非二氧化碳温室气体排放现状和对策

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非二氧化碳温室气体排放现状和对策
摘要:春暖花开,但近几年花开的比以往都要早,由于温室效应而导致了全球气温上升,若干年来冬季变暖,百花提前竞相开放的现象已经不是稀奇事了。

人类对自然的影响已经从地面扩张到了大气,近年来,由于全球人口的增长、人类活动的加剧导致空气被严重污染,使臭氧层出现空洞,从而使地球温度上升导致了温室效应。

关键词:非二氧化碳温室气体排放空气污染
当今环境问题中的全球变暖和臭氧层损耗导致地球表面紫外线辐射大大增强已经引起了国际学术界的广泛关注,当人们谈及温室气体时,很多人首先会想到二氧化碳,是的,全球变暖的原因之一是CO2气体的浓度不断增加,但是全球温室气体排放实际上有相当一部分是其他气体,例如CH4(甲烷)和N2O(一氧化二氮)。

在全世界,CH4和N2O 占温室气体总排放量的比例估计分别为14%和9%。

1997年签署的《京都议定书》中规定了除了CO2外的其他五种温室气体,即甲烷(CH4)、氧化亚氮(N2O)、氢氟碳化物(HFCs)、全氟碳化物(PFCs)及六氟化硫(SF6)。

CH4和N2O在大自然界中本来就存在,但是由于人类活动而增加了它们的含量,含氟气体则完全是人类活动的产物,主要来源于制冷剂和含氟气体在工业中的应用的释放。

长期以来,非二氧化碳温室气体(除甲烷外)的排放多与能源消费有直接关系,是工业化、城市化和农业现代化的结果,因此在气候变化
的总体战略中需要加入控制这些气体的排放。

根据EPA(美国环境保护局)的数据,2010年中国排放的非二氧化碳温室气体占全球该类气体的比重最高(13.6%),其次是美国(9.84%),然后是印度(8.59%)、巴西(6.12%)、俄罗斯(5.54%)。

非CO2温室气体的存续时间长、全球增暖潜势大,对地球环境的负面影响较大,中国面临的国际减排压力与日俱增,导致国内环境条件恶化,对经济社会的健康发展造成不利影未响。

1 中国非二氧化碳温室气体排放现状
中国在上个世纪的重化工发展阶段中,非二氧化碳温室气体无论是从排放总量角度,还是从排放增速而言都在迅猛增加,从而跃居世界第一,并远高于其他国家。

下表列出了各种温室气体的全球变暖潜能值(GWP)在大气中相对二氧化碳影响的时间。

(见表1)
1.1 甲烷的排放现状
甲烷(CH4)是仅次于二氧化碳的第二大影响气候的温室气体。

在过去的150年间,大气中甲烷的浓度增为原来的三倍。

生物界中甲烷是由于微生物在厌氧条件下,利用氢还原二氧化碳及利用醋酸盐发酵产生了甲烷,同时自身厌氧分解有机物。

目前大气中甲烷浓度的增加主要来源于生物过程的排放,如湿地和稻田、垃圾场、污水处理厂,以及反刍动物和白蚁的消化系统,产生的甲烷占全世界每年排放的6亿吨甲烷的三分之二。

普朗克研究所的科学家发现,即使在完全正常、氧气充足的环境
里,植物自身也会产生甲烷并排放到大气中。

据德国核物理研究所的科学家经过试验发现,甲烷也来源于植物和落叶,而且随着温度和日照的增强甲烷的生成量也逐渐增加。

另外,植物产生的甲烷是腐烂植物的10~100倍。

他们经过估算认为,植物每年产生的甲烷占到世界甲烷生成量的10%~30%。

1.2 一氧化二氮的排放现状
一氧化二氮(N2O)在大气中的存留时间长,并可输送到平流层。

进入大气平流层中的N2O发生了光化学分解,作为臭氧消耗的主要自然催化剂,导致了臭氧层的损耗。

虽然N2O的含量仅约二氧化碳的9%,但其单分子增温潜势却是二氧化碳的310倍,对全球气候的增温效应在未来将越来越显著,N2O浓度的增加,已引起科学家的极大关注。

N2O的增加主要自然源包括海洋、森林和草地土壤,主要是土壤中的微生物通过硝化作用将铵盐转化为硝酸盐和反硝化作用将硝酸盐还原成氮气(N2)或氧化氮(N2O);人为源主要是农业氮肥过度使用,部分氮肥被庄稼所吸收,剩余相当部分的氮素肥料在土壤中的反硝化细菌的作用下变为一氧化二氮释放到空气中,造成了污染。

工业源包括硝酸生产过程、己二酸生产过程和己内酰胺生产过程,目前,硝酸生产过程是大气中N2O的重要来源,也是化学工业过程中N2O排放的主要来源。

1.3 含氟气体的排放现状
《京都议定书》界定的六种温室气体中含氟气体包括氢氟碳化物(HFCs)、全氟碳化物(PFCs)及六氟化硫(SF6)。

1988年,《Nature》首次发表了英国南极考察队关于南极臭氧空洞的报道,我国青藏高原上空也发现了臭氧低值中心。

氟利昂在制冷方面有着很大的优势,但当氟利昂进入平流层后受到紫外线辐射发生光解,产生氯原子,这些氯原子迅速与臭氧反应,将其还原为氧,从而加快臭氧的破坏速率,导致紫外线过强,致暖作用明显,因此逐步被淘汰。

由于以前产生的大量的废旧冰箱空调,原来密封的氯氟烃(CFCs)释放到空气中,加上氯氟烃的存续时间长,使得平流层臭氧层在短时间内难以得到完全修复。

氢氟烃(HFCs),虽然其ODP(消耗臭氧潜能值)为零,但在大气中停留时间较长,GWP较高,大量使用会引起全球气候变暖。

HFC-134a分子中含有CF3基团,在大气中解离后易与OH自由基或臭氧反应形成对生态系统危害严重的三氟乙酸。

虽然六氟化硫(SF6)本身对人体无毒、无害,但它却是一种温室效应气体,其单分子的温室效应是二氧化碳的2.2万倍,根据IPCC提出的诸多温室气体的GWP指标,六氟化硫的GWP值最大,500年的GWP 值为32600,且由于六氟化硫高度的化学稳定性,其在大气中存留时间可长达3200年。

由于氟化气体主要是在工业加工过程中排放的,而随着我国汽车
工业、新能源工业的兴起,在制造工艺中使用了越来越多的氟化气体,因此,如何有效控制氟化气体排放,减少其逃逸和泄漏,无害化处理末端气体,成为未来我国非二氧化碳温室气体减排的重中之重。

2 对策
2.1 建立相应的政策法规
目前,我国还没有建立起有关于温室气体的排放统计制度,在现有的统计标准下还存在很多问题,譬如温室气体种类不明确、覆盖面不全、地域差异等等。

为了推进研究工作,我们应建立起统一、科学、规范的统计方法制度,采用合理的数据模型,进行不同区域的划分,进行数据测算等等,建立起完整的一套体系。

收集到的温室气体报告可以帮助决策者制定政策、帮助企业改善现排放状况,可以使各个地区根据当地的情况合理制定政策法规。

2.2 发挥森林的碳汇能力
根据联合国环境规划署《持续林业:投资我们共同的未来》中揭示,森林每年能够固定碳率达1.1~1.6 Gt。

有资料显示,2008年森林碳汇抵消了8.86亿吨的二氧化碳当量温室气体排放,相当于2008年美国温室气体排放量的13%(EPA,2010)。

因此在保证我国18亿亩耕地红线的条件下,在对天然林、湿地、草原保护的同时,要坚持推进退耕还林(草)工程,充分发挥和提高森林、湿地等资源的碳汇能力。

2.3 调整农业结构
联合国粮农组织指出,耕地释放的温室气体超过人为温室气体排放总量的30%。

传统的深耕细作农业,严重破坏了土壤层对有机碳的固定,导致土壤中的有机碳以二氧化碳形式释放到大气中。

因此,国内可以通过减少耕地面积或采取免耕的方法来实现控制碳的排放。

而且我国可以发展精准农业,实验表明,通过对农场进行精准农业技术试验,使用了GPS指导施肥的作物产量比传统施肥提高30%,同时减少了化肥的使用量,提高了化肥利用率,减小了对环境的污染。

目前,这项技术已经延伸到精量播种,精准灌溉技术等相关领域。

2.4 集中发展畜牧业
目前,畜牧业排放的温室气体约占农业的43.9%,主要来源于反刍动物肠道消化、畜牧草场、动物粪尿垃圾,IPCC(2000)认为反刍动物以甲烷的形式损失的能量约占采食总能量的2%~15%。

因此提高饲料转化率,降低动物个体甲烷排放量是减少温室气体的重要手段之一。

同时应鼓励和支持规模化畜禽养殖场和养殖小区的建设,转变传统的散养方式,采用舍饲、规模养殖方式,积极引导大型生猪、牛、羊养殖场利用动物粪便生产沼气,发展畜牧业沼气生产。

3 结语
每年6月5日是“世界环境日”,1989年的主题是“警惕,全球要变暖”,1991年的主题是“气候变化—需要全球合作”。

气候的变化确实已
经成为了限制人类生存和发展的重要因素,受到了各国政府的关注。

尽管这些“非二氧化碳”气体在19世纪以来的全球变暖过程中单独所起的作用较小,但它们的综合影响却是相当巨大的。

甲烷、一氧化二氮和含氟气体所产生的净暖化效应大约是二氧化碳暖化效应的2/3,再加上空气污染形成烟雾带来的升温,非二氧化碳气体的暖化效应大体上与二氧化碳相当。

二氧化碳无疑是导致全球变暖最关键的温室气体,科学上来讲,减缓温室效应最主要的办法就是减少二氧化碳的排放。

但是在控制温室气体排放方面,需要平衡各国利益诉求,而且大气中二氧化碳浓度的增加是一个慢慢积累的过程,发达国家自工业革命以来向大气中排放了大量二氧化碳,现在要求所有国家都同样减少排放二氧化碳是不公平的,发展中国家的生存和发展权不能被剥夺。

因此,我们必须寻求发达和发展中国家都能接受的应对方案。

科学家也在积极寻求控制气候变暖的各种途径。

比如,多植树,绿色植物通过光合作用可吸收二氧化碳。

我们同样需要采取措施减少那些非二氧化碳温室气体的排放,有计划、有步骤地进行“非二”温室气体减排,这不仅成为相关专家普遍关注的问题,更对我国国际国内气候变化工作具有深远意义。

相关文档
最新文档