函数的图像及性质

合集下载

五大类函数图像及性质总结

五大类函数图像及性质总结

五大类函数图像及性质总结一次函数的图像是一条直线,写作形式为y=ax+b(a≠0),它的性质有以下几点:(1)任意两点确定一条直线,当给定任意两个点(x1,y1),(x2,y2),则直线的斜率为:【m= (y1-y2)/(x1-x2)】(2)当x=0时,y=b,可以得出结论,一次函数图像通过原点。

(3)此外,一次函数图像也具有一定的对称性,当x=x时,y=b,则y=-(x-x)+b,图像对称轴为y=x。

二、二次函数图像及性质二次函数的图像为抛物线,写作形式为y=ax+bx+c(a≠0),它的性质有以下几点:(1)当x=0,y=c,可以得出结论,二次函数图像通过原点。

(2)当x=x,y=0时,判断抛物线是向上还是向下凹,只需判断系数a的正负性即可:若a>0,则抛物线向上凹;若a<0,则抛物线向下凹。

(3)此外,当y=0时,可得出二次函数的两个根:【x = [-b± (b-4ac)]/(2a)】。

三、单调函数图像及性质单调函数的图像为一次或多次函数的图像,它的性质有以下几点:(1)单调函数图像在任意一点上发生的变化方向是确定的,不管是向上还是向下,它只能沿着一个方向变化;(2)单调函数图像满足单调性;(3)单调函数图像是连续变化图像,就是说图像在每到一个点处,图像均无折现现象。

四、指数函数图像及性质指数函数的图像为一条曲线,写作形式为y=ax(a≠0),它的性质有以下几点:(1)当x=0,y=a,可以得出结论,指数函数图像通过原点。

(2)指数函数图像具有一定的对称性,当x=x时,y=a,则y=a/x,图像对称轴为y=x。

(3)此外,指数函数与有理函数具有相同的极限性质,当x趋于正无穷时,y趋于正无穷;当x趋于负无穷时,y趋于零。

五、对数函数图像及性质对数函数的图像为一条曲线,写作形式为y=loga(x)(a>0,a≠1),它的性质有以下几点:(1)当x=1,y=loga(1),可以得出结论,对数函数图像通过原点。

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

基本初等函数图像及性质大全

基本初等函数图像及性质大全

一、一次函数与二次函数(一)一次函数(1(2②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质①.(2b a -②当a min (f x 2bx a =-时,f (1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).三、指数函数(1)根式的概念:如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.(1①加法:log log log ()a a a M N MN += ②减法:log log log a a aM N N-= ③数乘:log log ()na a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a nM M b n R b=≠∈⑥换底公式:loglog(0,1)logbabNN b ba=>≠且(5)对数函数设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x fy -=,习惯上改写成1()y f x -=.(2)反函数的求法①确定反函数的定义域,即原函数的值域;七、反三角函数的图像与性质1. 反正弦与反余函数的图像与性质。

高中常见函数图像及基本性质

高中常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R)1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势:3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k>0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。

补充:反函数定义:例题:定义在r 上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1(x)函数的图像关于y=x 对称,若g (5)=2016,求)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: xy b Of (x )=bx y Of (x )=kx +b R 2)点关于直线(点)对称,求点的坐标反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较3)、f (x )=dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为②当0>a 时,开口向上,有最低点 当0<a 时。

函数的图像与性质

函数的图像与性质

函数的图像与性质函数是数学领域中的重要概念,它描述了两个集合之间的对应关系。

函数的图像是指函数的输入与输出之间的关系在坐标平面中所形成的图形。

函数的图像不仅反映了函数的性质,还能帮助我们更好地理解和应用函数。

一、函数的图像函数的图像可以通过绘制函数的图表或者绘制函数的曲线来展示。

在绘制函数的图像时,我们通常使用直角坐标系,其中横轴表示函数的输入,纵轴表示函数的输出。

例如,考虑函数f(x) = x^2,我们可以通过选取不同的x值,计算出对应的f(x)值,并将这些点在坐标平面上连接起来,就得到了函数f(x) = x^2的图像。

这个图像是一个抛物线,开口朝上,并且经过点(0,0)。

二、函数的性质函数的图像可以反映函数的一些重要性质,例如函数的定义域、值域、奇偶性、单调性等。

1. 定义域和值域:函数的定义域是指函数的输入可能取值的范围,而值域是指函数的输出可能取值的范围。

通过观察函数的图像,我们可以确定函数的定义域和值域。

2. 奇偶性:一个函数被称为奇函数,当且仅当对于任意的x,有f(-x) = -f(x);一个函数被称为偶函数,当且仅当对于任意的x,有f(-x) = f(x)。

通过观察函数的图像,我们可以确定函数的奇偶性。

3. 单调性:一个函数在其定义域内的某个区间上是增函数,当且仅当对于任意的x1 < x2,有f(x1) < f(x2);一个函数在其定义域内的某个区间上是减函数,当且仅当对于任意的x1 < x2,有f(x1) > f(x2)。

通过观察函数的图像,我们可以确定函数的单调性。

三、函数图像的应用函数的图像不仅仅是一种美观的几何形状,它还能帮助我们更好地理解和应用函数。

1. 函数的最值:通过观察函数的图像,我们可以确定函数的最大值和最小值。

最大值和最小值对于解决实际问题和优化函数的应用非常重要。

2. 函数的零点:函数的零点是指使得函数等于零的输入值。

在函数的图像上,零点对应的是函数与横轴的交点。

正弦函数图像和性质

正弦函数图像和性质

2.求函数的值域,并求取得最值时X的取值集合。
(1)y= - 2sinx
(2)y= 2sin(2x+ 4 )
x [ , ]
4
(3)y= sin2x + 2sinx - 2
-4 -3
-2
y
1
-
o
-1
2
周期的概念
3
4
5 6x
一般地,对于函数 f (x),如果存在一个非零常数 T ,
使得当 x 取定义域内的每一个值时,都有
练习:函数y=asinx+b的最大值为2,最小值为-1,
则a=________,b=________.
[解] 当 a>0 时,由题意得
[答案] 32或-32
1 2
a+b=2 -a+b=-1
,解得ab= =3212
.
当 a<0 时,由题意,得- a+a+ b=b= -21 ,
解得ab= =- 12 32
.
正弦函数的奇偶性
由公式 sin(-x)=-sin x
正弦函数是奇函数.
图象关于原点成中心对称 .
y
1
-3 5π -2 3π - π o
2
2
2
-1
x
π 2
3π 2
2 5π
2
3 7π 4 2
正弦函数的单调性
观察正弦函数图象
x
π 2

sinx -1
0… 0
π…
2
1

3π 2
0
-1
在闭区间 π22π2k,π,π2π2 2kπ, k Z 上, 是增函数;
f ( x+T )= f (x)
,那么函数 f (x) 就叫做周期函数,非零常数 T 叫做这个

高中数学常用函数图像及性质

高中数学常用函数图像及性质

性质:恒过定点(0,1);当 x = 0 时,y = 1 ;当a 1时,y 单调递增,当X ,(-::,0)时,y (0,1);当(0,::) 时,* (1「)当0:::a "时,y 单调递减,当x ・(-::,0)时,y ・(1,::);当x ・(0「:) 时,y (1,0).2.对数函数 y=logx (a 0且a = 1)对数运算法则: log a MN = log a M log a N log a M nlog a M (n R)log a N 二鯉N (换底公式)log b aMlog a log a M - log a NNalog a N 二N (对数恒等式)图像1.指数函数 图像:y 二 a x (a 0 且 a = 1)性质:恒过定点(1,0);当 x =1 时,y =0 ; 当 a 1 时,y 单调递增,当 X ,(0,1)时,y (-::,0);当 x- (1, ::)时,y (0, ::)•当 0 ::: a ::: 1 时,y 单调递减,当 x • (0,1)时,y (0/::);当 x • (1,=) 时,* (」:,0).指数函数和对数函数的关系:互为反函数3.初等函数⑴: y = x 2图像y =x 2 :开口向上,x (-::,0)时,y (0/::),函数单调递减;(0/::), 时,y (0「:),函数单调递增,且是偶函数。

y = ~x 2:开口 向下,x (- :: ,0)时,y ■ (-::,0),函数单调递增;x (0/ ::), a X (0 :: a :: 1)a x(a ■ 0)时,厂(」:,0),函数单调递减。

性质:图像都是关于y轴对称⑵:y = x3图像性质:R,r R,函数是增函数,也是奇函数⑶:y = x 4图像性质:x R 且x = 0 , y R 且y=0 ;函数在x • (- ::,0)内禾口x • (0, •::)都是单调递减,且函数是奇函数。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(此中 C 为常数);常数函数( y C )C 0C0y yy Cx y 0xO O平行于x 轴的直线y 轴自己定义域R定义域R 二、幂函数 y x ,x是自变量,是常数;1y y x1.幂函数的图像:2y x2y xy x3y x1O x2.幂函数的性质;性质y x y x231y x1y x y x2函数定义域R R R[0,+ ∞ ){x|x ≠ 0}值域R[0,+ ∞ )R[0,+ ∞ ){y|y ≠ 0}奇偶性奇偶奇非奇非偶奇单一性增[0,+∞) 增增增(0,+∞ )减(-∞ ,0] 减(-∞ ,0)减公共点( 1,1)1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α>1 时在原点处与x 轴相切。

且α为奇数时,图形对于原点对称;α为偶数时图形对于y 轴对称;2)当α为负整数时。

函数的定义域为除掉x=0 的全部实数;3)当α为正有理数m时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)假如 m>n 图形于 x 轴相切,假如m<n,图形于 y 轴相切,且m 为偶数时,还跟y 轴对称; m, n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一确实数;n 为奇数时,定义域为去除 x=0 之外的一确实数。

三、指数函数 y a x(x是自变量,a是常数且a0, a1),定义域是 R ;[ 无界函数 ]1.指数函数的图象:yy a x y a xy(a 1)(0a1)(0,1)y1(0,1)y1 O x O x2.指数函数的性质;性质y a x(a1)y a x(0 a 1)函数定义域R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时,y 1单一性在(,)是增函数在(,)是减函数1 )当a 1时函数为单调增 , 当0a 1时函数为单调减;2 )不论x为何值 ,y 总是正的,图形在 x 轴上方;3 )当x 0时 , y 1, 所以它的图形通过 (0,1) 点。

常见三角函数图像及性质

常见三角函数图像及性质

常见三角函数图像及性质三角函数在数学中具有重要的作用,主要有正弦函数、余弦函数和正切函数。

这些三角函数的图像及性质对理解三角函数在不同角度下的变化规律至关重要。

1. 正弦函数(Sine Function)正弦函数可以表示为 $y = \\sin(x)$,其中x表示自变量(角度),x表示函数值。

正弦函数的图像是一条波浪形状的曲线,在 $[-\\pi, \\pi]$ 区间内,正弦函数的图像在原点(0,0)处达到最大值1和最小值−1,且图像在x轴上对称。

正弦函数的主要性质包括:•周期性:正弦函数的周期是 $2\\pi$,即 $f(x+2\\pi) = f(x)$。

•奇函数:正弦函数是奇函数,即x(−x)=−x(x)。

•范围:正弦函数的值域为[−1,1]。

•正负性:在第一和第二象限,正弦函数为正;在第三和第四象限,正弦函数为负。

2. 余弦函数(Cosine Function)余弦函数可以表示为 $y = \\cos(x)$,余弦函数的图像是一条类似正弦函数的波浪形状曲线,不过余弦函数的图像在x轴上下移了 $\\frac{\\pi}{2}$。

余弦函数的性质包括:•周期性:余弦函数的周期也是 $2\\pi$,即$f(x+2\\pi) = f(x)$。

•偶函数:余弦函数是偶函数,即x(−x)=x(x)。

•范围:余弦函数的值域为[−1,1]。

•正负性:在第一和第四象限,余弦函数为正;在第二和第三象限,余弦函数为负。

3. 正切函数(Tangent Function)正切函数可以表示为 $y = \\tan(x)$,正切函数的图像是一条周期性的曲线,其在某些角度处会出现无穷大的值。

正切函数的图像在 $x=k\\pi + \\frac{\\pi}{2}$ 时,即 $x =\\frac{\\pi}{2}, \\frac{3\\pi}{2}, \\frac{5\\pi}{2}$ 等,会出现垂直渐近线。

正切函数的性质包括:•周期性:正切函数的周期是 $\\pi$,即 $f(x+\\pi) = f(x)$。

三角函数的图像和性质

三角函数的图像和性质

当0<A<1时,图像在y轴方向压缩。
02
周期变换
ω表示周期变换的系数,周期T=2π/|ω|。当ω>1时,周期减小,图像
在x轴方向压缩;当0<ω<1时,周期增大,图像在x轴方向拉伸。
03
相位变换
φ表示相位变换的角度,当φ>0时,图像左移;当φ<0时,图像右移。
正弦型曲线应用举例
振动问题
在物理学中,正弦函数常用来描述简谐振动,如弹簧振子 、单摆等。通过正弦函数的振幅、周期和相位等参数,可 以描述振动的幅度、频率和初始状态。
三角函数的图像和性 质
汇报人:XX 2024-01-28
contents
目录
• 三角函数基本概念 • 正弦函数图像与性质 • 余弦函数图像与性质 • 正切函数图像与性质 • 三角函数复合与变换 • 三角函数在解决实际问题中的应用
01
三角函数基本概念
角度与弧度制
角度制
01
将圆周分为360等份,每份称为1度,用度(°)作为单位来度量
角的大小。
弧度制
02
以弧长等于半径所对应的圆心角为1弧度,用符号rad表示,是
国际通用的角度度量单位。
角度与弧度的换算
03
1° = (π/180)rad,1rad = (180/π)°。
三角函数定义及关系
正弦函数
sinθ = y/r,表示单位圆上任意 一点P(x,y)与x轴正方向形成的 角θ的正弦值。
光学
在光的反射、折射等现象中,三角函数可以 帮助计算入射角、折射角等角度问题。
在工程问题中的应用
1 2
建筑设计
在建筑设计中,三角函数可以帮助计算建筑物的 角度、高度、距离等参数,确保设计的准确性和 安全性。

六大基本初等函数图像及性质

六大基本初等函数图像及性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

常用基本函数图像与性质

常用基本函数图像与性质

高中常用函数图像与性质一、常值(数)函数1.定义:一般地,形如为常数)(c c y =,那么叫做常值(数)函数.2.图像与性质:解析式)0(>=c c y 0=y )0(<=c c y 图像性质定义域R值域{}c y y =单调性不具单调性奇偶性偶函数对称性对称轴:y 轴(0=x )二、一次函数1.定义:一般地,形如y=kx +b(k,b是常数,k≠0),那么y叫做x 的一次函数.特别地,当b=0时,y=kx ,此时y 叫做x 的正比例函数,正比例函数是一种特殊的一次函数.2.图像与性质:一次函数()0k kx b k =+≠k ,b 符号k >0k <0b >0b <0b =0b >0b <0b =图象性质y 随x 的增大而增大y 随x 的增大而减小三、二次函数1.定义:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数.2.解析式:(1)一般式:)0(2≠++=c c bx ax y ;(2)顶点式:)0(442(22≠-++=a ab ac a b x a y ;(3)两点式:)0)()((21≠--a x x x x a ,其中)0,(,)0,(21x x 为图像与x 轴了两交点的坐标.3.二次函数()2y a x h k =-+与2y ax bx c =++的比较:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,.4.二次函数的系数c b a ,,对图像的影响(1)系数a :①0>a ,开口向上;0<a ,开口向下;②a 越大,开口越大;a 越小,开口越小;(2)系数b :b a ,的符号共同决定对称轴的位置,“左同右异”①b a 、同号:0>ab ,对称轴a bx 2-=在y 轴左侧,②b a 、异号:0<ab ,对称轴abx 2-=在y 轴右侧;(3)常数c :与y 轴交点坐标),0(c ;5.二次函数2y ax bx c =++)0(≠a 的性质()()20f x ax bx c a =++≠0a >0a <图像定义域(),-∞+∞对称轴2bx a=-顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭值域),44(2∞+-ab ac 24,4ac b a ⎛⎫--∞ ⎪⎝⎭单调区间)2,(ab--∞递减)2(∞+-,ab 递增)2,(ab--∞递增)2(∞+-,ab 递减6.二次函数2y ax bxc =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住5要素:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.7.二次函数与一元二次方程(1)当抛物线)0(2≠++=a c bx ax y 与x 轴两个交点时,公共点的横坐标21,x x 是一元二次方程)0(02≠=++a c bx ax 的根.(2)①当240b ac ∆=->时,抛物线)0(2≠++=a c bx ax y 与x 轴有两个交点;②当042=-=∆ac b 时,抛物线)0(2≠++=a c bx ax y 与x 轴有1个交点(顶点);③当042<-=∆ac b 时,抛物线)0(2≠++=a c bx ax y 与x 轴无交点;(3)当042<-=∆ac b 时:①当0a >时,图象落在x 轴的上方,0y >恒成立;②当0<a 时,图象落在x 轴的下方,0<y 恒成立;四、反比例函数1.定义:一般地,形如)0(≠=x xky 的函数,称为反比例函数.2.图像与性质:函数解析式>k 0<k五、指数函数1.定义:函数)1,0(≠>=a a a y x 且,x 为自变量,函数定义域为R .2.图像与性质:10<<a 1>a 图像定义域R 值域)0(∞+,性质(1)过定点(0,1),即1,0==y x 时(2)在R 上为减函数(2)在R 上为增函数六、对数函数1.定义:函数)1,0(log ≠>=a a x y a 且,x 为自变量,函数定义域为),0(∞+.2.图像与性质:10<<a 1>a图像定义域(0,+∞)值域R性质(1)过定点(1,0),即0,1==yx时(2)在),0(∞+上为减函数(2)在),0(∞+上为增函数七、幂函数1.定义:形如αxy=叫做幂函数,其中x是自变量,α为常数.2.几种常见幂函数的图像3.几种常见幂函数.的图像与性质幂函数性质xy=2xy=3xy=21xy=1-xy=八、对勾函数1.定义:2.图像与性质:解析式)0,0()(>>+=b a xbax x f 图像性质定义域{}0≠x x 值域),2[]2,(∞+--∞ab ab 单调性单调增区间:),(,),(∞+--∞ab a b九、分式函数1.定义:一般地,形如:()()ax bf x ad cb cx d+=≠+叫做分式函数.2.图像与性质:图象是以直线,d a x y c c =-=(恰为系数之比)为渐近线的双曲线,对称中心(,d ac c-,通常用代点法确定两支双曲线的位置。

对数函数图像及性质总结

对数函数图像及性质总结

对数函数图像及性质总结
一元对数函数y=loga(x)图像及其性质如下:
图像:
图中红色曲线所示:当a>1时,定义域为x>0,而当0<a<1时,定义域为x>a。

它的图像是一条凹凸不定的曲线,它的凹处在a>1时右边,凹处在0<a<1时在左边,它的极值为0。

此曲线的横坐标(x)的值一定大于0,y轴方向放大,逐渐陡峭。

性质:
1. y=loga(x)的图像是凹凸不定的曲线,它的凹凸在a>1时是右边,在0<a<1时是在左边。

2. x>0,而当0<a<1时,定义域为x>a。

3. 对数函数的反函数是指数函数y=ax。

4. 必要条件它的x值大于0,y轴方向放大,逐渐陡峭。

5. 它的导数为0<a<1时为1/ax,a>1时为1/x。

(完整版)高中各种函数图像画法与函数性质

(完整版)高中各种函数图像画法与函数性质
05
a>1时,在定义域内单调递增;0<a<1时,在定义域内单 调递减。
06
值域为(0, +∞)。
对数函数图像及性质
对数函数定义:形如y=log_a(x)(a>0且a≠1)的函数称 为对数函数。
对数函数性质
对数函数图像:当a>1时,图像在x轴上方,且随着x的 增大,y值无限增大;当0<a<1时,图像在x轴上方, 且随着x的增大,y值无限减小。
正弦函数、余弦函数图像及性质
图像特点
正弦函数$y = sin x$和余弦函数$y = cos x$的图像都是周期性的波浪形曲线,振幅为1,周期为$2pi$。正弦函 数图像关于原点对称,余弦函数图像关于$y$轴对称。
性质
正弦函数和余弦函数都是周期函数,具有周期性、奇偶性和有界性等性质。其中,正弦函数是奇函数,余弦函数 是偶函数。
变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
运算规则
复合函数的运算遵循“由内到外”的原则,即先求出内层函数的值,再代入外层函数中 计算。
复合函数图像变换规律
平移变换
若f(x)的图像向左(右)平移a个单位得到g(x)的图像,则g(x)=f(x+a)(a>0向左,a<0向 右)。
奇偶性
设函数y = f(x)的定义域为D,如果对D内的任意一个x,都有x∈D,且f(-x)=f(x),则这个函数叫做奇函数;如果对D内的任意一个x,都有x∈D,且f(-x)=f(x) ,则这个函数叫做偶函数。
函数周期性
周期函数的定义
对于函数y = f(x),如果存在一个不为零的常数T,使得当 x取定义域内的每一个值时,f(x + T) = f(x)都成立,那 么就把函数y = f(x)叫做周期函数,不为零的常数T叫做这 个函数的周期。

(完整版)高中各种函数图像画法与函数性质

(完整版)高中各种函数图像画法与函数性质

一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

一次kkx b k函数k ,bkk符号b 0b 0b 0b 0b 0yyyyy图象OxOxOxOxOxb 0yOx性质 y 随 x 的增大而增大 y 随 x 的增大而减小二次函数f xax 2 bx c aa 0a 0图像xbb2ax2a定义域, 对称轴xb2a顶点坐标b , 4ac b 22a 4a值域4ac b 2,, 4ac b 24a4a, b递减,b递增2a 2a单调区间b递增b递减, ,2a 2a二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于 x 轴对称y ax2 bx c关于 x 轴对称后,得到的解析式是y ax2 bx c ;y a x h 2y a x h2 k 关于 x 轴对称后,得到的解析式是k2.关于 y 轴对称y ax2 bx c关于y轴对称后,得到的解析式是y ax2 bx c;y a x h 2y a x h2;k 关于y轴对称后,得到的解析式是k3.关于原点对称y ax2 bx c关于原点对称后,得到的解析式是y ax2 bx c ;y a x h 2y a x h2k k 关于原点对称后,得到的解析式是4. 关于顶点对称(即:抛物线绕顶点旋转 180°)y ax2 bx c关于顶点对称后,得到的解析式是y ax2 bx c b2 ;2ay a x2k 关于顶点对称后,得到的解析式是y a x h2k .h5.关于点 m,n 对称2k 关于点m,n 对称后,得到的解析式是y a x hy a x h 2m 2k2n反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴 Y轴但不会与坐标轴相交( K≠0)。

五种基本函数图像和性质

五种基本函数图像和性质

五种基本函数图像和性质1、幂函数形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

(1)图像几个常见的幂函数图像:注:画幂函数图像时,先画第一象限的部分,在根据函数奇偶性完成整个图像。

(2)性质:•幕函数的图像最多只能同时出现在两个象限,且不经过第四象限;如图与坐标轴相交,则交点一定是坐标原点•所有幕函数在(0,+00)上都有定义,并且图像都经过点(1,1)。

•当a≤-1且a为奇数时,函数在第一、第三象限为减函数•当a≤-1且a为偶数时,函数在第二象限为增函数•当a=0且x不为0时,函数图象平行于x轴且y=1、但不过(0,1)•当a=1时,函数图像为过(0,0),(1,1)且关于原点对称的射线•当0<a<1时,函数是增函数•当a≥1且a为奇数时,函数是奇函数•当a≥1且a为偶数时,函数是偶函数(3)规律:把a看成分数•当分母为偶数时,函数为非奇非偶函数,图像只在第一象限•当分母为奇数时,分子为偶数,函数为偶函数,图像在一、二象限,图像关于Y轴对称•当分母为奇数时,分子为奇数,函数为奇函数,图像在一、三象限,图像关于原点对称2、指数函数函数y=a^x(a>0且a≠1)叫做指数函数,自变量x叫做指数,a叫做底数函数的定义域是R.(1)图像(2)性质•指数函数y=a^x(a>0且a≠1)的函数值恒大于零,定义域为R,值域为(0,+00)•指数函数y=a^x(a>0且a≠1)的图像经过点(0,1)•指数函数y=a^x(a>1)在R上递增,指数函数y=a^x(0 <a< 1)在R上递减•函数总是在某一个方向上无限趋向于X轴,并且永不相交。

•函数总是通过(0,1)这点,(若 ,则函数定过点(0,1+b))•指数函数无界•指数函数是非奇非偶函数•指数函数具有反函数,其反函数是对数函数3、对数函数一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

五大基本初等函数图像及性质

五大基本初等函数图像及性质

五大基本初等函数图像及性质初等函数是数学中研究最早的函数,又称基本初等函数,包括幂函数、对数函数、三角函数、反三角函数和反幂函数。

下面,我们将详细介绍这五种最基本的初等函数的图像和性质。

一、幂函数幂函数的定义为:函数y=ax^n(a>0, n为实数,n≠0),这里的a是函数的倍率,n为指数。

幂函数的图像大致可以分为两部分,当n为正数时,函数的图像就是一条向上开的抛物线;当n为负数时,函数的图像就是一条向下开的抛物线,取决于指数的符号,它的图像经过原点和y轴。

幂函数满足可导性,即任何一个幂函数都是可导的。

二、对数函数对数函数的定义为:函数y = logax,这里的a是函数的基数,它代表对数关系中的“基数”概念,这里x只取正数。

对数函数的图像是一条向右弯曲的折线,它经过原点(0,0),且值域为(0,+∞),值域中的每一个值都有其对应的函数值,存在双射性。

另外,它也满足可导性,任何一个对数函数都是可导的。

三、三角函数三角函数是初等函数中比较复杂的一类函数,包括正弦函数、余弦函数和正切函数等。

其定义为:y = sinx、y = cosx、y = tanx。

三角函数的图像是一条有正有负的曲线,其中正弦函数的图像是一条上扬的曲线,余弦函数的图像是一条下降的曲线,而正切函数的图像则是一条“8”字形的曲线,这三条函数的图像都经过原点,其上下极限值的值域皆极其大。

此外,三角函数也满足可导性,任何一个三角函数都是可导的。

四、反三角函数反三角函数包括反正弦函数、反余弦函数和反正切函数,定义为:y = arcsinx、y = arccosx、y = arctanx。

反三角函数的图像与三角函数的曲线图像类似,但它们的曲线经过的是坐标系的四个象限,其值域也有所不同,这三条反三角函数的图像也经过原点,另外,它也满足可导性。

五、反幂函数反幂函数的定义为:函数y = ax^(-n)(a>0, n为实数,n≠0),这里的a是函数的倍率,n为指数,但n为负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲 函数概念、性质、图像(1)
主备人:陆海荣 审核人:杨黄健
【考试要求】
(1)函数的概念与函数的定义域、值域、函数解析式,近几年来多在应用题中对函数解析式与定义域进行考查,要求考生根据题意建立数学模型,写出函数解析式,这种把实际问题转化为数学问题的能力是考查的重点方向。

(2)函数性质主要是单调性、奇偶性的考查,有时也涉及周期性,要求考生会利用单调性比较大小,求函数最值与解不等式,并要求会用定义证明函数的单调性。

【课前自测】
1.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,
()31x f x =-,则有132323f f f ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭
⎝⎭⎝⎭、、的大小关系为______________________。

2.设2()lg 1f x a x ⎛⎫=+ ⎪-⎝⎭
是奇函数,则使()0f x <的x 的取值范围是 。

3.函数)(x f 的定义域是R ,其图像关于直线1=x 和点(2,0)都对称,2)2
1
(=-f ,则_________)2
2009()21(=+f f 。

4. 对于函数①()lg(21)f x x =-+,②2
()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;
命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数;
命题丙:(2)()f x f x +-在()-∞+∞,上是增函数.
能使命题甲、乙、丙均为真的所有函数的序号是________.
【典例剖析】
例1 (1)已知函数f (x )满足f (log a x )=)1(1
2x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式 (2)已知二次函数f (x )=ax 2+bx +c 满足 | f (1) | = | f (-1) |= | f (0) |= 1 ,求f (x )的表达式
训练1:设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象
例2 已知函数f (x )=x a x x ++22,x ∈[1,+∞),(1)当a =2
1时,求函数f (x )的最小值 (2)若对任意x ∈[1,+∞), f (x )>0恒成立,试求实数a 的取值范围
训练2:设m 是实数,记M = {m | m >1} , f (x ) =log 3 (x 2-4mx +4m 2+m +
1
1-m ) (1)证明 当m ∈M 时,f (x )对所有实数都有意义;反之,若f (x )对所有实数x 都有意义,则m ∈M
(2)当m ∈M 时,求函数f (x )的最小值
(3)求证 对每个m ∈M , 函数f (x )的最小值都不小于1
当堂反馈:1. 函数()y f x =是R 上的偶函数,且在(,0]-∞上是增函数,若()(2)f a f ≤,则实数a 的取值范围是
2.定义在R 上的偶函数()f x 满足:(2)()f x f x -=-,且在[]1,0-上是增函数,下面关于
()f x 的判断:①()f x 是周期函数;②(5)f =0;③()f x 在[]1,2上是减函数;④()f x 在[]2,1--上是减函数.其中正确的判断是 (把你认为正确的判断都填上)
第二讲 函数概念、性质、图像(2)
例1 设函数y =f (x )定义域为R ,当0x <时,()1f x >,且对于任意的,x y ∈R 都有
()()()f x y f x f y +=成立,数列{}n a 满足1(0)a f =且11()(2)n n f a f a +=
--. (1) 求f (0)的值,并证明函数y =f (x )在R 上是减函数;
(2) 求数列{}n a 的通项公式;
(3) 是否存在正数k ,
使121
111(1)(1)(1)n a a a ++++≥L n *∈N 都成立,若存在,求出k 的最大值,并证明,否则说明理由.
训练1:设函数()y f x =定义在R 上,对任意实数m 、n ,恒有()()()f m n f m f n +=且当0,0()1x f x ><<
(1)求证:f (0)=1,且当x <0时,f (x )>1;
(2)求证:f (x )在R 上递减;
(3)设集合A ={(x ,y )|f (x 2)·f (y 2)>f (1)},B ={(x ,y )|f (ax -y +2)=1, a ∈R },若A ∩B =∅,求a 的取值范围.
例2 已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[]1,1-上有零
点,求a 的取值范围.
训练2:设二次函数2
()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.(I )求实数a 的取值范围;(II )试比较(0)(1)(0)f f f -与116
的大小.并说明理由.
例3. 甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度 v (千米/时)的平方成正比,比例系数为b ;固定部分为a 元.
① 把全程运输成本y (元)表示为速度v (千米/时)的函数,并指出函数的定义域; ② 为了使全程运输成本最小,汽车应以多大速度行驶?
训练3:某工厂拟建一座底面为矩形、面积为200平方米且深为1米的无盖长方体的三级污水池如果池外圈四壁建造单价为每平方米400元,中间两条隔墙建造单价为每平方米248元,池底建造单价为每平方米80元。

(1)试设计污水池底面的长和宽,使总造价最低,并求出最低造价;
(2)由于受地形限制,地面的长、宽都不超过16米,试设计污水池底面的长和宽,使总 造价最低,并求出最低造价。

第二讲 函数概念、性质、图像作业
1、)(x f 是定义域为R 的偶函数,其图象关于直线x =2对称,当)2,2(-∈x 时,1)(2+-=x x f ,则)()2,4(x f x 时--∈的表达式为 。

2、已知定义域为(-1,1)的奇函数y =f (x)又是减函数,且f (a -3)+f (9-a 2)<0,则a 的取值
范围是____________________.
3、函数f (x )=b (1-x 2
12+)+a sin x +3(a 、b 为常数),若f (x )在(0,+∞)上有最大值10,则f (x )在(-∞,0)上有最_______值,为_____________.
4、若函数))((R x x f y ∈=满足)()2(x f x f =+,且]1,1(-∈x 时,||)(x x f =,则函数)(x f y =的图象与函数||log 3x y =的图象的交点的个数是 .
5、设()y f x =是定义在R 上的函数,给定下列三个条件:(1)()y f x =是偶函数;(2)
()y f x =的图象关于直线1x =对称;(3)2T =为()y f x =的一个周期.
如果将上面(1)、(2)、(3)中的任意两个作为条件,余下一个作为结论,那么构成的三个命题中真命题的个数有 个.
6、函数2)(,2)(2+=-=mx x g x x x f ,[][]2,1,2,101-∈∃-∈∀x x ,使)()(01x f x g =,
则实数m 的取值范围是 。

7、已知定义在R 上的函数满足:()()()
f x y f x f y +=+,当x <0时,f x ()<0。

(1)求证:f x ()为奇函数;(2)求证:f x ()为R 上的增函数;
(3)解关于x 的不等式:()()f a x f xf a x fa 22
22->-()()。

(其中a >0且a 为常数)
8、已知f(x)=
2
22+-x a x (x ∈R)在区间[-1,1]上是增函数.,(1)求实数a 的值组成的集合A ;(2)设关于x 的方程f (x )=x 1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.。

相关文档
最新文档