聚合物基复合材料

合集下载

聚合物基复合材料知识点

聚合物基复合材料知识点

聚合物基复合材料知识点概述:聚合物基复合材料是由聚合物基质和填料或增强材料(如纤维)组成的材料。

由于其独特的性能和广泛的应用领域,聚合物基复合材料成为现代工程领域中的重要材料之一。

本文将介绍聚合物基复合材料的相关知识点。

1. 聚合物基质的选择:聚合物基复合材料的性能主要取决于聚合物基质的选择。

常见的聚合物基质包括聚烯烃、聚酰胺、环氧树脂等。

不同的聚合物基质具有不同的化学性质和力学性能,因此在选择聚合物基质时需要考虑材料的具体应用需求。

2. 填料的选择:填料在聚合物基质中起到增强材料性能的作用。

常见的填料包括纤维、颗粒和珠状材料等。

填料的选择影响着复合材料的力学性能、耐热性和阻燃性等方面。

纤维增强材料可提供更高的强度和刚度,而颗粒和珠状填料则可改善材料的摩擦特性和耐磨性。

3. 增强材料的选择:增强材料在聚合物基质中起到增强材料性能的作用。

常见的增强材料包括玻璃纤维、碳纤维和芳纶纤维等。

不同的增强材料具有不同的强度和刚度特性,在选择增强材料时需要考虑材料的具体应用环境和要求。

4. 复合界面的设计:复合材料中的界面是指填料和基质之间的相互作用界面。

复合界面的设计可以影响材料的耐热性、粘合强度和耐化学腐蚀性等方面的性能。

在复合材料的制备过程中,通常会采用表面粗糙化、化学处理和界面改性等方法来改善复合界面的性能。

5. 制备工艺:制备工艺对于聚合物基复合材料的性能和结构有着重要影响。

常见的制备工艺包括手工层叠法、注塑成型、挤出成型、压制成型等。

不同的制备工艺决定了材料的成型精度、力学性能和表面质量等方面的特性。

6. 应用领域:聚合物基复合材料广泛应用于航空航天、汽车制造、建筑材料、电子电气等领域。

其具有轻质高强度、耐腐蚀、隔热隔音等优势,在这些领域中发挥着重要作用。

例如,碳纤维增强复合材料在航空航天领域中被广泛应用于飞机结构件和卫星结构件等。

7. 未来发展趋势:随着科学技术的不断进步,聚合物基复合材料将继续得到发展和应用。

聚合物基复合材料

聚合物基复合材料

聚合物基复合材料
聚合物基复合材料是由聚合物基体和增强物相互作用形成的复合材料,具有优异的力学性能、热稳定性和电绝缘性能,广泛应用于航空航天、汽车、建筑以及电子等领域。

聚合物基复合材料由于具有低密度、高强度、高刚度、耐腐蚀和自润滑等特点,在航空航天领域得到了广泛应用。

例如,碳纤维增强聚合物基复合材料具有高强度、低密度和耐高温性能,被广泛应用于制造飞机机身、翼面和发动机部件,能有效降低飞机的重量,提高燃油效率,提高飞机的载荷能力和飞行速度。

此外,聚合物基复合材料还被广泛应用于汽车制造领域。

相较于传统金属材料,聚合物基复合材料具有低密度、优异的力学性能和杰出的吸能能力,能够降低汽车整车重量,提高汽车燃油经济性和减少尾气排放。

因此,聚合物基复合材料被广泛应用于汽车车身、车顶、车门、引擎罩、底盘和车辆内部部件等。

在建筑领域,聚合物基复合材料也具有广泛的应用前景。

聚合物基复合材料具有轻质、高强度、耐候性和可塑性等特点,能够有效替代传统的建筑材料,例如水泥、钢材等。

聚合物基外墙材料、地板材料、隔热材料等聚合物基复合材料产品在建筑装饰、隔音隔热、防水防潮等方面具有广泛的应用。

此外,聚合物基复合材料还在电子领域得到了广泛应用。

聚合物基复合材料具有优异的电绝缘性能和低介电常数特点,能够有效隔离和保护电子元器件。

聚合物基复合材料在电路板、电子封装材料、电缆套管等领域具有广泛应用。

总之,聚合物基复合材料具有轻质高强、耐高温、抗腐蚀、电绝缘等一系列优异的特性,广泛应用于航空航天、汽车、建筑和电子等领域,为各行业的发展提供了更多的可能性。

聚合物基复合材料的优势

聚合物基复合材料的优势

聚合物基复合材料是由聚合物基质与纤维增强材料(如碳纤维、玻璃纤维等)或颗粒填充材料(如硅灰石、陶瓷等)组成的一种新型材料。

它的优势包括:
1. 轻质高强:由于纤维增强材料的加入,聚合物基复合材料具有轻质高强的特点,比传统材料如钢铁、铝等重量轻,但强度却更高。

2. 耐腐蚀:聚合物基复合材料的耐腐蚀性能很好,可以在恶劣环境下长期使用而不受到腐蚀和氧化的影响。

3. 抗疲劳:与金属材料相比,聚合物基复合材料的抗疲劳性能更好,可以在重复载荷下长期使用而不致疲劳断裂。

4. 自润滑:某些聚合物基复合材料中加入适当的固体润滑剂,可以在使用过程中自动释放出润滑剂,从而改善材料的摩擦性能和耐磨性。

5. 高温性能:某些聚合物基复合材料具有很好的高温性能,可以在高温环境下使用而不失效。

6. 成型性好:聚合物基复合材料易于成形,可采用热压、注
塑、挤出等多种加工方式,可以生产出各种形状和尺寸的复合材料制品。

7.热膨胀系数低:与金属相比,聚合物基复合材料的热膨胀系数较低,这意味着它们在温度变化时变形较小。

8.加工成本效益:尽管初始材料成本可能较高,但在生产过程中,聚合物基复合材料通过减少装配步骤、降低废料和能源消耗等方式,可以带来总体成本效益的提高。

9.环保可持续:某些类型的聚合物基复合材料可以使用可再生或回收资源制造,有助于实现可持续发展目标。

10美学效果:一些聚合物基复合材料可以通过染色或表面处理产生美观的效果,使其适合于建筑装饰和其他需要视觉吸引力的应用。

基于这些优势,聚合物基复合材料得到了广泛应用,包括航空航天、汽车、建筑、电子等领域,成为了一种重要的结构材料。

5.1 聚合物基复合材料

5.1 聚合物基复合材料
疲劳破坏是指材料在交变负荷作用下, 逐渐形成裂缝,并不断扩大而引起的低应 力破坏。
金属材料的疲劳破坏是由里往外突然发 展的。无预兆。
聚合物基复合材料由于疲劳而产生裂缝 时,因纤维与基体的界面能阻止裂缝的扩 展,提高材料的抗疲劳性,有预兆。
2021/10/10
10
5、2 聚合物基复合材料的性能
3、减震性能好 较高的自振频率会避免工 作状态下引起的早期破坏, 而结构的自振频率除了与 结构本身形状有关而外, 还与材料的比模量的平 方根成正比。 在复合材料中纤维与基体界面具吸振的能力 其振动阻尼很高,减震效果很好。
2021/10/10
33
团状模塑料 DMC Dough molding compound
2021/10/10
34
2021/10/10
团状模塑料
• 目前,国外轿车车灯 反光罩已有70%采用 IBMC料, 实现轿车 反光罩材料的国产化, IBMC被列为国家“九 五”攻关项目,于96 年底研制出IBMC料, 生产出合格的夏利轿 车车灯反光罩,并于 1997年实现了规模生 产,获得国家专利。
2021/10/10
3
概述
• 纤维和基体之间的良好的复合显示 了各自 的优点,并能实现最佳结构设计,具有许 多优良特性。
2021/10/10
4
PMC的组成
(1) 基体
热固性基体(thermosetting matrix):
i) 熔体或溶液粘度低,易于浸渍与浸润,成型工艺性好
ii) 交联固化成网状结构,尺寸稳定性、耐热性好,但性脆
2021/10/10
18
1-1 原材料
(1)基体、胶液准备 • 不饱和聚酯树脂:80% • 环氧树脂 • 高性能树脂:聚酰亚胺、双马树脂

聚合物基复合材料

聚合物基复合材料

纤维增强的聚合物基复合材料一、复合材料1、定义复合材料是一种多相的复合体系,由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。

各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料。

2、分类根据组成复合材料的不同物质在复合材料中的形态,可将它们分为基体材料和分散材料。

复合材料按分散材料形式不同可分为纤维增强复合材料、粒子增强复合材料、晶须增强复合材料等;按基体材料不同可分为聚合物基复合材料、金属基复合材料、陶瓷基复合材料。

二、纤维增强聚合物基复合材料聚合物基复合材料是以高分子聚合物为基体,添加增强纤维制得的一种复合材料。

它有许多优异的性能:(1)质轻高强。

若按比强度计算(强度与密度的比值),玻璃纤维增强的聚合物基复合材料不仅大大超过碳钢,而且可超过某些特殊合金钢。

特别是有机纤维、碳纤维复合材料有更低的密度和更高的强度。

(2)耐疲劳性能好。

聚合物复合材料中的纤维与基体的界面能阻止裂纹的发展,金属的疲劳强度是其拉伸强度的30~50%,碳纤维/不饱和聚酯复合材料是70~80%。

(3)耐热性强。

虽然聚合物基复合材料的耐热性不及金属基和陶瓷基复合材料,但随着高性能树脂和高性能增强材料的发展,它的耐热性也达到很优异的效果。

甲基二苯乙炔基硅烷树脂为基体的复合材料在500℃下仍能保持较好的力学性能。

(4)介电性能好。

通过选择树脂基体和增强纤维可制备低介电损耗角正切(小于0.005)的复合材料.如,热固性丁苯树脂基、聚酰亚胺树脂基复合材料。

1、聚合物基体目前可供选择的树脂主要有两类:一类为热固性树脂,其中包括环氧树脂、聚酰亚胺树脂、酚醛树脂等,另一类为热塑性树脂,如尼龙、聚砜、聚醚醚酮、聚醚酰亚胺等。

聚合物的选择应考虑:A、基体材料能在结构使用温度范围内正常使用;B、基体材料具有一定的力学性能;C、要求基体材料的断裂伸长率大于或者接近纤维的断裂伸长率,以确保充分发挥纤维的增强作用;D、要求具有一定的工艺性。

聚合物基复合材料

聚合物基复合材料

聚合物基复合材料聚合物基复合材料是一种由聚合物基体和强化材料组成的复合材料,具有轻质、高强度、耐腐蚀等优点,被广泛应用于航空航天、汽车制造、建筑材料等领域。

聚合物基复合材料的研究和应用已经成为材料科学领域的热点之一。

首先,聚合物基复合材料的基本组成是聚合物基体和强化材料。

聚合物基体通常采用树脂类材料,如环氧树脂、酚醛树脂、聚酰亚胺树脂等,而强化材料则可以是玻璃纤维、碳纤维、芳纶纤维等。

这些强化材料可以有效地提高复合材料的强度和刚度,使其具有优异的力学性能。

其次,聚合物基复合材料具有许多优越的性能。

首先是轻质性能,由于聚合物基体的密度较低,加上强化材料的高强度,使得复合材料具有很高的比强度和比刚度。

其次是耐腐蚀性能,聚合物基复合材料在恶劣环境下具有良好的耐腐蚀性能,可以替代传统的金属材料。

此外,聚合物基复合材料还具有良好的设计自由度,可以根据实际需求进行定制加工,满足不同领域的应用需求。

再次,聚合物基复合材料的制备工艺多样。

常见的制备工艺包括手工层叠、注塑成型、压缩成型等,其中注塑成型是目前应用最广泛的工艺之一。

通过不同的制备工艺,可以得到不同性能的聚合物基复合材料,满足不同领域的需求。

最后,聚合物基复合材料的应用领域非常广泛。

在航空航天领域,聚合物基复合材料被广泛应用于飞机机身、发动机零部件等;在汽车制造领域,聚合物基复合材料被应用于车身结构、内饰件等;在建筑材料领域,聚合物基复合材料被应用于地板、墙板、梁柱等。

可以说,聚合物基复合材料已经成为现代工程领域不可或缺的材料之一。

综上所述,聚合物基复合材料具有轻质、高强度、耐腐蚀等优点,具有广阔的应用前景。

随着材料科学的不断发展,相信聚合物基复合材料将会在更多领域展现其无穷魅力。

聚合物基复合材料的热稳定性研究

聚合物基复合材料的热稳定性研究

聚合物基复合材料的热稳定性研究聚合物基复合材料由于其优异的性能,在众多领域得到了广泛的应用。

然而,其热稳定性是影响其使用性能和寿命的关键因素之一。

因此,对聚合物基复合材料热稳定性的研究具有重要的理论和实际意义。

聚合物基复合材料是由聚合物基体和增强材料组成的多相体系。

常见的聚合物基体包括热塑性聚合物(如聚乙烯、聚丙烯等)和热固性聚合物(如环氧树脂、不饱和聚酯树脂等);增强材料则有纤维(如碳纤维、玻璃纤维等)、颗粒(如滑石粉、碳酸钙等)等。

不同的基体和增强材料的组合,以及它们之间的界面相互作用,都会对复合材料的热稳定性产生影响。

热稳定性可以从多个方面来衡量。

其中,热分解温度是一个重要的指标。

当聚合物基复合材料受热时,会发生化学键的断裂和重组,导致材料的质量损失和性能下降。

通过热重分析(TGA)等技术,可以测量材料在不同温度下的质量变化,从而确定其热分解温度。

一般来说,热分解温度越高,材料的热稳定性越好。

聚合物基体的化学结构对复合材料的热稳定性起着决定性的作用。

例如,具有芳香环结构的聚合物通常比脂肪族聚合物具有更高的热稳定性。

这是因为芳香环的共轭结构能够增加分子的刚性和热稳定性。

此外,聚合物的分子量和分子量分布也会影响热稳定性。

较高的分子量通常会提高材料的热稳定性,因为分子链之间的缠结和相互作用更强,能够更好地抵抗热分解。

增强材料对聚合物基复合材料的热稳定性也有显著的影响。

以纤维增强复合材料为例,纤维的种类、长度、直径和含量等因素都会影响热稳定性。

碳纤维具有优异的热稳定性,将其加入聚合物基体中可以显著提高复合材料的热分解温度。

这是因为碳纤维不仅本身具有较高的耐热性,还能够起到导热和阻碍热传递的作用,从而延缓基体的热分解。

复合材料中基体与增强材料之间的界面相互作用也不可忽视。

良好的界面结合能够有效地传递应力和热量,提高复合材料的整体性能。

界面处的化学键合、物理吸附和机械嵌合等作用都会影响热稳定性。

例如,通过对纤维进行表面处理,增加其与基体之间的相容性和界面结合强度,可以提高复合材料的热稳定性。

聚合物基复合材料

聚合物基复合材料
表面修饰
PLS
PLS
插层聚合
缩聚
加聚
聚合物 溶液分散
聚合物 熔融分散
聚合物/层状硅酸盐纳米复合物的结构和分类
从材料微观形态的角度,可以分成三种类型:
材料中粘土片层紧密堆积,分散相为大尺寸的颗粒状,粘土片层之间并无聚合物插入。
聚合物基体的分子链插层进入层状硅酸盐层间,层间距扩大,介于1-4nm,粘土颗粒在聚合物基体中保持“近程有序,远程无序”的层状堆积结构。可作为各向异性的功能材料
对相同尺寸和形状的梁进行振动试验的结果表明,对同一振动,轻合金梁需要9秒钟才能停止,而碳纤维复合材料梁只需2~3秒。
过载安全性
聚合物基复合材料的特性
在纤维复合材料中,由于有大量独立的纤维,在每平方厘米面积上的纤维数少至几千根,多达数万根。当过载时复合材料中即使有少量纤维断裂时,载荷就会迅速重新分配到未被破坏的纤维上,不至于造成构件在瞬间完全丧失承载能力而断裂,仍能安全使用一段时间。
.酚醛玻璃钢 耐热性最好, <350℃长期使用,短期可达1000℃;电学性能好,耐烧蚀材料,耐电弧。性脆,尺寸不稳定,收缩率大,对皮肤有刺激作用。
玻璃钢采光板
玻璃钢汽车保险杠
玻璃钢型材
透光型玻璃钢
体育馆采光
赛艇、帆船壳体
2、GF增强热塑性塑料 (FR-TP) 特点:
车用立体声音响喇叭
纳米材料是指含有纳米结构的材料。尺度为1nm-100nm范围内的物质即为纳米物质。
Why nano? Why nanocomposite?
01
从界面角度:
是两相在纳米尺寸范围内复合而成,界面间具有很强的相互作用,产生理想的粘接性能.
从增强体角度:强度大,模量高

聚合物基复合材料

聚合物基复合材料

聚合物基复合材料
聚合物基复合材料是一种由聚合物基体(如聚合物树脂)和强化材料(如纤维、颗粒等)组成的复合材料。

这种复合材料结合了聚合物的可塑性和强度,以及强化材料的刚度和强度,具有优异的力学性能和工程性能。

聚合物基复合材料的制备通常包括以下几个步骤:
1. 选择合适的聚合物基体,常用的包括聚丙烯、聚酯、环氧树脂等。

2. 选择适当的强化材料,常用的有玻璃纤维、碳纤维、纳米颗粒等。

3. 基体和强化材料进行混合,可以通过热压、挤出、注塑等方法将它们混合在一起。

4. 根据需要进行后续的加工和成型,如冷却、切割、修整等。

聚合物基复合材料具有许多优点,包括:
1. 轻质高强度:与金属相比,聚合物基复合材料具有较低的密度和较高的强度,可以实现轻量化设计。

2. 耐腐蚀性:聚合物基复合材料对化学品和湿气的腐蚀性能较好,不容易受到腐蚀和氧化。

3. 良好的耐热性:聚合物基复合材料通常具有较高的耐热性和耐高温性能。

4. 良好的绝缘性能:聚合物基复合材料具有良好的绝缘性能,适用于电气和电子领域。

5. 自润滑性:聚合物基复合材料中的聚合物基体可以提供良好的自润滑性能,减少了摩擦和磨损。

由于聚合物基复合材料具有以上优点,因此广泛应用于航空航天、汽车、建筑、电子、医疗等领域,成为现代工程材料中的重要一类。

聚合物基复合材料的定义

聚合物基复合材料的定义

聚合物基复合材料的定义一、什么是聚合物基复合材料?聚合物基复合材料是由聚合物基质中添加一定比例的增强材料而制成的复合材料。

聚合物基质可以是热固性聚合物、热塑性聚合物或弹性体等。

增强材料可以是纤维、颗粒、薄片等。

聚合物基复合材料具有独特的物理、化学和力学性能,在各个领域得到广泛应用。

二、聚合物基复合材料的分类聚合物基复合材料可以根据增强材料的形式和类型进行分类。

1. 根据增强材料的形式•纤维增强聚合物基复合材料:纤维作为增强材料,如碳纤维增强复合材料、玻璃纤维增强复合材料等。

•颗粒增强聚合物基复合材料:颗粒作为增强材料,如陶瓷颗粒增强复合材料、金属颗粒增强复合材料等。

•薄片增强聚合物基复合材料:薄片作为增强材料,如片状金属增强复合材料、片状陶瓷增强复合材料等。

2. 根据增强材料的类型•碳纤维增强聚合物基复合材料:碳纤维是最常见的增强材料之一,具有轻质、高强度、耐高温等特点,广泛应用于航空航天、汽车、体育器材等领域。

•玻璃纤维增强聚合物基复合材料:玻璃纤维具有良好的绝缘性能、机械性能和化学稳定性,常用于建筑、电子、汽车等领域。

•金属颗粒增强聚合物基复合材料:金属颗粒的添加可以提高复合材料的导热性能和机械强度,适用于导热部件、结构件等领域。

三、聚合物基复合材料的优点聚合物基复合材料相比于传统材料具有以下优点:1.重量轻:聚合物基复合材料具有良好的强度和刚度,同时重量很轻,适用于要求重量轻的产品,如航空航天、运动器材等领域。

2.高强度:通过合理设计和选择增强材料,聚合物基复合材料的强度可以达到甚至超过金属材料,满足各种工程应用的要求。

3.耐腐蚀性好:聚合物基复合材料在大多数腐蚀介质中具有良好的耐腐蚀性,可以代替传统金属材料制作耐腐蚀设备。

4.良好的绝缘性能:聚合物基复合材料具有良好的绝缘性能,适用于电气绝缘材料的制造。

5.良好的可塑性:热塑性聚合物基复合材料具有良好的可加工性,可以通过热成型、注塑等工艺制成各种形状的制品。

聚合物基复合材料的定义

聚合物基复合材料的定义

聚合物基复合材料的定义一、引言聚合物基复合材料是一种由聚合物基质和增强材料组成的复合材料。

它具有轻质、高强度、耐腐蚀等特点,在航空、汽车、建筑等领域得到广泛应用。

二、聚合物基复合材料的定义聚合物基复合材料是指由聚合物作为基质,同时加入增强材料和填充剂制成的一种新型复合材料。

其中,增强材料可以是纤维、颗粒或片状的无机或有机物质,填充剂则主要用于改善复合材料的性能,如增加硬度、改善耐磨性等。

三、聚合物基复合材料的优点1. 轻质:相比于金属,聚合物基复合材料具有更轻的重量,能够减轻产品重量,提高运载能力。

2. 高强度:由于增强材料的加入,使得复合材料具有更高的抗拉强度和抗压强度。

3. 耐腐蚀:由于聚合物本身就具有较好的耐腐蚀性能,再加上增强材料的加入,使得复合材料具有更好的耐腐蚀性能。

4. 良好的设计自由度:聚合物基复合材料可以根据需要进行设计,具有良好的可塑性和可成型性,可以制成各种形状和尺寸的产品。

5. 能够满足多种应用需求:聚合物基复合材料可以根据需要进行调整,以满足不同领域的应用需求。

四、聚合物基复合材料的分类1. 根据增强材料分类:(1) 碳纤维增强聚合物基复合材料:由碳纤维作为增强材料,聚酰亚胺、环氧等聚合物作为基质制成。

具有高强度、高刚度、低密度等特点,在航空、汽车等领域得到广泛应用。

(2) 玻璃纤维增强聚合物基复合材料:由玻璃纤维作为增强材料,环氧、不饱和聚酯等聚合物作为基质制成。

具有较高的抗拉强度和抗压强度,在建筑、船舶等领域得到广泛应用。

2. 根据成型方式分类:(1) 压缩成型:将预先加工好的增强材料和聚合物基质一起放入模具中,施加压力使其成形。

(2) 注塑成型:将预先加工好的增强材料和聚合物基质混合后注入模具中,通过高温高压使其成形。

(3) 拉伸成型:将预先加工好的增强材料和聚合物基质放置在拉伸机上,通过拉伸使其成形。

五、聚合物基复合材料的应用1. 航空领域:由于聚合物基复合材料具有轻质、高强度等特点,被广泛应用于飞机的机身、翼面等部件制造中。

聚合物基复合材料

聚合物基复合材料

STATE COLLEGE UNIVERSITY
12
3.阻尼减震性好
复合材料有较高的自振频率,其结构一般不易产生共振。同时,复合 材料基体与纤维的界面有较大的吸收振动能量的能力,致使材料的振动 阻尼很高,一旦动起来,在较短时间内也可停下来。
4.可设计性好(力学设计、功能设计)
可根据所需制品对性能的要求,通过对原材料的选择、各组分
生活中常见的复合材料
复合材料的组成
复合材料由基体相和增强相两部分组成。
基体相是连续相材 料,把改善性能的增强 相材料粘结在一起,起 粘结剂的作用。 增强相为分散相, 大部分是高强物质,起 提高强度或韧性的作用
Contents
1 2 3
4 5
STATE COLLEGE UNIVERSITY
3-2 芳香族聚酰胺纤维增强塑料
基体材料主要是环氧树脂,其次是热塑性塑料的聚乙烯、聚碳酸酯、聚酯等。芳香族聚酰胺 纤维增强环氧树脂的抗拉强度大于GFRP,而与碳纤维增强环氧树脂相似。最突出的特点是有压延 性,与金属相似,而与其他有机纤维则大大不同。 抗拉强度大于GFRP,与碳纤维增强环氧树脂相当,耐冲击性能优于碳纤维增强环氧树脂,具 有压延性,耐疲劳性好于GFRP或金属铝。
03
其 他 纤 维 增 强 塑 料
04
STATE COLLEGE UNIVERSITY
16
1-1 玻璃纤维增强环氧树脂
玻璃纤维增强环氧树脂是GFRP中综合性能最好的一种。因环氧树脂的粘结能力最强, 与玻璃纤维复合时,界面剪切强度最高。机械强度高于其他GFRP。环氧树脂固化时无小分子放出 ,故尺寸稳定性最好,收缩率只有1%-2%,环氧树脂的固化反应是放热反应,易产生气泡,但 因添加剂少,很少发生鼓泡现象。 唯一不足的是环氧树脂粘度大,加工不太方便,成型时需要加热,室温下成型会导致环氧树 脂固化反应不完全。不能制造大型制件。

第3章 聚合物基复合材料

第3章 聚合物基复合材料

CH2 CCOOCH3 CH3
CH2 CH CN
CH2 CHCH CH2
ABS树脂
ABS
CH
CH2
4、聚合物基复合材料的分类:
1)按照增强材料来分:玻璃纤维增强聚合物基复合 材料(GFRP)、碳纤维增强聚合物基复合材料(CFRP)、 芳纶纤维增强聚合物基复合材料(KFRP)、硼纤维增 强聚合物基复合材料(BFRP)、碳化硅纤维增强聚 合物基复合材料(SFRP)。 2)按照功能或性能来分:通用型、耐化学腐蚀型、 耐高温型、阻燃型、导电型等。 3)按照聚合物基体的结构和类型来分:热固性树脂、 热塑性树脂、橡胶基等。
热塑性塑料 在加工过程中,一般只发生物理变化,受热变 (线型) 为塑性体,成型后冷却又变硬定型,若再受热 还可改变形状重新成型的塑料。
热固性塑料 在成型过程中发生化学变化,利用塑料在受热 时可流动的特征而成型,并延长时间,使其发 (体型) 生化学反应而成为不熔不溶的网状分子结构, 并固化定型而形成的塑料。
特殊塑料
表3.1 一些聚合物的名称、商品名 称、符号及单体
聚合物 名称 聚氯乙烯 聚丙烯 商品名称 氯纶 丙纶 符号 PVC PP 单体 名称 氯乙烯
CH2 CHCl
结构式
丙烯
CH2 CH CH3
CH2 CH CN
聚丙烯腈
聚己内酰 胺
腈纶
锦纶6 (或尼龙-6)
PAN
PA6
丙烯腈
己内酰胺
O NH
聚己二酰己二 胺 聚对苯二甲酸 乙二醇酯 聚苯乙烯
3.2.3 天然高分子 Source of the Starch
• 淀粉
Application of Starch

另外在石油工业、造纸工业、纺织工业等领域中淀粉也常被用做增稠剂、 粘合剂、胶凝剂等不同的用途。

聚合物基复合材料的特点

聚合物基复合材料的特点

聚合物基复合材料的特点
1. 聚合物基复合材料的强度那可是杠杠的!你想想看,就像钢铁侠的战甲一样坚固,能承受巨大的压力和冲击。

比如在航空航天领域,用它来制造零部件,那不就稳如泰山嘛!
2. 它的轻质特性可太牛啦!这就好比一只轻盈的小鸟,灵活又方便。

在汽车制造中,用了它车子跑起来都更轻快啦,不是吗?
3. 聚合物基复合材料的耐腐蚀性也超强啊!就好像穿上了一层坚固的铠甲,面对各种恶劣环境都毫不畏惧。

在化工行业里,它就能长时间稳定工作呢!
4. 它的可设计性多厉害呀!简直就是一个魔法盒子,你想要什么样子就能变成什么样子。

做个独特造型的产品,不是小意思嘛。

5. 聚合物基复合材料的电绝缘性好得很呢!就如同给设备穿上了一层绝缘的保护衣。

在电子电器领域,这可是非常重要的优点呀。

6. 它的耐热性也不容小觑呀!仿若在火中依然能坚强的勇士。

在高温环境下工作,它也能撑住,厉害吧?
7. 还有它的耐磨性能哟!就像一位不知疲倦的勇士,不断战斗却毫发无损。

用在一些磨损大的地方,那可太合适啦。

8. 聚合物基复合材料的减震性能也很棒啊!仿佛是给物体装上了一个减震弹簧。

在一些需要减少震动的地方,它就能发挥大作用呢。

9. 聚合物基复合材料具有这么多让人惊喜的特点,难道不是一种非常了不起的材料吗?在很多领域都能大显身手,真的是超级厉害呀!。

聚合物基复合材料

聚合物基复合材料
25
4、3 纤维增强聚合物复合材料
玻璃纤维增强聚苯乙烯类塑料(FR-ABS)
基体树脂:丁二烯-苯乙烯共聚物(BS) 丙烯腈-苯乙烯共聚物(AS) 丙烯腈-丁二烯-苯乙烯共聚物(ABS)
性能改进:强度、弹性模量有成倍提高 耐高温、耐低温、尺寸稳定性等都有所改善
26
4、3 纤维增强聚合物复合材料
玻璃纤维增强聚碳酸酯(FR-PC)
Kevlar纤维增强树脂:良好压延性、耐冲击、 良好振动衰减性、优异得耐疲劳性
37
4、3 纤维增强聚合物复合材料
常见高性能纤维增强环氧树脂性能对比
增强纤维 相对密度 拉伸强度,MPa 弹性模量,GPa
碳纤维 1、6 1500 12
Kevl 2、0 1750 120
41
4、4 聚合物基复合材料得制备和加工
轮鼓缠绕法预浸料制备示意图
42
4、4 聚合物基复合材料得制备和加工
(2)预混料:
工艺对象:不连续纤维浸渍或混合树脂 制品特征:片状模塑料(Sheet molding pound,SMC)
块状模塑料( Bulk Molding pound,BMC) 注射模塑料(Injection molding pound,IMC)
高强度、高模量纤维增强塑料
基体树脂:环氧树脂 增强材料:碳、硼、芳香族纤维、晶须等高强、高模纤维
性能特点:密度小、强度模量高、热膨胀系数小; 制备工艺简单、成型方法多; 纤维价格昂贵,使用范围到限
36
4、3 纤维增强聚合物复合材料
碳纤维增强树脂: 强度、刚度、耐热性均好
硼纤维增强树脂: 刚性好(模量高于碳纤维增强)
聚合物基复合材料
4、1 概述
4、1 概述
4、1 概述

聚合物基复合材料

聚合物基复合材料

一、1、复合材定义(ISO、GB3961)及定义包含的内容(ISO):有两种或两种以上物和化学性质同的物质组合而成的一种多和固体材。

国标GB3961 :两个或两个以上独的物相,包括粘接材(基体)和纤维或片状材所组成的一种固体物。

定义包含的内容:(1)复合材的组分材虽然保持其相对独性,但复合材的性能却是各组分材性能的简单加和,而是有着重要的改进。

(2)复合材中通常有一相为连续相,称为基体;另一相为分散相,称为增强材。

(3)分散相是以独的形态分布在整个连续相中,两相之间存在着界面。

分散相可以是增强纤维,也可以是颗状或弥散的填。

2、有机纤维碳化法将有机纤维经过稳定化处变成耐焰纤维;在惰性气氛中,于高温下进焙烧碳化,使有机纤维失去部分碳和其它非碳原子,形成以碳为主要成分的纤维状物。

3、复合材的分类按增强材形态分类:连续纤维复合材、短纤维复合材、状填复合材、编织复合材按增强纤维种类分类:玻璃纤维复合材、碳纤维复合材、玄武岩纤维复合材、有机p纤维复合材、属纤维复合材、陶瓷纤维复合材按基体材分类:环氧树脂基、酚醛树脂基、聚氨酯基、聚萨亚胺基、饱和聚芮基以及其他树脂基复合材按材作用分类:结构复合材、功能复合材4、聚合物基复合材的主要性能和目前存在的缺点:主要性能:1轻质高强(比强、比模大)2可设计性好3具有多种功能性 4过载安全性好5耐疲劳性能好6减振性好(非均相多相体系)存在的缺点:(1)材工艺的稳定性差(2)材性能的分散性大:材和产品是同时完成的,许多因素会影响到每一步的性能,质控制(3)长期耐温与耐环境化性能好(4)抗冲击性能低:大多数增强纤维伸时的断应变代小,纤维增强复合材是脆性材,抗冲击性低(5)横向强和层间剪强好等二、1、聚合物基复合材的增强材应具有的特征:(1)增强材应具有能明显提高树脂基体某种所需特性的性能,如高的比强、比模、高导热性、耐热性、低热膨胀性等,以赋予树脂基体某种所需的特性和综合性能。

聚合物基复合材料(PMC)

聚合物基复合材料(PMC)

05
PMC的制造设备与工具
预处理设备
混合设备
用于将各种组分(如树脂、填料、增强材料等) 混合均匀,形成预浸料或浆料。
切割和裁剪设备
用于将纤维材料切割成所需的尺寸和形状,以便 与树脂进行混合。
清洁和干燥设备
用于确保所有原材料在使用前都已清洁并干燥。
复合设备
热压成型机
用于将预浸料或浆料在高温和压力下固化,形成复合材料部件。
切割与加工
根据需要,对复合材料进行切割、 打磨、钻孔等加工,以满足实际应 用需求。
质量检测
对复合材料进行外观、尺寸、性能 等方面的检测,确保其符合设计要 求。
03
PMC的性能与优化
力学性能
1 2 3
高强度和刚度
聚合物基复合材料具有较高的抗拉、抗压和抗弯 强度,以及良好的刚性,能够满足各种复杂应力 条件下的应用需求。
复合工艺
层叠铺放
根据设计要求,将预浸料 层叠铺放在模具或制件上。
热压成型
在一定温度和压力下,使 预浸料熔融流动并均匀填 充模具或制件,形成致密 的复合材料。
固化
使聚合物基体在一定温度 和压力下进行固化反应, 形成稳定的复合材料。
后处理工艺
冷却
将热压成型的复合材料缓慢冷却 至室温,防止材料内部产生应力。
聚合物基复合材料 (PMC)
• PMC的概述 • PMC的制造工艺 • PMC的性能与优化 • PMC的设计与选材 • PMC的制造设备与工具 • PMC的市场与发展前景
目录
01
PMC的概述
PMC的定义与特性
定义
聚合物基复合材料(PMC)是由两种或两种以上材料组成的一种复合 材料,其中一种材料为聚合物基体,其他材料为增强剂或填料。

聚合物基复合材料的界面改性技术

聚合物基复合材料的界面改性技术

聚合物基复合材料的界面改性技术在现代材料科学领域中,聚合物基复合材料因其优异的性能而备受关注。

然而,要充分发挥这些材料的潜力,界面改性技术是关键环节之一。

聚合物基复合材料通常由聚合物基体和增强材料组成。

界面作为连接这两种不同性质材料的区域,其性能对复合材料的整体性能有着至关重要的影响。

如果界面结合不良,会导致应力传递不畅、容易产生裂纹等问题,从而降低复合材料的力学性能和耐久性。

目前,常见的界面改性技术主要包括以下几种。

化学改性是一种重要的方法。

通过在增强材料表面引入特定的化学官能团,可以增强其与聚合物基体的相容性和化学键合能力。

例如,对碳纤维进行表面氧化处理,增加其表面的含氧官能团,能显著提高与环氧树脂等基体的结合强度。

这种方法可以有效地改善界面的粘结性能,提高复合材料的力学性能。

物理改性也是常用的手段之一。

其中,等离子体处理是一种较为先进的技术。

等离子体中的高能粒子能够对增强材料表面进行刻蚀和活化,从而改变其表面的粗糙度和化学组成。

经过等离子体处理后的增强材料,表面能增加,与聚合物基体的浸润性得到改善,进而提升了界面的结合效果。

还有一种方法是使用偶联剂。

偶联剂分子一端能与增强材料表面发生反应,另一端则能与聚合物基体相互作用,从而在两者之间建立起有效的桥梁。

例如,硅烷偶联剂在玻璃纤维增强聚合物复合材料中得到了广泛应用。

它能够显著提高玻璃纤维与聚合物基体之间的界面结合强度,增强复合材料的综合性能。

除了上述方法,对聚合物基体进行改性也是一种有效的途径。

通过共聚、共混等手段,改变聚合物基体的化学结构和物理性能,使其与增强材料更好地匹配。

例如,在尼龙基体中引入弹性体组分,可以提高其韧性,从而改善与增强纤维的界面性能。

在实际应用中,往往会根据具体的材料体系和性能要求,综合运用多种界面改性技术。

以碳纤维增强环氧树脂复合材料为例,如果单纯采用化学改性处理碳纤维,虽然能够在一定程度上提高界面结合强度,但可能会对碳纤维的力学性能造成一定损伤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚合物基复合材料摘要:本文主要研究的是聚合物基复合材料的制备、性能、和应用。

聚合物基复合材料是以有机聚合物为基体,连续纤维为增强材料组成的复合材料。

它有许多突出的性能:比强度大、比模量大;耐疲劳性能好;减振性好;过载时安全性好等。

聚合物基复合材料的结构和性能存在广泛的灵活关系,通过不同的工艺控制,可以形成不同的结构形态,从而获得目标性能。

关键词:聚合物基复合材料制备性能应用1、聚合物基复合材料的制备1.1.聚合物复合材料概述及其制备流程聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。

聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。

而纤维的高强度、高模量的特性使它成为理想的承载体。

纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。

实用PMC通常按两种方式分类。

一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。

1.2.基体及其制备:基体是聚合物基复合材料的主要成分。

用于复合材料的聚合物基体主要按树脂热行为可分为热固性及热塑性两类。

热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砚、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加工成型而无任何化学变比。

热固性基体如环氧树脂、酚醛树脂、双马树脂、不饱和聚酯等,它们在制成最终产品前,通常为分于量较小的液态或固态预聚体,经加热或加固化剂发生化学反应固化后,形成不溶不熔的三维网状高分子。

1.2.1热固性聚合物的制备热固性树脂是指在加热、加压下或在固化剂、紫外线作用下。

进行化学反应,交联固化成为不溶物质的一大类合成树脂。

这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时有发生化学反应而交联固化;有事放出一些副产物,如水等。

这反映是不可逆的,一经固化,再加压、加热也不可能再度软化或流动;温度过高,则分解或碳化。

热固性树脂多用于缩聚法生产。

常用热固性树脂有酚醛树脂、尿醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和聚酯树脂、聚氨酯、聚酰亚胺等。

热固性树脂主要用于制造增强塑料、泡沫塑料、各种电工用模塑料、浇铸制品等,还有相当数量用于胶黏剂和涂料。

根据浸渍设备或制造方式不同,热固性FRP预浸料的制造分轮鼓缠绕法和阵列排铺法;按浸渍树脂状态分湿法(溶液预浸法)和干法(热熔预浸法)。

1.2.2.热塑性聚合物的制备热塑性聚合物包括各种通用塑料(聚丙烯、聚氯乙烯等)、工程塑料(尼龙、聚碳酸酯等)和特种耐高温聚合物(聚酰胺、聚醚砜、聚醚醚酮等)。

它们是一类线型或有支链的固态高分子,可溶可熔,课反复加工而无化学变化,加热时软化并熔融,可塑造成型,冷却后即成型并保持既得形状,而且该过程可反复进行。

连续纤维被切成一定长度的短纤维,散落在连续输送的涂有含填料的糊状树脂的塑料薄膜上,将含有纤维、填料和树脂混合物的塑料薄膜卷绕起来就成为片状模塑料(SMC)。

1.2.3.增强体的制备在现代复合材料的发展历史中,纤维增强材料是最大的功臣,也可以说是现代复合材料的支柱。

最早使用的复合材料就是玻璃纤维增强塑料,至今在高技术新材料领域纤维增强复合材料仍然在发挥重要的作用。

为了进一步提高复合材料的性能,纤维增强材料的研究与开发显得特别活跃,先后开发出几十种纤维增强材料。

主要有玻璃纤维、芳纶纤维(kevlar纤维)、尼龙纤维、聚乙烯纤维、碳纤维、硼纤维、碳化硅纤维、氧化铝纤维以及金属纤维(如钨、钼、不锈钢丝等)。

其中在各类复合材料中得到大量使用的是玻璃纤维、芳纶纤维、碳纤维、硼纤维、碳化硅纤维等。

1.3.聚合物基复合材料成型工艺2、性能2.1.比强度、比模量大比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。

复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的七倍,比模量比钢大三倍。

2.2.耐疲劳性能好疲劳破坏是材料在变载荷作用下,由于裂纹的形成和扩展而形成的低应力破坏。

聚合物复合材料疲劳破坏总是从纤维的薄弱环节开始,逐渐扩展到结合面上,破坏前有明显的预兆,而且纤维与基体的界面能阻止裂纹的扩展。

大多数金属材料的疲劳强度极限是其抗拉强度的20%-50%,而碳纤维/聚酯复合材料的疲劳极限可为其抗拉强度的70%-80%。

2.3.减振性好许多机器和设备如汽车、动力机械等的振动问题十分突出,而复合材料的减振性能好。

原因是纤维增强复合材料比模量大,则自振频率高,可避免产生共振而引起的早期破坏。

另外纤维与界面吸振能力强,故振动阻尼性好,即便发生振动也会很快衰减。

2.4.断裂安全性好纤维复合材料中有大量独立的纤维,当构件过载而有少数纤维断裂时,载荷会迅速重新分配到未破坏的纤维上,使整个构件不至于在极短时间内有整体破坏的危险,所以断裂安全性好。

2.5.热性能良好玻璃纤维增强的聚合物基复合材料具有较小的导热系数,一般在室温下为0.3-0.4 kcal/(m.h.K),只有金属的1/1000-1/100,是一种优良的绝热材料。

2.6.电性能好复合材料具有优良的电性能,通过选择不同的树脂基体、增强材料和辅助材料,可以将其制成绝缘材料或导电材料。

例如玻璃纤维增强的树脂基复合材料是一种优良的电气绝缘材料,用于制造仪表、电机与电器中的绝缘零部件。

2.7.有很好的加工工艺性连续纤维增强的聚合物基复合材料具有优良的工艺性能,可以通过手糊成型、缠绕成型和拉挤成型等复合材料特有的工艺方法制造制品。

它能满足各种类型制品的制造需要,特别适合于大型制品、形状复杂、数量少制品的制造。

3、聚合物基复合材料的应用领域复合材料范围广,产品多,在国防工业和国民经济各部门中都有广泛的应用。

在复合材料中,聚合物基复合材料的应用最广,发展也最快。

例如在汽车、船舶、飞机、通讯、建筑.电子电气、机械设备、体育用品等各个方面部有应用。

3.1.玻璃纤维增强塑料(GFRP)的应用(1)GFRP在石油化工工业中的应用石油化工工业利用GFRP的特点,解决了许多工业生产过程中的关健问题,尤其是耐腐蚀性和降低设备维修费等方向。

GFRP管道和罐车是原油陆上运输的主要设备。

聚酯和环氧GFRP均可做输油管和储油设备,以及天然气和汽油GFRP罐车和贮槽。

(2).GFRP在建筑业中的应用建筑业使用GFRP,主要是代替钢筋、树木、水泥、砖等。

并己占有相当的地位。

其中应用最多的是GFRP透明瓦,这是一种聚酯树脂浸渍玻璃布压制而成的。

(3).GFRP在造船业中的应用用GFRP可制造各种船舶,如赛艇、警艇、游艇、碰碰船、交通艇、救生艇、帆船、鱼轮、扫雷艇等。

(4).GFRP在铁路运输上的应用GFRP在铁路上主要是用在造车生产中。

铁路车辆有冲多部件可以用GFRP创造,如内燃机车的驾驶室、车门、车窗、框、行里架、座椅、车上的整体厕所等。

(5).GFRP在冶金工业中的应用耐腐蚀性的容器、管道、泵、阀门等设备,GFRP烟囱。

(7)GFRP在宇航工业中的应用(6).飞机上的雷达罩,机身、机翼、螺旋桨、起落架、尾舵、门、窗等。

3.2.高强度、高模量纤维增强塑料的应用(1).碳纤维增强塑料。

碳纤维增强塑料主要是火箭和人造卫星最好的结构材料。

因为它不但强度高,而且具有良好的减振性,用它制造火箭和人造卫星的机架、壳体、无线构架是非常理想的—种材料。

(2).芳香族聚酰胺纤维增强塑料。

它主要的应用是制造飞机上的板材、门、流线型外壳、座席、机身外壳、天线罩和火箭发动机、马达的外壳。

其次由于它的综合性能超过了玻璃钢、尤其是它具有减振耐损伤的持点,适合用于船舶制造方面。

(3).硼纤维增强塑料。

硼纤维增强塑料主要用于制造飞机上的方向舵、安定面、翼端、起落架门、襟翼、机缀箱、襟翼前缘等。

由于它的价格比碳纤维增强塑料还要昂贵。

目前还仅限于在上述的飞机制造业中应用。

(4).碳化硅纤维增强塑料。

它可用来制造飞机的门、降落传动装置箱、机翼等。

3.3.其他纤维增强塑料的应用石棉纤维增强聚丙烯,由于石棉纤维和聚丙烯的电绝缘性都好,所以复合以后电绝缘性仍然很好、因此主要用作制造电器绝缘件的材料。

矿物纤维增强塑料主要用于制造耐磨材料。

4、总结与展望复合材料以其高比强度和比模量,优异的抗疲劳性以及耐腐蚀性极强的可设计性等特点已广泛应用于航空航天、汽车、船舶、建筑等领域。

但聚合物基复合材料在自然环境下使用,性能会受到许多环境因子(如紫外辐射、氧、臭氧、水、温度、湿度、化学介质、微生物等)的影响。

这些环境因子通过不同的机制作用于复合材料,导致其性能下降、状态改变。

因此要控制聚合物基复合材料的老化速度。

从发展来看,热固性树脂还需进一步改进质量,研制新品种,以满足新加工工艺开发的要求,用弹性体和热塑性树脂进行改性、开发注塑级热固性模塑料以及反应注射成型用专用树脂及配方,近年来已受到很大重视。

采用互穿聚合物网络技术将成为热固性树脂的合成开辟新途径。

另外,一些先进的聚合物基复合材料还有望在一下几个方面进行深度研究。

1. 连续玄武岩纤维与CF、PPTA、超高分子PE纤维,中国重点发展的四大11 高新技术纤维。

2.低压片状模塑料片。

3.复合材料自动铺丝技术。

4.有机硅改型双酚F环氧树脂研究。

5.聚合物材料列车构件。

6.天然纤维复合材料的应用。

7.耐高温高性能复合材料规模化制备技术。

乙烯基复合树脂复合材料的研究。

参考文献:1.复合材料概论杨建文编著北京:化学工业出版社,2008.2.复合材料学/张以河主编——北京化学工业出版社,2011.13.复合材料/周曦亚编——北京:化学工业出版社,2004.10。

相关文档
最新文档