展【答案】D【解析】当样本容量趋于∞时,t分布为正态分布,方差为1;当n-1>30以上时,t分布接近正态分布,方差大于1,随n-1的增大而方差渐趋于1;当n-1<30时,t 分布与正态分布相差较大,随n-1减少,离散程度(方差)越大,分布图的中间变低但尾部变高。
张厚粲《现代心理与教育统计学》(第4版)章节题库-方差分析(圣才出品)

第9章方差分析一、单项选择题1.假设80个被试被分配到5个不同的实验条件组,那么要考虑各组被试在某症状测量上的差异,F比率的df各为()。
A.5,79B.5,78C.4,79D.4,75【答案】D【解析】方差分析的组间自由度df B=k-1=5-1=4,组内自由度df W=k(n-1)=5×(16-1)=75。
2.以下关于事后检验的陈述,哪一项是不正确的?()A.事后检验是我们能够比较各组,发现差异发生在什么地方B.多数事后检验设计中都控制了实验导致误差C.事后检验中的每一个比较都是相互独立的假设检验D.Scheffe检验是一种比较保守的事后检验,特别适用于各组n不等的情况【答案】C【解析】如果方差分析F检验的结果表明差异显著,拒绝了虚无假设,就表明几个实验处理组的两两比较中至少有一对平均数间的差异达到了显著水平,至于是哪一对,方差分析并没有回答。
虚无假设被拒绝的结果一旦出现,就必须对各实验处理组的多对平均数进一步分析,做深入比较,判断究竟是哪一对或哪几对的差异显著,哪几对不显著,确定两变量关系的本质,这就是事后检验。
这个统计分析过程也被称作事后多重比较。
3.某项调查选取三个独立样本,其容量分别为n1=10,n2=12,n3=15,用方差分析法检验平均数之间的显著性差异时,其组内自由度为()。
A.2B.5C.36D.34【答案】D【解析】方差分析的组内自由度df W=df T-df B=(N-1)-(K-1)=N-K=(10+12+15)-3=34。
4.某年级三个班的人数分别为50,38,42人,若用方差分析方法检验某次考试平均分之间有无显著性差异,那么组间自由度为()。
A.127B.129C.2D.5【答案】C【解析】方差分析的组间自由度df B=k-1=3-1=2。
5.完全随机设计的方差分析适用于()。
A.三个及其以上独立样本平均数差异的显著性检验B.方差齐性检验C.三个及其以上相关样本平均数差异的显著性检验D.两个样本平均数差异的显著性检验【答案】A【解析】完全随机设计是指组间设计,通常把被试分成若干个组,每组分别接受一种实验处理,有几种实验处理,被试也就相应的被分为几组,即不同的被试接受自变量不同水平的实验处理。
现代心理与教育统计学课后答案

现代心理与教育统计学课后答案现代心理与教育统计学课后答案【篇一:现代心理与教育统计学第07章习题解答】点估计就是总体参数不清楚时,用一个特定的值,即样本统计量对总体参数进行估计,但估计的参数为数轴上某一点。
区间估计是用数轴上的一段距离来表示未知参数可能落入的范围,它不具体指出总体参数是多少,能指出总体未知参数落入某一区间的概率有多大。
点估计的优点是能够提供总体参数的估计值,缺点是点估计总以误差的存在为前提,且不能提供正确估计的概率。
区间估计的优点是用概率说明估计结果的把握程度,缺点是不能确定一个具体的估计值。
2以方差的区间估计为例说明区间估计的原理3.总体平均数估计的具体方法有哪些?总体方法为点估计好区间估计,区间估计又分为:(1)当总体分布正态方差已知时,样本平均的分布为正态分布,故依据正态分布理论估计其区间;(2)当总体分布正态方差未知时,样本平均数的分布为t分布,依据t分布理论估计其区间;(3)当总体非分布正态方差未知时,只有在n大于30时渐近t分布,样本平均数的分布渐近t分布,依据t分布理论估计其区间。
4总体相关系数的置信区间,应根据何种分布计算?应根据fisher的z分布进行计算5.解依据样本分布理论该样本平均数的分布呈正态5其标准误为: ?x1.25 nx?z?/2??xx?z?/2??x即81?1.96*1.2581?1.96*1.25所以:78.5583.45该科成绩的真实分数有95%的可能性在78.55----83.45之间。
x?t??xx?t?/2?x其置信区间为:即:80?1.987*0.780?1.987*0.778.6181.39该学区教学成绩的平均值有95%的可能在78.61---81.39之间。
7解:此题属于总体分布正态总体方差已知 ?8计算标准误 ?x1.789 n20x?z1x?171?1.96*1.789?171?3.506总体平均数的.95置信区间为所以总体平均数?在167.493―――174.506之间,作出这种判断的时候犯错误的比率是5%。
现代心理与教育统计学-笔记

概念(1)随机变量:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量.(2)总体:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。
(3)样本:样本是从总体中抽取的一部分个体。
(4)个体:构成总体的每个基本单元.(5)次数:是指某一事件在某一类别中出现的数目,又称作频数,用f表示。
(6)频率:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。
(7)概率:概率论术语,指随机事件发生的可能性大小度量指标.其描述性定义。
随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A).(8)统计量:样本的特征值叫做统计量,又称作特征值。
(9)参数:又称总体参数,是描述一个总体情况的统计指标。
(10)观测值:随机变量的取值,一个随机变量可以有多个观测值。
2何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。
具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
(2)学习心理与教育统计学有重要的意义.①统计学为科学研究提供了一种科学方法.科学是一种知识体系。
它的研究对象存在于现实世界各个领域的客观事实之中. 它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系.要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。
统计学正是提供了这样一种科学方法.统计方法是从事科学研究的一种必不可少的工具.②心理与教育统计学是心理与教育科研定量分析的重要工具.凡是客观存在事物,都有数量的表现.凡是有数量表现的事物,都可以进行测量。
张厚粲《现代心理与教育统计学》(第4版)章节题库-多变量统计分析简介(圣才出品)

第13章多变量统计分析简介一、单项选择题1.除已知的K个自变量之外,回归分析模型中同时影响因变量的因素为()。
A.非随机因素B.准随机因素C.伪随机因素D.随机因素【答案】D【解析】在回归模型中,随机干扰项代表了未知的影响因素、残缺数据、众多细小影响因素和观测误差等,而自变量对因变量的影响是通过回归系数确定的。
2.进行变量筛选简化回归方程的方法,称为()。
A.方差分析法B.回归统计法C.回归检验法D.逐步回归法【答案】D【解析】逐步多重回归法是依据预测变量解释力的大小,逐步检查每一个预测变量对因变量的影响。
它不像同时回归分析法那样,同时用所有预测变量来进行预测。
根据预测变量的选取顺序,逐步回归分析法又分为向前法、向后法和逐步法三种。
3.方差分析的主要任务是检验()。
A.综合虚无假设B.部分虚无假设C.组间虚无假设D.组内虚无假设【答案】A【解析】方差分析主要处理多于两个以上的平均数之间的差异检验问题。
这时需要检验的虚无假设就是“任何一对平均数”之间是否有显著性差异。
为此,设定虚无假设为,样本所归属的所有总体的平均数都相等,一般把这一假设称为“综合的虚无假设”。
组间的虚无假设相应的就称为“部分虚无假设”。
方差分析的主要任务是检验综合虚无假设。
如果综合虚无假设被拒绝,紧接着要确定哪两个组之间的平均数之间存在差异,此时要运用事后检验的方法来确定。
4.在一个二因素组间设计的方差分析中,一位研究者报告A因素的主效应是F(1,54)=0.94,B因素的主效应是F(2,108)=3.14,从中可以得出()。
A.因素B的主效应比因素A的主效应大B.此研究是2×3的因素设计C.研究中有114个被试D.这个报告一定有错误【答案】D【解析】根据题意可知,这是一个二因素组间设计,各项F检验的分母自由度都是相同的。
而此处的两个F检验,分母自由度分别是54和108,因此有误。
5.你做了一个3×4的组间方差分析,结果两个主效应显著,没有显著的交互作用。
张厚粲《现代心理与教育统计学》(第4版)配套模拟试题及详解(二)【圣才出品】

张厚粲《现代心理与教育统计学》(第4版)配套模拟试题及详解(二)(总分100分,时间120分钟)一、单项选择题:1~10小题,每小题2分,共20分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
1.总体分布正态,总体方差σ2未知时,从总体中随机抽取容量为25的小样本,用样本平均数估计总体平均数的置信区间为( )。
A ./2/2S S X Z X Z ααμ-⋅<<+⋅ B ./2/2S S X t X t ααμ-⋅<<+⋅ C ./2/2S S X Z X Z ααμ-⋅<<+⋅ D ./2/2S S X t X t ααμ-⋅<<+⋅ 【答案】D【解析】总体分布正态,总体方差σ2未知,小样本(样本量N <30)时,总体样本平均数的分布符合t 分布。
用S n -1作为总体标准差σ的无偏估计量。
因此,用样本平均数估计总体平均数的置信区间为:/2/2n n S S X t X t ααμ-⋅<<+⋅2.当α=0.05时,发生Ⅱ型错误的概率为( )。
A .0.05B .0.025C .0.95D .以上信息不足,无法推断【答案】D【解析】在其他条件不变的情况下,α与β(发生Ⅱ型错误的概率)呈反比。
但是无法仅根据α的大小确定β的大小。
3.A 、B 两变量线性相关,变量A 为符合正态分布的等距变量,变量B 也符合正态分布且被人为划分为两个类别,计算它们的相关系数应采用( )。
A .积差相关系数B .点双列相关C .二列相关D .肯德尔和谐系数【答案】C【解析】A 项,积差相关系数适用于计算两组来自正态总体的等距变量之间的相关。
B 项,点二列相关适用于计算一组等距变量与一组二分变量或双峰分布的变量之间的相关。
C 项,二列相关适用于两列数据均属于正态分布,其中一列变量为等距或等比的测量数据,另一列为人为划分的二分变量之间的相关。
D项,肯德尔和谐系数适用于计算多列变量的相关。
现代心理与教育统计学 笔记

概念(1)随机变量:在统计学上把取值之前,不克不及精确预感取到什么值的变量,称为随机变量.(2)总体:总体(population)又称为母全部或全域,是具有某种特点的一类事物的总体,是研讨对象的全部.(3)样本:样本是从总体中抽取的一部分个别.(4)个别:构成总体的每个根本单元.(5)次数:是指某一事宜在某一类别中消失的数量,又称作频数,用f暗示.(6)频率:又称相对次数,即某一事宜产生的次数除以总的事宜数量,通经常应用比例或百分数来暗示.(7)概率:概率论术语,指随机事宜产生的可能性大小器量指标.其描写性定义.随机事宜A在所有实验中产生的可能性大小的量值,称为事宜A的概率,记为P(A).(8)统计量:样本的特点值叫做统计量,又称作特点值.(9)参数:又称总体参数,是描写一个总体情形的统计指标.(10)不雅测值:随机变量的取值,一个随机变量可以有多个不雅测值.2何谓心理与教导统计学?进修它有何意义?答:(1)心理与教导统计学是专门研讨若何应用统计学道理和办法,汇集.整理.剖析心理与教导科学研讨中获得的随机性数据材料,并根据这些数据材料传递的信息,进行科学推论找出心理与教导统计运动纪律的一门学科.具体讲,就是在心理与教导研讨中,经由过程查询拜访.实验.测量等手腕有意地获取一些数据,并将得到的数据按统计学道理和步调加以整顿.盘算.绘制图表.剖析.断定.推理,最后得出结论的一种研讨办法.(2)进修心理与教导统计学有重要的意义.①统计学为科学研讨供给了一种科学办法.科学是一种常识体系.它的研讨对象消失于实际世界各个范畴的客不雅事实之中.它的重要义务是对客不雅事实进行猜测和分类,从而揭示储藏于个中的各种因果关系.要进步对客不雅事实不雅测及剖析研讨的才能,就必须应用科学的办法.统计学恰是供给了如许一种科学办法.统计办法是从事科学研讨的一种必不成少的工具.②心理与教导统计学是心理与教导科研定量剖析的重要对象.凡是客不雅消失事物,都稀有量的表示.凡是稀有量表示的事物,都可以进行测量.心理与教导现象是一种客不雅消失的事物,它也稀有量的表示.固然心理与教导测量具有多变性并且旨起它产生变更的身分许多,难以精确测量.但是它毕竟照样可以测量的.是以,在进行心理与教导科学研讨时,在必定前提下,是可以对心理与教导现象进行定量剖析的.心理与教导统计就是对心理与教导问题进行定量剖析的重要的科学对象.③宽大心理与教导工作者进修心理与教导统计学的具体意义.a.可经顺遂浏览国表里先辈的研讨成果.b.可以进步心理与教导工作的科学性和效力.c.为进修心理与教导测量和评价打下基本.?答:一项实验研讨成果要用何种统计办法去剖析,须要对实验数据进行卖力的分析.只有做到对数据剖析精确,才干对统计办法做出精确地选用.选用统计办法可以分为以下步调:(1)起首,要剖析一下实验数据是否合理,即所或得的数据是否合实用统计方法行止理,精确的数量化是应用统计办法的起步,假如对数量化的进程及其意义没有懂得,将一些不着边沿的数据加以统计处理是毫无意义的.(2)其次,要剖析实验数据的类型.不合数据类型所应用的统计办法有很大差别,懂得实验数据的类型和程度,对选用恰当的统计办法至关重要.(3)第三,要剖析数据的分布纪律,如总体方差的情形,肯定其是否知足所选用的统计办法的前提前提.4.什么叫随机变量?心理与教导科学实验所获得的数据是否属于随机变量?答:(1)在统计学上把取值之前,不克不及精确预感取到什么值的变量,称为随机变量.(2)心理与教导科学实验所获得的数据属于随机变量.心理与教导科学研讨数据具有随机性和变异性.科学研讨中因不雅测人员.不雅测对象.不雅测前提的变更而具有随机变更的现象.在心理和教导科学范畴,研讨获得的数据材料也具有必定随机性质.不雅测数据的这种特色,称为变异性.即便应用统一种测量对象,不雅测统一事物,只如果进行多次,那么获得的数据就不会完整雷同.跟着测量对象的完美和精确,数据的这种随机性变更就更明显.例如,人们对统一年级或统一年纪儿童甚至对统一小我进行统一学科的学业测试,或对统一个心理特色进行评量.不雅察多次,得到的数据毫不会全然雷同,这些数据老是在必定的规模内变更.造成数据变异的原因,出自不雅测进程中一些有时的不成掌握的身分,称随机身分.随机身分使测量产生的误差称作随机误差.因为这种随机误差的消失,使得在雷同前提下不雅测的成果常常不止一个,并且事前无法肯定,这是客不雅世界消失的一种广泛现象,人们称这类现象为随机现象.在教导和心理科学的各类研讨中,研讨的对象是人的内涵的各种心理现象,不但由客不雅上一些有时身分会引起测量误差,由实验者和被试主不雅上一些不成掌握的有时身分也会造成测量误差,这些有时身分+分庞杂,因而造成的随机误差就更大,也就是使心理与教导科学研讨中得到的数据具有更明显的变异性.5.如何懂得总体.样本与个别.答:根据其各自的界说,我们可以用下面这个图来暗示.大圆暗示研讨对象的全体,也就是总体;大圆中的小圆暗示个中一个样本,大圆中所有的点代表的是样本.6.统计量与参数之间有何差别和关系.答:(1)参数是描写总体情形的统计指标;样本的特点值称作统计量.(2)差别:1参数是从总体中盘算得到的量数,代表总体特点,一个常数.统计量是从一个样本中盘算得到的量数,它描写一组数据的情形,是一个变量,随样本的变更而变更.2参数经常应用希腊字母暗示,样本统计量用英文字母暗示.(3)接洽:1参数平日是经由过程样本特点值来猜测得到,(7.答案略)8.下述一些数据,哪些是测量数据?哪些是计数数据?其数值意味什么?(1)17. 0千克(2 ) 89. 85厘米(3) 199. 2秒(4) 17人(5) 25本(6 ) 93. 5答:上面的数据中测量数据有:(1) 17.0千克(2 ) 89. 85厘米(3 ) 199. 2秒(6)93. 5分计数数据有:(4) 17人(5) 25本(2) 17. 0千克.89. 85厘米.199. 2秒.93. 5分,这些数据是借助必定的重量.长度.时光或必定的测量尺度而获得数据,分别代表事物的重量.长度.时光或者分数.9符号代表的意义(教材20页)(1)总体平均数,期望值 (2)样本平均数 (3)总体之间的相干系数 (4)样本间的相干系数 (5)总体尺度差 (6)样本尺度差 (7)总体间的回归系数 (8)有限个别数量标总体 (9)样本容量,样本大小1.统计分组应留意哪些问题?答:进行统计分组时须要留意下列问题:(1)分组要以被研讨对象的本质特点为基本面对大量原始数据进行分组时,有时须要先做初步的分类,分类或分组必定是要选择与被研讨现象的本质的关的特点为根据,才干确保分类或分组的精确.在心理与教导学研讨方面,专业常识的懂得和熟习对分组的精确进行有重要的感化.例如在学业成绩研讨中按学科性质分类,在整顿智力磨练成果时,按言语智力.操纵智力和总的智力分数分类等.(2)分类标记要明白,要能包含所有的数据对数据进行分组时,所根据的特点称为分组或分类的标记.整顿数据时,分组标志要明白并在整顿数据的进程中前后一致.这就是说,关于被研讨现象本质特点的概念要明白,不克不及既是这个又是谁人.别的,所根据的标记必须能将全部数据包含进去,不克不及有漏掉,也不克不及半途转变.2.直条图或叫条形图:重要用于暗示离散型数据材料,即计数材料.详见教材45页.3.圆形图或叫饼图:重要用于描写间断性材料,目标是为显示多部分在整体中所占的比重大小,以及各部分之间的比较.:统计学的道理和数学的办法在心理学范畴中的应用.描写统计和推理统计两大部分.3.实验数据可分为两类:精确数和近似值.4.肯定组距今后,要斟酌最小的一组从哪开端.显然,最小的一组应包含全部系列中的最小数值.5.在心理实验中经常应用的表格有三类:原始数据登记表,经由火组整顿的次数分布表,带有对实验成果总结性质的表6.暗示实验成果的图有:平面图和立体图.7.平面图一般分为:曲线图和直方图两类.8.平面图有两个坐标,横坐标代表心理实验中的刺激变量或自变量,纵坐标代表反响变量或因变量.当横坐标代表的数量是持续的,可画曲线图或直方图;当横坐标代表的数量不是持续的变量,而是不合类别时,就只能画直方图,其纵坐标必须从0开端.上限.算术平均数.明显的分散趋向指标,但众数不如平均数和中数稳固.12.分组不合适会消失双峰,可调剂组距.真正的双峰消失的原因是_有两种性质不合的数据_.13.在偏斜的分布中,平均数老是处于偏斜的一端,而中数则永久把一个分布曲线下的面积分成相等的两部分.14. q2-q1<q3-q2时,分布向右偏斜;q2-q1=q3-q2时,分布向对称;q2-q1>q3-q2时,分布向_左(哪方大则朝哪方偏斜)偏斜.15.暗示两个变量之间相干性质和程度的图,叫分布图.假如图中所有的点形成一条直线,解释是一个完整正相干的分布图;假如是椭圆,这个椭圆越窄,解释相干程度越_高_____.16.从样本估计总体是以概率原则为基本的,假如样本中只包含随机误差就不致产生对总体偏性的估计;假如样本中还包含体系误差在内,就会产生偏性估计.17.当一个总体中的成分只分成两类时,根据传统,把_愿望得到的成果,产生的概率叫P;不愿望得到的成果产生的概率叫q.18.在一系列正态分布中,有一个尺度的正态分布,其平均数为_0,尺度差为_ 119.当实验数据有___二组____以上时,并且都是__不持续_____的变量时,要检验各组间的差别是否明显就须要用c2分布进行盘算.20.统计成果磨练时:1 ) w2为0. 14_时,实验后果较强,统计成果可托.2 ) w2为0. 16_时,实验后果中等,统计成果可托度一般.3 ) w2为0. 01_时,实验后果很差,统计成果不成信.21.用d值解释实验后果时:1) d是0.2时,实验后果较小; 2) d;是0.5时,后果中等; 3)d>>0. 8_时,后果较大.概念1.描写统计:是对成组数据归纳分解的描写.描写统计的指标有三类:数据的分散趋向,数据的离中趋向,数据间的相干.2.推论统计:办法包含从样本的数量特点推想总体数量特点的一系列问题:推论假设,推论的各类办法和步调,以及磨练推想靠得住性的各类办法.3.组距:每一组上限和下限的差.(组距习上经常应用2, 3, 5, 10, 204.中点:在某一组的下限和上限当中的那一点.5.分散趋向:是代表一系列数据的典范程度的数字指标,代表分散趋向的指标有平均数,中数和众数.6.平均数(x):是一组数据总和的平均值.7.中数(mdn):一系列按大小次序分列的数据中的一个点,在这个系列中有一半数据在这个点以上,有一半数据在这个点以下.8.众数(mo):在一系列数据中消失次数最多的谁人数.9.全距:一个分布中最大的数值的上限减去最小数值的下限,就得到全距.(全距大,解释这组数据疏散;全距小,则较分散.应用时留意:1.无极端值;2,比较两个分布的全距时,当两个分布所包含数据的数量相等或差不久不多时才干使用)10.离中趋向:是暗示一组数据疏散程度的指标,经常应用的指标有:全距,四分差,平均差和尺度差.(假如离中趋向很小,解释数据分布都在平均数邻近变动,是以平均数的代表性很大;假如离中趋向太大,解释数据分布太疏散)11.四分差(q):是数据的离中趋向的指标之一,四分差解释按大小次序分列的一系列数据中心50%个数据的疏散程度.(假如一个分布中心部分的数据比较分散,则两个四分点q3与q1就离得近些,a的值就小些.)12.百分点:某次数分布中处于某百分等级的数值.13.百分等级:某数值在某次数分布中所处的地位.14.平均差(ad):一个分布中每个变量和平均数的差的绝对值的平均值.15.尺度差:s2开方后的正值就叫尺度差,是数据的离中趋向的指标之一.16.离中系数(CV):用相对量来暗示数据疏散程度的数字指标.:指相干是否亲密,可分为无相干;部分相干;完整相干.18.相干:是描写两种数量关系的一个指标,假如一个变量随另一个变量的增加(减小)而增长(减小),则两个变量之间消失着相干.19. z分数(尺度分数):是以尺度差为单位所暗示的原始分数(x)与平均数的偏离,也可以说是一个以尺度差为单位来暗示的偏离分数.20.总体;某类事物的全部称为总体.21.样本:从全部抽出的部分叫样本.22.推论统计:从局部推想全部,从样本推想总体的统计程序.23.随机抽选样本:指总体中每个成分都有一致的机遇被抽选.24.分层抽样:用分层抽样的办法,必须对总体有必定的懂得,事先对于影响所研讨问题的诸身分做恰当安插.25.样本分布:从许多个样本中算出的许多个平均数的次数分派叫样本分布.26.正态分布:是一个中心高,两侧逐渐降低,两头永久不与横轴订交,两侧完整对称的钟形曲线.27.平均数的尺度误(sx):为了和单个样本的尺度差有所差别,把样本分布的尺度差称做平均数的尺度误.28.自由度(df):可以或许自力变更的数据的数量.29.平均数差的尺度误(sxd ):分别从两个总体中抽掏出的多个样本平均数的差(xd)的分布,这个分布的尺度差叫做平均数差的尺度误.30.虚无假设(ha):除概率以外不加任何其它假定,即假设二总体的平均数差别为O31.备则假设(ha):假设两个总体平均数之间差别中除了抽样误差外,还包含有两个总体平均数之间的差别,即备则假设是个总体平均数之间差别不为O32.明显性生程度(P):我们所选择的颠覆虚无假设的概率叫做磨练的明显性程度.33.第一类错误:当虚无假设不该颠覆时而被颠覆了,这意味着把样本的平均数不同以为是代表了总体平均数的差别.34.第二类错误:当应当颠覆虚无假设时而不颠覆,这意味着把样本的平均数不同是代表总体平均数的不同这一事实给否定了.35.明显性磨练:经由过程样本平均数的不同来推论总体平均数是否真正消失不同,并肯定消失何种程度.36.回归:当两种变量间消失着必定程度的相干时,一种变量有向另一种变量的平均数趋近的现象,这种现象叫回归.37.回归方程式:从一变量的数值猜测另一变量的响应数值的直线方程式,当两个变量部分相干时,有两个回归方程式.38.回归系数(byx):由x变量猜测Y变量的回归方程式的斜率.39.c2磨练:是实际不雅察次数与假设次数偏离程度的指标.40.方差剖析:根据组间和组内方差的比值,来比较两组或多组数据的差别是否达到明显.41.组间变异:在两组之间所产生的因变量的变异,就是体系变异,也就是由自变量引起的变异.因为这种变异产生在两组之间,所以又叫组间变异.42.组内变异:统一组内的因变量的变异,就不是因为自变量的情形不合引起的,而只是因为未加掌握的变量引起的.因为这种变异产生在统一组内,所以叫做组内变异.43.组间设计:每个被试只介入1个程度的实验44.组内实际:每个被试介入所有程度的实验.45.主效应:自变量所引起的平均数差别46.交互感化:一个自变量对反响变量的影响因另一个自变量的变更而产生1,伽利略提出了概率论的根本理论;法国数学家帕斯卡和费马创立了概率论,未统计学的成长奠基了重要基本;贝奴里定理的产生,为发明正态概率分布创造了前提;棣莫弗推导出“正态曲线方程”;皮尔逊揭橥了频率曲线理论和积差相干;斯皮尔曼提出等级相干;肯德尔W系数和U系数;格赛特T分布理论;费舍是推论统计真正的创始者,最先提出F分布理论,使方差剖析体系化;凯特勒他将统计办法应用于教导学和社会学的研讨;斯内德克提出方差剖析;克一瓦氏H磨练是一种非参数方差剖析办法,它与参数办法中的完整随机材料方差剖析相对应;费里德曼双向等级方差剖析可解决随机区组实验设计的非参数磨练问题2:从数据的不雅测办法和起源划分,研讨数据可分为计数数据和测量数据两大类;根据数据反应的测量程度,可把数据区分为称名数据.次序数据.等距数据和比率数据四种类型;按照数据是否具有持续性,把数据分为离散数据和持续数据3:统计表的儿个构成要素:表号.名称.标目.数字.表注.4:统计图的构成部分:图号及图题.图目.图尺.图形.图例.图注5:次数分布显示初步整顿后一组数据的分布情形重要暗示数据在各个分组区问内的散布情形,可分为简略次数分布.分组次数分布.相对次数分布.累计次数分布.6:经常应用的次数分布图有直方图.次数多边形图及累加次数分布图.7:其它经常应用的统计图的类别:直方图.条形图.圆形图.线形图.散点图:条形图又分为简略条形图.分组条形图.分段条形图8:其它经常应用统计表类型:简略表.分组表.复合表9:用来描写数据分散趋向和离中趋向的统计量分别称为分散量数和差别量数.10:分散量数包含:算数平均数.中数.众数.加权平均数.儿何平均数.折衷平均数等.12:平均数的优缺陷:长处:反响敏锐.盘算周密.盘算简略.简明易解.合适于进一步用代数办法演算.较少受抽样变动的影响;缺陷:易受极端数据的影响.若消失隐约不清的数据时,无法盘算平均数.13:盘算和应用平均数的原则:同质性原则.平均数与个别数值相联合的原则.平均数与尺度差.发差相联合的原则14:差别量数就是对一组数据的变异性,即离中趋向特色进行器量和描写的统计量.15:差别量数有:全距.四分位差.白一分位差.平均差.尺度差与方差16:相干类别为:正相干.负相干.零相干17:质量相干分为:点二列相干.二列相干及多系列相干18:品德相干:重要分为四分相干.C相干.列联表相干19:概率:是标明随机事宜消失可能性大小的客不雅指标就是概率,概率的界说有两种即后验概率和先验概率20:概率分布类型:160页离散分布与持续分布.经验分布与理论分布.根本随机变量分布与抽样分布21“概率分布:是指对随机变量取值的概率分布情形用数学办法(函数)进行描写22:持续分布:是指持续随机变量的概率分布,即测量数据的概率分布,它用持续随机变量的分布函数描写它的分布纪律23:离散分布:离散随机变量的分布又称作离散分布24:经验分布:是指根据不雅察或实验所获得的数据而编制的次数分布或相对频率分布25:理论分布:一是随机变量概率分布的函数一数学模子,二是按某种数学模子盘算出的总体的次数分布26:抽样分布:是样本统计量的理论分布,样本统计量有:平均数.两平均数之差.方差.尺度差.相干系数.回归系数.白一分比率等. 27:正态分布:也称常态分布或常态分派,是持续随机变量概率分布的一种,正态分布N C0,1)称为尺度正态分布,它的平均值是0,尺度差是1.28:二项分布:是指实验仅有两种不合性质成果的概率分布,具体界说是:设有N次实验,各次实验是彼此自力的,每次实验某事宜消失的概率都是P,某事宜不消失的概率都是q(等于1-P).则对于某事宜消失X次(0,1,2,3.0 0 o n)的概率分布为为29:除了尺度正态Z分布外,儿种罕有的抽样分布包含X的平方分布,T分布,F分布.30:点估计:是用样本统计量来估计总体参数,因为样本统计量为数值上某一点值,估计的成果也以一个点的数值暗示,所以称为点估计.31:优越估计量的特点:无偏性.有用性.一致性.充分性犯:区问估计:就是根据估计值以必定靠得住程度揣摸总体参数地点的区问规模,它是用数轴上的一段距离暗示未知参数可能落入的规模,他虽不具体指出总体参数等于什么,但能指出未知总体参数落入某一区问的概率有多大33:置信区问:也称置信问距,是指在某一置信度时,总体参数地点的区域距离或区域长度.置信区问的高低两头点值称为置信界线.34:明显性程度是指估计总体参数落在某一区问时,可能犯错误的概率,用符号a暗示35:假设磨练:经由过程样本统计量得出的差别做出一般性结论,断定总体参数之问是否消失差异,这种推论进程称作假设磨练,它的根本义务就是事先对总体参数或总体分布形态做出一个假设,然后应用样本信息来断定原假设是否合理,从而决议是否吸收原假设.假设磨练包括“参数磨练”和“非参数磨练”.36:参数假设磨练:若进行假设磨练时总体的分布情势已知,须要对总体的未知参数进行假设磨练;非参数假设磨练:若对总体分布情势37:方差剖析:重要功效在于剖析实验数据中不合起源的变异对总变异的进献大小,从而肯定实验中的白变量是否对因变量有重要影响38:方差剖析的基起源基本理:分解虚无假设和部分虚无假设.方差的可分化性39:平方和:指不雅测数据与平均数离差的平方总和40:总变异被分化为“组问变异”和“组内变异"41:组问变异:重要指因为接收不合的2而造成的各组之问的变异,可以用两个平均数之问的差别暗示42:组内变异:是由组内各被试因变量的差别规模决议的,重要指由实验误差.或组内被试之问的差别造成的变异.43:发差剖析的根本假定:总体正态分布.变异的互相自力性.各实验处理内的方差要一致44:组内设计:又称被试内设计,是指每个被试都要接收所有白变量程度的实验处理45:完整随机设计的方差剖析:就是对单身分组问设计的方差剖析,在这种实验研讨设计中,各类处理的分类仅以单个实验变量为基本,因而把它称为单身分方差剖析或单向方差剖析46:随机区组设计的方差剖析:根据被试特色把被试划分为儿个区组,再根据实验变量的程度数在每一个区组内划分为若干个小区,统一区组随机吸收不合的处理.这类实验设计的原则是统一区组内的被试应尽量同质47:试比较完整随机设计与随机区组设计的优.缺陷?随机区组设计因为统一区组接收所有实验处理,使实验处理之问有相干组设计,或称被试内设计.与完整随机设计比拟,其最大长处是斟酌到个别差别的影响.这种因为被试之问性质不合导致产生的差别就称为区组效应.随机区组设计可以将这种影响从组内变异平分别出来,从而进步效力.但是这种设计也出缺少,重要表示为划分区组艰苦,假如不克不及包管统一区组内尽量同质,则有消失更大误差的可能. 48:当全部实验中的个别差别知道后,就可以算出个别差别造成的变异,即区组变异.这时总平方和被分化为三部分:被试问平方和.区组平方和.误差项平方和。
现代心理与教育统计学课后题完整版10441资料讲解

现代心理与教育统计学课后题完整版10441第一章绪论1.名词解释随机变量:在统计学上,把取值之前不能预料取到什么值的变量称之为随机变量总体:又称为母全体、全域,指据有某种特征的一类事物的全体样本:从总体中抽取的一部分个体,称为总体的一个样本个体:构成总体的每个基本单元称为个体次数:指某一事件在某一类别中出现的数目,又成为频数,用f表示频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
频率通畅用比例或百分数表示概率:又称机率。
或然率,用符号P表示,指某一事件在无限的观测中所能预料的相对出现的次数,也就是某一事物或某种情况在某一总体中出现的比率统计量:样本的特征值叫做统计量,又叫做特征值参数:总体的特性成为参数,又称总体参数,是描述一个总体情况的统计指标观测值:在心理学研究中,一旦确定了某个值,就称这个值为某一变量的观测值,也就是具体数据2.何谓心理与教育统计学?学习它有何意义心理与教育统计学是专门研究如何运用统计学原理和方法,搜集。
整理。
分析心理与教育科学研究中获得的随机数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
3.选用统计方法有哪几个步骤?首先要分析一下试验设计是否合理,即所获得的数据是否适合用统计方法去处理,正确的数量化是应用统计方法的起步,如果对数量化的过程及其意义没有了解,将一些不着边际的数据加以统计处理是毫无意义的其次要分析实验数据的类型,不同数据类型所使用的统计方法有很大差别,了解实验数据的类型和水平,对选用恰当的统计方法至关重要第三要分析数据的分布规律,如总体方差的情况,确定其是否满足所选用的统计方法的前提条件4.什么叫随机变量?心理与教育科学实验所获得的数据是否属于随机变量随机变量的定义:①率先无法确定,受随机因素影响,成随机变化,具有偶然性和规律性②有规律变化的变量5.怎样理解总体、样本与个体?总体N:据有某种特征的一类事物的全体,又称为母体、样本空间,常用N 表示,其构成的基本单元为个体。
张厚粲《现代心理与教育统计学》(第4版)章节题库-非参数检验(圣才出品)

第11章非参数检验一、单项选择题1.秩和检验法首先由()提出。
A.弗里德曼B.维尔克松C.惠特尼D.克-瓦氏【答案】B【解析】秩和检验法首先由维尔克松提出,叫维尔克松两样本检验法,后来曼-特尼将其应用到两样本容量不等(n1≠n2)的情况,因而又称作曼-特尼维尔克松秩和检验,又叫曼-特尼U检验。
2.秩和检验与参数检验中的()相对应。
A.两独立样本平均数之差t检验B.相关样本的t检验C.独立样本的t检验D.配对样本差异显著性t检验【答案】C【解析】秩和检验法与参数检验中独立样本的t检验相对应。
由于t检验中要求“总体分布正态”,当这一前提不成立时就不能使用t检验,此时可以用秩和检验代替t检验。
当两个独立样本都为顺序变量时,也需使用秩和法来进行差异检验。
3.符号检验法与参数检验中的()相对应。
A.两独立样本平均数之差t检验B.相关样本的t检验C.独立样本的t检验D.配对样本差异显著性t检验【答案】D【解析】符号检验是以正负符号作为资料的一种非参数检验程序。
它是一种简单的非参数检验方法,适用于检验两个配对样本分布的差异,与参数检验中配对样本差异显著性t 检验相对应。
符号检验法将中数作为集中趋势的量度,虚无假设是配对资料差值来自中位数为零的总体。
具体而言,它是将两样本每对数据之差(X i-Y i)用正负号表示,若两样本没有显著性差异,则正差值与负差值应大致各占一半。
在实验中,当碰到无法用数字去描述的问题时,符号检验法就是一种简单而有效的检验方法。
4.在秩和检验中,当两个样本容量都大于10时,秩和分布为()。
A.T分布B.接近t分布C.接近正态分布D.接近F分布【答案】C【解析】在秩和检验中,一般认为当两个样本容量都大于10时,秩和T的分布接近正态分布。
其平均数及标准差公式为:1122T μ++=()1212112T n n n n σ++=其中n 1为较小的样本容量,即n 1≤n 2。
5.参数检验中两独立样本的平均数之差的t 检验,对应着非参数检验中的()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代心理与教育统计学》(第4版)笔记和课后习题详解
第1章绪论
1.1复习笔记
本章重点
ü心理与教育统计的研究内容
ü选择使用统计方法的基本步骤
ü统计数据的基本类型
ü心理与教育统计的基本概念
一、统计方法在心理和教育科学研究中的作用
(一)心理与教育统计的定义与性质
1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(appliedstatistics)两部分。
前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。
心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。
类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。
(二)心理与教育科学研究数据的特点
1.心理与教育科学研究数据与结果多用数字形式呈现。
2.心理与教育科学研究数据具有随机性和变异性。
3.心理与教育科学研究数据具有规律性。
4.心理与教育科学研究的目标是通过部分数据来推测总体特征。
(三)学习心理与教育统计应注意的事项
1.学习心理与教育统计学要注意的几个问题:
(1)学习心理与教育统计学时,必须要克服畏难情绪。
心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。
(2)在学习时要注意重点掌握各种统计方法使用的条件。
(3)要做一定的练习。
2.应用心理与教育统计方法时要做到:
(1)克服“统计无用”与“统计万能”的思想,注意科研道德。
(2)正确选用统计方法,防止误用和乱用统计。
二、心理与教育统计学的内容
心理与教育统计学的研究内容,可依不同的分类标志划分为不同的类别:
(一)分类一
依据统计方法的功能进行分类,统计学可分为下述三种类别,这是由于数理统计的发展历史所决定的,也是最常见的分类方法。
如图1-1所示:
图1-1 心理与教育统计研究内容
1.描述统计
描述统计(descriptive statistics)主要研究如何整理心理与教育科学实验或调查得来的大量数据,描述一组数据的全貌,表达一件事物的性质。
具体内容有:
(1)数据如何分组,如何使用各种统计图表描述一组数据的分布情况。
(2)怎样计算一组数据的特征值,简缩数据,进一步描述一组数据的全貌。
(3)表示一事物两种或两种以上属性间相互关系的描述及各种相关系数的计算及应用条件,描述数据分布特征的峰度及偏度系数的计算方法等等。
2.推论统计
推论统计(inferential statistics)主要研究如何通过局部数据所提供的信息,推论总体的情形。
这是统计学中较为重要、也是应用较多的内容。
包括以下几个方面:
(1)如何对假设进行检验,即各种各样的假设检验,包括大样本检验方法(Z检验),小样本检验方法(t检验),各种计数资料的检验方法(百分数检验,检验等),变异数分析的方法(F检验),回归分析方法等等。
(2)总体参数特征值的估计方法,即总体参数的估计方法。
(3)各种非参数的统计方法等等。
3.实验设计
实验设计(experimental design)主要目的在于研究如何科学地、经济地以及更有效地进行实验,它是统计学近几十年发展起来的一部分内容。
作为一个严谨的实验研究,在实验以前就要对研究的基本步骤、取样的方法、实验条件的控制、实验结果数据的统计分析方法等做出严格的规定。
4.描述统计、推论统计、和实验设计之间的关系
心理与教育统计的这几部分内容之间有着密切联系。
描述统计是推论统计的基础,推论统计离不开描述统计计算获得的特征值。
描述统计只是对数据进行一般的分析归纳,如果不进一步应用推论统计作进一步分析,描述统计的结果就不会产生更大的价值和意义,达不到统计分析的最终目的和要求。
同样,只有良好的实验设计才能使获得的数据具有意义,进一步的推论统计才能说明问题。
一个好的实验设计,也必须符合基本的统计方法要求,否则,再好的设计,如果事先没有确定适当的统计处理方法,在处理研究结果时可能会遇到许多麻烦问题。
(二)分类二
依据心理与教育统计研究的问题实质来划分,可将心理与教育统计学的内容划分为:
1.描述一件事物的性质。
2.比较两件事物之间的差异。
3.分析影响事物变化的因素。
4.一件事物两种不同属性之间的相互关系。
5.取样方法等。
三、心理与教育统计学的发展
(一)统计学的发展历程
统计学(statistics)作为一门科学始于19世纪。
但统计工作自古就有,源于统治者治理国家的需要。
这类统计是记录或描述已经发生的各种现象,可以称为描述性统计。
1.随着科学进步,近百年来,在概率论基础上逐步形成了推测性的数理统计。
19世纪中期奠定了概率论的理论基础。
(1)统计学的理论基础——概率论与正态分布曲线方程的产生
①16世纪,伽利略提出概率论的基础理论。