纳米材料制备简述

合集下载

纳米ZnO材料的合成及其光催化应用

纳米ZnO材料的合成及其光催化应用

纳米ZnO材料的合成及其光催化应用郎集会;吴思;王勇;王瑛琦;刘畅;李秀艳;杨景海【摘要】纳米氧化锌(ZnO)作为一种半导体金属氧化物功能材料,它的诸多特性如荧光性、光催化活性、紫外激光发射、紫外线吸收、光电及压电性等被人们陆续发现并广泛应用于荧光体、高效催化剂、紫外线遮蔽材料、气体传感器、图像记录材料及压电材料等多个领域.ZnO由于其绿色、环保和高效等优点,近年来在环境污染控制方面受到人们的广泛关注.通过合成技术和条件控制纳米ZnO材料的粒径、表面态和形貌等参数可以提高光催化材料的光催化活性和量子产率.本文综述了本课题组对纳米ZnO材料的合成技术及其在光催化领域的应用研究,主要探讨了影响纳米ZnO材料光催化性能的相关参数.【期刊名称】《吉林师范大学学报(自然科学版)》【年(卷),期】2018(039)001【总页数】7页(P30-36)【关键词】纳米氧化锌;合成方法;光催化活性;应用【作者】郎集会;吴思;王勇;王瑛琦;刘畅;李秀艳;杨景海【作者单位】吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000【正文语种】中文【中图分类】O614.2;O643.30 引言近年来,半导体金属氧化物由于其绿色、环保、高效等优点,在环境污染控制方面得到了广泛关注,可以说是目前重要的光催化剂之一[1-3].随着纳米科技的高速发展,人们对材料的性质有了更深入的认识,为纳米光催化技术的应用提供了极好的机遇.控制纳米材料的粒径、表面态、形貌等技术手段日趋成熟,通过材料设计,提高光催化材料的光催化活性和量子产率成为可能[4-5].而纳米半导体金属氧化物,如TiO2、ZnO纳米材料,促进了光催化学科与纳米半导体材料学科的交叉融合,使纳米半导体金属氧化物这类光催化材料的制备及其光催化性能研究成为近年来科学领域关注的热点[6-11].氧化锌(ZnO)是一种宽带隙半导体金属氧化物功能材料,具有直接带隙、高电子迁移率等诸多优点.最近研究结果表明,与TiO2相比,ZnO在处理废水中某些难降解的有机污染物时具有更好的光催化效果[12-17].Juan Xie等[18]采用水热法合成了ZnO花状和片状结构,并对不同形貌的ZnO材料进行光催化降解甲基橙研究.研究表明,在紫外灯的照射下,由于两种材料带隙的不同导致片状ZnO比花状ZnO具有更优异的光催化活性.Jagriti Gupta等[19]通过软化学法改变OH-离子浓度合成了不同形貌的ZnO纳米材料,在OH-离子浓度较低时合成了直径为8 nm球状纳米颗粒,在OH-离子浓度较高时合成了长度为30~40 nm的ZnO纳米棒.研究结果表明,材料的缺陷对其光催化活性有很大的影响.在紫外灯照射下降解甲基蓝的催化结果表明,由于球状ZnO纳米颗粒具有较多的氧空位,因此其光催化活性最佳.Manoj Pudukudy等[20]采用简单的共沉淀法合成了准球形和胶囊形ZnO纳米材料,研究了反应温度对材料光催化活性的影响.研究结果表明,在低温下准球形ZnO纳米材料形成,而高温下胶囊形ZnO纳米材料形成.在紫外灯下对染料甲基蓝的催化降解表明,退火温度的提高有利于提高材料的光催化降解率.尽管这些ZnO纳米材料具有较高的光催化活性,但是其禁带宽度的限制极大制约了ZnO对太阳光辐射的利用率和实际生活中的广泛应用.此外,ZnO光催化剂中的光生电子-空穴复合率高,导致光量子利用率低,易发生光化学腐蚀等问题,从而降低其光催化效率.因此,有必要采用各种手段提高该类催化剂的光催化活性和化学稳定性.纳米ZnO材料作为一种重要的半导体金属氧化物功能材料具有广泛的应用前景,特别是在环境有机污水处理方面引起人们极大的关注.因此,人们研发了不同的纳米ZnO材料的合成方法,主要方法见图1所示.图1 纳米ZnO材料的合成方法Fig.1 The synthesis method of ZnO nanomaterials基于此,本课题组做了一些相关研究工作,采用了不同的合成方法来制备纳米ZnO材料,如:化学溶液沉积法、水热法、两步化学合成法、化学刻蚀法、模板法等,并对影响材料光催化活性的相关参数进行了研究和分析.1 纳米ZnO材料的水热法合成及其光催化性能研究水热法是利用水热反应得到纳米ZnO材料的一种方法.水热反应是在高温高压条件下进行的一种化学反应[21].依据反应类型的不同,水热反应可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等.相比较其他制备方法而言,该方法具有很多优点,如:晶粒发育完整、分散性好、纯度高、晶形好且生产成本较低.图2 六方纳米盘状ZnO(A)、“汉堡包”状ZnO(B)的FE-SEM图及其光催化降解曲线(C) [22]Fig.2 FE-SEM image of (A) ZnO hexagonal platforms and (B) hamburger-like ZnO nanostructures,and (C) their curves of degradation efficiency versus reaction time[22]课题组Yang等[22]采用水热法成功合成出六角纳米盘状和“汉堡包”状的ZnO催化剂,并将合成的催化剂对RhB染料进行紫外灯下光催化降解(图2).研究表明:与“汉堡包”状的ZnO催化剂相比,六角纳米盘状的ZnO催化剂具有更好的光催化活性,认为与裸露的极性面和表面缺陷氧空位有关.在此研究基础上,同样采用水热法通过改变不同表面活性剂合成了不同形貌的纳米ZnO材料,如纳米盘、纳米颗粒,同样在紫外灯照射下对催化剂的光催化活性进行了研究(图3)[23].研究表明:催化剂的尺寸和表面氧空位的数量对催化剂的光催化活性有很大的影响,其中尺寸较小的催化剂拥有较大的BET表面积和较多的表面氧空位,因此具有较强的光催化活性.由此可知,影响纳米ZnO材料的光催化活性的因素有:裸露的极性面、表面缺陷氧空位、形貌、尺寸大小.此外,Wang等[24]同样采用该方法合成了具有磁性可分离与重复利用的Fe3O4@ZnO纳米核壳结构.研究结果表明:与纯ZnO纳米粒子相比,由于Fe3O4@ZnO 核壳纳米粒子的表面氧空位浓度更高且核壳结构中的Fe3+离子有利于提高材料的光催化性能,因此合成的Fe3O4@ZnO纳米核壳结构具有更为优异的光催化性能且循环性较好.另外,由于核壳结构中的Fe3O4使该核壳结构具有较好的稳定性和可重用性.图3 不同形貌纳米ZnO材料的SEM图(A—E)及其光催化降解曲线(F—H) [23]Fig.3 (A—E) SEM images and (F—G) photocatalytic degradation curves of all the ZnO nanomaterials[23]2 纳米ZnO材料的CBD法合成及其光催化性能研究化学溶液沉积法(CBD)是湿化学方法的一种,主要指在常温常压条件下,通过较为温和的化学反应来合成材料的方法.这种方法具有操作简单、溶液控制、成本低廉、环保、反应条件温和、耗能低及实验条件简单等优点.课题组先后采用了该方法合成了不同形貌的纳米ZnO材料,如纳米棒、纳米花、纳米带等.其中,Li等[25-26]采用CBD法在衬底上合成了不同尺寸的纳米ZnO棒状结构,并研究了材料的光催化性能.如图4所示,研究表明,尺寸对材料的光催化性能有很大的影响.另外,其他参数如取向度、形貌等对材料的光催化活性也有一定的影响.但在其他参数一定条件下,材料的尺寸越小,其光催化活性越高.其中,当纳米棒的尺寸为70 nm时,在紫外灯照射下其降解甲基橙180 min,其降解率可达98.6%.课题组Yang等[27]同样采用该方法在硅片上合成了ZnO薄膜,并研究了不同溶剂对材料光催化性能的影响规律(图5—图6).研究表明,采用水、乙醇和丙醇三种溶剂所制备样品的形貌、尺寸和缺陷都有所不同.采用水、乙醇和丙醇三种溶剂在硅衬底上形成材料的形貌分别为纳米棒、微米椭圆和微米盘,其中以水为溶剂所制备的ZnO薄膜的光催化性能最佳,在紫外灯照射下对罗丹明B(RhB)进行光催化降解,5 h后降解率可达95.4%.图4 不同尺寸的纳米ZnO纳米棒的SEM图及其光催化降解图 [25]Fig.4 SEM image of ZnO nanorods with different sizes and their diagrams of degradation efficiency[25]图5 分别采用水溶剂、乙醇溶剂和丙醇溶剂在硅衬底上生长纳米ZnO材料的SEM(A1—C1)和TEM(A—F)图[27]Fig.5 (A1—C1)SEM and (A—F)TEM images of ZnO nanomaterials with different solvents[27]图6 分别采用水溶剂、乙醇溶剂和丙醇溶剂在硅衬底上生长纳米ZnO材料的光催化降解曲线[27]Fig.6 The curves of degradation efficiency versus reaction time of ZnO nanomaterials[27]3 纳米ZnO材料的化学沉淀法合成及其光催化性能研究化学沉淀法是将不同化学成分的物质溶液按比例混合,并在其中加入适当的沉淀剂制备出沉淀物前躯体,然后再将生成的沉淀物前躯体在一定条件下进行干燥或锻烧处理,最终得到粉体颗粒,其包括直接沉淀法和均匀沉淀法[21].该方法具有制备成本较低、纯度较高、产量较大等优点.课题组[28]采用化学沉淀法合成了稀土Ce掺杂的ZnO纳米颗粒,并在紫外灯照射下用于降解染料甲基橙(图7).图7 不同稀土Ce掺杂浓度(0%、0.5%、1%、1.5%、2%)ZnO纳米颗粒的TEM(A—E)、PL(F)和光催化降解图(G—H) [28]Fig.7 (A—E)TEM,(F)PL and (G—H)photocatalytic degradation drawing of ZnO nanoparticles with different Ce doping concentrations[28]如图7所示,研究结果表明,稀土Ce离子的掺杂有利于提高ZnO纳米颗粒的光催化活性.稀土Ce离子有俘获电子的能力,可以减少光生电子-空穴复合的几率,从而提高材料的光催化活性.另外,随着Ce掺杂浓度的增加,ZnO主体材料中的缺陷浓度随之增加,这也有利于光催化性能得提高.同时,Ce的掺杂也略改变了ZnO的带隙.课题组Wang等[29]采用该方法合成了Fe3O4@SiO@ZnO,并对进行了负载Ag.研究结果表明,在紫外灯照射下降解RhB染料时Fe3O4@SiO@ZnO-Ag比Fe3O4@SiO@ZnO具有更佳优异的光催化活性,且该新型核壳结构具有很好的化学稳定性、可重复和可回收性.可见,对材料的适当修饰和改性(离子掺杂、负载等)可以提高材料的光催化性能,拓宽材料的光催化应用.4 结论本文简述了课题组合成纳米ZnO材料的一些实验方法,并对其光催化性能进行了总结和分析.实验得出了影响纳米ZnO材料光催化性能的相关参数,如纳米材料的尺寸、材料的缺陷、形貌、取向性等,同时也采取了掺杂和负载等技术手段来提高材料的光催化应用.参考文献【相关文献】[1]XIE Y P,LIU G,YIN L C,et al.Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion[J].J Mater Chem,2012,22(14):6746-6751.[2]MAURO A D,FRAGALM E,PRIVITERA V,et al.ZnO for application in photocatalysis:From thin films to nanostructures[J].Mat Sci Semicon Proc,2017,69:44-51.[3]WANG D D,YANG J H,LI X Y,et al.Preparation of morphology-controlled TiO2 nanocrystals for the excellent photocatalytic activity under simulated solarirradiation[J].Mater Res Bull,2017,94:38-44.[4]BORA T,LAKSHMAN K K,SARKAR S,et al.Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin[J].Beilstein J Nanotechnol,2013,4:714-725.[5]LANG J H,WANG J Y,ZHANG Q,et al.Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnOnanoparticles[J].Ceram Int,2016,42:14175-14181.[6]EISENBERG D,AHN H S,BARD A J.Enhanced photoelectrochemical water oxidationon bismuth vanadate by electrodeposition of amorphous titanium dioxide[J].J Am Chem Soc,2014,136(40):14011-14014.[7]YU Z B,YIN L C,XIE Y P,et al.Crystallinity-dependent substitutional nitrogen doping in ZnO and its improved visible light photocatalytic activity[J].J Colloid Interface Sci,2013,400:18-23.[8]LIU G,YIN L C,WANG J Q,et al.A red anatase TiO2 photocatalyst for solar energy conversion[J].Energy Environ Sci,2012,5(11):9603-9610.[9]LIU G,PAN J,YIN L C,et al.Heteroatom-modulated switching of photodatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres[J].Adv Funct Mater,2012,22(15):3233-3238.[10]ELAMIN N,ELSANOUSI A.Synthesis of ZnO nanostructures and their photocatalytic activity[J].Journal of Applied and Industrial Sciences,2013,1(1):32-35.[11]BANSAL K S,SINGHA S,Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursormethod[J].Physica B,2013,416:33-38.[12]PALOMINOS R A,MONDACA M A,GIRALDO A,et al.Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions[J].Catal Today,2009,144:100-105.[13]TIAN C,ZHANG Q,WU A,et al.Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation[J].Chem Comm,2012,48:2858-2860.[14]DUAN X W,WANG G Z,WANG H Q,et al.Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity[J].CrystEngComm,2010,12:2821-2825.[15]CAO X L,ZENG H B,WANG M,et rge scale fabrication of quasi-aligned ZnO stacking nanoplates[J].J Phys Chem C,2008,112:5267-5270.[16]XU L P,HU Y L,PELLIGRA C,et al.ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity[J].Chem Mater,2009,21:2875-2885.[17]ZHANG L Y,YIN L W,WANG C X,et al.Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity[J].ACS Appl Mater Interface,2010,2:1769-1773.[18]XIE J,WANG H,DUAN M,et al.Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method[J].Appl Surf Sci,2011,257:6358-6363.[19]GUPTA J,BARICK K C,BAHADUR D.Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures[J].J Alloy Compd,2011,509:6725-6730.[20]PUDUKUDY M,HETIEQA A,YAAKOB Z.Synthesis,characterization and photocatalytic activity of annealing dependent quasi spherical and capsule like ZnO nanostructures[J].Appl Surf Sci,2014,319:221-229.[21]杨景海,徐松松,郎集会,等.稀土掺杂 ZnO 纳米材料的合成方法研究进展[J].吉林师范大学学报(自然科学版),2015,35(2):10-13.[22]YANG J H,WANG J,Li X Y,et al.Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties[J].J Alloy Compd,2012,528:28-33. [23]WANG J,YANG J H,LI X Y,et al.Effect of surfactant on the morphology of ZnO nanopowders and their application for photodegradation of rhodamine B[J].Powder Technology 2015,286:269-275.[24]WANG J,YANG J H,LI X Y,et al.Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles[J].Physica E,2016,75:66-71.[25]LI X Y,WANG J,YANG J H,et parison of photocatalytic activity of ZnO rod arrays with various diameter sizes and orientation[J].J Alloy Compd,2013,580:205-210.[26]LI X Y,WANG J,YANG J H,et al.Size-controlled fabrication of ZnO micro/nanorod arrays and their photocatalytic performance[J].Mater Chem Phys,2013,141:929-935. [27]YANG J H,WEI B,LI X Y,et al.Synthesis of ZnO flms in dierent solvents and theirphotocatalytic activities[J].Cryst Res Technol,2015,50(11):840-845.[28]LANG J H,WANG J Y,ZHANG Q,et al.Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles[J].Ceram Int,2016,42:14175-14181.。

浅析纳米氧化锌的制备及应用现状

浅析纳米氧化锌的制备及应用现状

质中,与基料没有结合力,易造成界面 缺陷,导致材料的性能下降。
故表面改性在纳米氧化锌的应用过 程中起着至关重要的作用。表面改性是
指采用物理、化学、机械等方法,来处 理纳米颗粒表面有目的地改变纳米颗粒 表面的物理化学性质,以满足其不同应 用领域的需求。[1]
2. 纳米氧化锌的制备方法概述
制备纳米氧化锌主要有三种方法: 纳米微粒。
有效的方法。
直接沉淀法所得到的产品粒径分
优点:对环境和人的毒害很小;反
布比较窄、分散性也很好,所以工业 应先驱体易得,成本低,制品晶粒结
化被大为看好。
晶完好、无团聚、分散性好。[1]
优点:设备要求低、工艺主要是通过制备两种微
缺点:后处理时,除去沉淀剂阴离 乳液:含盐离子乳液和含沉淀剂乳液,
在不同的条件下,氧化锌晶体呈现 出三种类型:纤锌矿结构、岩盐型结构 和闪锌矿结构。在常温常压条件下,六 方纤锌矿结构形式的氧化锌晶体的热力 学最为稳定,故研究该结构对于调控该 晶体生长具有重要意义。
纤锌矿结构的氧化锌晶体模型示意图
中国粉体工业 2018 No.5 11
纳米氧化锌的高表面能,使其处于 热力学非稳定状态,极易聚集成团,从 而会影响颗粒的应用效果;表面亲水疏 油,呈强极性,难于均匀分散在有机介
1. 纳米氧化锌概述
纳米氧化锌作为一种新型多功能无 机材料,粒子尺寸介于 1 ~ 100nm,由 于其比表面积大,表面活性较大,故呈 现出表面效应、体积效应、量子隧道效 应等特性。纳米氧化锌热稳定性和化学 稳定性较好,具有无毒、非迁移性、低
介质常数、高透光率、光催化性能、荧 光性、压电性、吸收和散射紫外线的能 力等特点,使其作为半导体、压电材料、 催化材料、紫外屏蔽等材料,在陶瓷、 纺织、化妆品、电子、建材、环境等行 业中得到广泛的应用与研究。[1]

纳米注塑工艺流程简述

纳米注塑工艺流程简述

纳米注塑工艺流程简述纳米注塑工艺是一种先进的制造技术,它利用纳米尺度的材料和工艺,通过注塑过程来制造复杂的纳米结构。

这种工艺在众多领域,如电子、医疗、能源和环境等方面都有广泛的应用。

本文将对纳米注塑工艺的流程进行简述,并探讨其在工业中的应用和未来的发展方向。

首先,让我们来了解一下纳米注塑的基本流程。

纳米注塑工艺主要包括材料准备、模具设计、注塑成型和后处理几个主要步骤。

第一步,材料准备。

在进行纳米注塑之前,需要准备高质量的纳米材料。

这些纳米材料可以是纳米粒子、纳米纤维或纳米管等。

在材料准备过程中,需要进行材料的筛选、分散和表面修饰等处理,以确保材料的纯度和质量。

第二步,模具设计。

模具设计是纳米注塑的关键步骤之一。

合理的模具设计可以保证纳米结构的精确复制和高质量的成型。

模具设计时需要考虑到纳米材料的流动性、收缩性和温度控制等因素,以确保注塑成型的精度和稳定性。

第三步,注塑成型。

在注塑成型过程中,需要将预先准备好的纳米材料熔化并注入模具中。

通过控制注塑机的温度、压力和注射速度等参数,可以实现材料的均匀充填和快速凝固。

注塑成型过程需要保证注塑机的精确控制和稳定运行,以确保最终产品的尺寸精度和表面质量。

第四步,后处理。

注塑成型后,还需要进行一些后处理工艺,如去模、清洗和表面修饰等。

这些工艺旨在去除模具残留物、提高产品表面质量并增强产品的功能性。

后处理过程的高效和精确度对于最终产品的性能和质量至关重要。

纳米注塑工艺在许多领域都有广泛的应用。

在电子领域,纳米注塑可以用于制造高性能的纳米电子器件,如纳米晶体管和纳米存储器等。

在医疗领域,纳米注塑可以用于制造纳米药物载体、纳米传感器和纳米生物芯片等,用于药物输送、疾病诊断和治疗等方面。

在能源领域,纳米注塑可以用于制造高效的太阳能电池和燃料电池等,提高能源转换和存储的效率。

在环境领域,纳米注塑可以用于制造高效的污水处理设备和空气净化器等,改善环境污染问题。

纳米注塑工艺也面临着一些挑战和未来的发展方向。

纳米材料习题答案

纳米材料习题答案

纳米材料习题答案1、简单论述纳米材料的定义与分类。

答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。

现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。

如果按维数,纳米材料可分为三大类:零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。

一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。

二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。

因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

2、什么是原子团簇? 谈谈它的分类。

3、通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 答:利用微束拉曼光谱仪能有效地观察到单臂纳米管特有的谱线,这是鉴定单臂纳米管非常灵敏的方法。

100-400cm-1范围内出现单臂纳米管的特征峰,单臂纳米管特有的环呼吸振动模式;1609cm-1,这是定向多壁纳米管的拉曼特征峰。

单臂管的直径d与特征拉曼峰的波数成反比,即d=224/wd:单壁管的直径,nm;w:为特征拉曼峰的波数cm-14、论述碳纳米管的生长机理(图)。

答:碳纳米管的生长机理包括V-L-S机理、表面(六元环)生长机理。

(1)V-L-S机理:金属和碳原子形成液滴合金,当碳原子在液滴中达到饱和后开始析出来形成纳米碳管。

根据催化剂在反应过程中的位置将其分为顶端生长机理、根部生长机理。

①顶端生长机理:在碳纳米管顶部,催化剂微粒没有被碳覆盖的的部分,吸附并催化裂解碳氢分子而产生碳原子,碳原子在催化剂表面扩散或穿过催化剂进入碳纳米管与催化剂接触的开口处,实现碳纳米管的生长,在碳纳米管的生长过程中,催化剂始终在碳纳米管的顶端,随着碳纳米管的生长而迁移;②根部生长机理:碳原子从碳管的底部扩散进入石墨层网络,挤压而形成碳纳米管,底部生长机理最主要的特征是:碳管一末端与催化剂微粒相连,另一端是不含有金属微粒的封闭端;(2)表面(六元环)生长机理:碳原子直接在催化剂的表面生长形成碳管,不形成合金。

浅谈四氧化三铁纳米材料的制备与应用

浅谈四氧化三铁纳米材料的制备与应用

第2期2020年4月No.2 April,2020四氧化三铁纳米粒子化学性质较为稳定,粒径能够降到几纳米,有着极高的催化活性以及很好的磁响应与耐候性等优点,可以在多个方面进行合理运用。

比如,汽车面漆与皮革方面、塑料与涂料方面、催化剂与组织工程方面等,与此同时,有望探索新的用途。

本研究针对四氧化三铁纳米材料的制备及其在各方面的运用进行了分析和论述。

1 四氧化三铁性质与结构铁氧化物可以划分成3种类型,即四氧化三铁、一氧化铁与三氧化二铁,其化学名称是Fe 3O 4、FeO 、Fe 2O 3,而M (Fe 3O 4)=231.540。

四氧化三铁为黑色晶状固体,是电的导体,具备磁性,同时,不溶于水,还有还原性与氧化性。

四氧化三铁高温有氧加热容易氧化成三氧化二铁;还易于被还原性强的物质还原成铁单质。

经过X-射线衍射能够发现:四氧化三铁化合物是以Fe 2+与Fe 3+混合氧化态构成,属于反尖晶石结构。

2 四氧化三铁纳米材料的制备方式分析通常而言,影响纳米四氧化三铁性能的核心因素有结晶度与磁饱和量、粒径与矫顽力等。

不一样的性能,其适用范围不同,如此看来,四氧化三铁纳米粒子制备方式存在着一定的差异性。

四氧化三铁纳米粒子制备方式的关键为物理与化学方式。

物理方式中具有代表性的就是机械球磨方式,该制备方式简单,可是所花时间长,颗粒大小不同,产品纯度不高,所以,该方式制备出来的纳米材料不能满足科学领域的需求。

当下制备四氧化三铁纳米粒子的常用法为化学方式,合成的纳米粒子很稳定,形状可以控制,同时,可以单分散,该制备方式程序简单,费用低。

当下制备纳米四氧化三铁的方式较多,比如热液、沉淀与热水解方式等。

2.1 水热方式这种方法也被称为热液方法,从宏观角度而言涵盖了水溶剂热方式以及溶剂热法。

反应是于高压和高温下的水溶液中展开的,因此,一定形式的前驱物质会产生和常温下不一样的性质,比如,溶解度提高、化合物晶体结构转型、离子活度加强等。

2024纳米材料与技术期末考试复习

2024纳米材料与技术期末考试复习

《纳米材料与技术》期末复习第一章:纳米科学技术的发展历史——1、1959年12月,美国物理学家费曼在加州理工学院召开的美物理学会会议上作了一次富有想象力的演说“最底层大有发展空间”,费曼的幻想点燃纳米科技之火。

2、1981年比尼格与罗勒尔独创了看得见原子的扫描隧道显微镜(STM)。

3、1989年在美国加州的IBM试验内,依格勒博士采纳低温、超高真空条件下的STM操纵着一个个氙原子,实现了人类另一个幻想——干脆操纵单个原子。

4、1991年,日本的饭岛澄男教授在电弧法制备C60时,发觉氩气直流电弧放电后的阴极碳棒上发觉了管状结构的碳原子簇,直径约几纳米,长约几微米碳纳米管。

5、1990年在美国东海岸的巴尔的摩召开其次届国际STM会议的期间,召开了第一届国际纳米科学技术会议,该会议标记纳米科学技术的诞生。

其次章:1、纳米材料的分类:按功能分为半导体纳米材料、光敏型纳米材料、增加型纳米材料和磁性纳米材料;按属性分为金属纳米材料、氧化物纳米材料、硫化物纳米材料、碳(硅)化合物纳米材料、氮(磷)等化合物纳米材料、含氧酸盐纳米材料、复合纳米材料。

按形态分为纳米点、纳米线、纳米纤维和纳米块状材料。

2、纳米材料的四个基本效应:小尺寸效应、量子尺寸效应、表面效应、宏观量子隧道效应。

1)量子尺寸效应与纳米材料性质a.导电的金属在制成超微粒子时就可以变成半导体或绝缘体;绝缘体氧化物相反。

b.磁化率的大小与颗粒中电子是奇数还是偶数有关。

c.比热亦会发生反常变更,与颗粒中电子是奇数还是偶数有关。

d.光谱线会产生向短波长方向的移动。

e.催化活性与原子数目有奇数的联系,多一个原子活性高,少一个原子活性很低。

2)小尺寸效应的主要影响:a.金属纳米相材料的电阻增大与临界尺寸现象(电子平均自由程)动量b.宽频带强汲取性质(光波波长)c.激子增加汲取现象(激子半径)d.磁有序态向磁无序态的转变(超顺磁性)(各向异性能)e.超导相向正常相的转变(超导相干长度)f.磁性纳米颗粒的高矫顽力(单畴临界尺寸)3)表面效应及其影响:表面化学反应活性(可参加反应)、催化活性、纳米材料的(不)稳定性、铁磁质的居里温度降低、熔点降低、烧结温度降低、晶化温度降低、纳米材料的超塑性和超延展性、介电材料的高介电常数(界面极化)、汲取光谱的红移现象。

纳米技术与纳米材料制备及应用现状

纳米技术与纳米材料制备及应用现状

我国 发展纳 米科 技要 根据 发展 现状 和 国际发展
态势 ,着 眼于 国家 长远发展 ,以提 高我 国科 技持续 创新能力 、发展高科 技 、实现产业化为指导方针 ,坚 持 “ 所为 、有所 不为 ,总体 跟进 ,重 点突破 ” 有 ,采 用新 机制 ,充分 调动 科研 人员积 极性 。作 者 介绍 了
步 规范 ,④产 、学 、研价 值链 尚未 形 成 。
因此 ,笔者 着重对 2 0 0 5年纳米技术 的制备 与应用加 以介绍 。
白春礼 …首 先 分析 了美 国纳 米 科 技政 策指 出 ; 20 年美 国总统 布什签署 了 2 世纪纳米研究法 案》 04 1
是 以法律的形 式保 证 2 0 年 以后 的 4年 ,政 府对纳 05
界排名没进入 前 2 名 在最 近刚 刚通过 的国家科 技 0 技术 中长期 发展纲 要 中,纳米 技术被 列为 优先 发展 领域 国内 已有 锂 电池 、 乙肝试 纸 、建筑涂料 等 1 0
就 是 发展纳 米科学 ,开发 新材料 、新方法 。此外欧 盟 、英 国 日本 、韩 国都有 各 自的 纳米计 划 :各 I 刍 建立 了研 究 机 构 。在 世 界 纳 米 总 投 资 中 ,美 国 占
晶须的直径细小原子排列高度有序内含缺陷较少其强度接近材料原子间键力的理论值是一种高性能的增强材料硼酸盐晶须自1959年发现以来到上世纪90年代中日合作开发出以海盐化工产品为主要原料的硼酸镁晶须它的价格是碳化硅晶须120130是当今材料领域中最有希望广泛应用的晶须之一





E 维普资讯




孙 成 林 ,连 钦 明
(. 1龙岩市亿丰粉碎机械有限公司北京办事处, 北京 108; 2龙岩市亿丰粉碎机械有限公 司, 0 01 . 福建 龙岩 340 ) 6 01

纳米科学考试试题及答案

纳米科学考试试题及答案

纳米科学考试试题及答案第一部分:选择题1. 纳米科学是研究哪个尺度的物质和现象?A) 纳米尺度以下B) 微观尺度C) 宏观尺度D) 厘米尺度以上2. 纳米颗粒与宏观物体相比,具有哪些特殊性质?A) 比表面积大B) 具有量子效应C) 具有独特的光电磁性能D) 以上都是3. 纳米材料的制备方法中,下列哪种属于“底部向上”方法?A) 气相沉积B) 溶液法合成C) 碳纳米管生长D) 水热合成4. 纳米颗粒的发散性质可以用下列哪个参数来描述?A) 带电状态B) 表面形貌C) 形态尺寸D) 化学组成5. 纳米材料的应用领域包括下列哪些方面?A) 电子学B) 医学C) 能源D) 环境治理E) 以上都是第二部分:填空题1. 纳米是一种特殊的_________。

2. CFN是纳米科学中的常用缩写,它代表的是_________。

3. 纳米颗粒的光学性质会受到_________的影响。

4. 纳米材料常用的制备方法有_________。

5. 纳米科学在_________方面有广泛应用。

第三部分:问答题1. 纳米科学有哪些重要的研究内容?答:纳米科学的研究内容包括纳米材料的制备与表征、纳米尺度的物理学和化学等。

研究人员主要关注纳米尺度下材料的特殊性质和应用潜力。

2. 纳米颗粒的表面性质为什么重要?答:纳米颗粒的表面性质是其与周围环境相互作用的关键因素。

由于纳米颗粒具有高比表面积,其表面性质可以对材料的化学反应、光学性质和生物相容性等方面产生显著影响。

3. 简述一种常见的纳米材料制备方法。

答:一种常见的纳米材料制备方法是溶液法合成。

该方法通常通过在溶剂中溶解金属盐或有机物,并加入还原剂或表面活性剂来控制反应的速率和尺寸,从而得到纳米颗粒。

第四部分:答案第一部分:选择题1. A) 纳米尺度以下2. D) 以上都是3. C) 碳纳米管生长4. A) 带电状态5. E) 以上都是第二部分:填空题1. 特殊的尺度或尺寸范围2. Center for Functional Nanomaterials3. 表面形貌和尺寸4. 气相沉积、溶液法合成、碳纳米管生长、水热合成等5. 电子学、医学、能源、环境治理等第三部分:问答题1. 纳米科学的重要研究内容包括纳米材料的制备与表征、纳米尺度的物理学和化学等。

纳米复合材料

纳米复合材料
不同成分、不同相或不同种类的纳米粒子复合而成的纳米固 体材料。
Eg. SiO2纳米微粒
2、0-3复合型:
纳米粒子分散在常规三维固体中,另外通过物理或化学方法 将纳米粒子填充在介孔中,形成介孔复合的纳米复合材料。 Eg. 塑钙材料
3、0-2复合型:
把纳米粒子分散到一维的薄膜材料中,可分为均匀弥散和非 均匀弥散,称为纳米复合薄膜材料。 Eg. 碳纳米薄膜
2、阻隔性能
这是插层型聚合物基纳米复合材料最突出的性能之一,由于聚 合物分子链进入到无机纳米材料片层之间,分子链段的运动受到限 制,提高了复合材料的耐热性及尺寸稳定性。
3、新型功能材料
纳米粒子均匀分散在复合材料之中,可以直接或间接地达到具 体功能的目的。
二、纳米复合材料的示例
(一)、碳纳米管/聚苯胺复合材料 (二)、磷灰石-硅灰石/壳聚糖复合材料
王旭峰、熊峰、韩林奇 夏郑华、邵良志
一、纳米复合材料的简述
(一)、定义
纳米复合材料通常定义为,它是指组成 相中至少有一相在一个维度上为纳米量级, 通常在微米和亚微米的基体中添加纳米第二 相或在纳米基体中添加纳米第二相的复合材 料体系。
(二)、分类
0-3复合型
类别
0-0复合型 0-2复合型
1、0-0复合型:
2、性质研究
磷灰石-硅灰石(AW)生物活性玻璃陶瓷具有良 好的生物活性和生物相容性,壳聚糖(CS)是一种 可以降解的有机高分子天然生物材料,它具有良 好的物理性质、生物相容性并可有效地抑制细菌 的生长。 复合支架材料具有大孔/微孔结构、孔隙分布 均匀和相互贯通的优点,大孔孔径100-500μm, 孔隙率为80%-90%,复合支架材料适宜骨髓基质干 细胞(MSC)黏附、增殖和分化,无细胞毒性。

纳米复合材料思考题汇总(1)

纳米复合材料思考题汇总(1)

纳米复合材料总复习思考题第一章:纳米材料与复合材料1、何为纳米材料和纳米技术?答:纳米材料:任一维度的尺寸在1~100nm之间的材料。

纳米技术:在分子水平控制单个原子,创造分子结构完全不同的新物质的技术。

2、纳米材料有哪些基本性质和特性?答:基本性质:小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应。

特性:光学特性、磁学特性、催化特性、增强增韧特性、储氢性质、润滑性质。

3、根据制备过程的物态,简述纳米材料的制备方法和工艺。

答:按制备过程的物态分类:气相制备方法——金属纳米材料(Au、Ag、Cu 等)液相制备方法——以水和有机溶剂为介质制备各种纳米材料和复合材料固相制备方法——机械合金化制造技术4、晶相纳米材料的形成包括哪些过程?答:晶体纳米材料的形成原理:成核、晶核生长。

5、液相法制备纳米材料有哪些优点和缺点?答:优点:颗粒表面活性好,工业化生产成本低,产物组成易控。

缺点:硬团聚,颗粒大小不均匀,纯度低,性能不够稳定6、简述用溶胶凝胶法制备纳米材料的过程。

答:溶胶凝胶法——采用特定的纳米材料前驱体在一定条件下水解,形成溶胶然后经溶剂挥发及加热等处理,使溶胶转变成网状结构的凝胶,再经过适当的后处理工艺形成纳米材料的一种方法。

7、纳米材料可应用在哪些领域?答:应用于以下方面:催化剂、陶瓷材料、医用材料、磁性材料、防护材料、光电转换材料、传感器。

8、常用的纳米粉体材料有哪4种?答:常见的4种:纳米CaCO3、纳米TiO2、白碳黑、炭黑。

9、典型的纳米结构材料有哪些(至少3种)?答:常见纳米结构材料:C60 与 C70,碳纳米管、石墨烯家族、TiO2纳米管、纳米生物管、纳米棒、线、丝。

10、简述纳米TiO2光催化反应机理。

答:半导体TiO2粉体吸收紫外光后,价电子被激发到导带上。

在导带上产生光生电子(e-),在价带上产生空穴(h+)。

这种光生电子和空穴具有极高的能量,后者有极强的氧化性,前者有极强的还原性,在常温常压下,就可以将几乎所有的有机物和臭气、细菌和病毒、及部分无机物完全分解和矿化。

材料制备知识点总结

材料制备知识点总结

材料制备知识点总结一,名词解释1,材料合成:把各种原子、分子结合起来制成材料所采用的各种化学方法和物理方法,一般不含工程方面的问题。

2,材料制备:制备不仅包含了合成的基本内涵,而且包含了把比原子、分子更高一级聚集状态结合起来制成材料所采用的化学方法和物理方法。

3,材料加工:是指对原子、分子以及更高一级聚集状态进行控制而获得所需要的性能和形状尺寸(以性能为主)所采用的方法(以物理方法为主).4,材料的分类:(1)用途:结构材料,功能材料。

(2)物理结构:晶体材料、非晶态材料和纳米材料。

(3)几何形态:三维二维一维零维材料。

(4)发展:传统材料,新材料。

(5)化学键:以金属健结合的金属材料,以离子键和共价键为主要键合的无机非金属材料,以共价健为主要键合的高分子材料,将上述材料复合,以界面特征为主的复合材料,钢铁、陶瓷、塑料和玻璃钢分别为这四种材料的典型代表。

5,新材料特点:品种多、式样多,更新换代快,性能要求越来越功能化、极限化、复合化、精细化。

6,新材料主要发展趋势:(1)结构材料的复合化(2)信息材料的多功能集成化(3)低维材料迅速发展(4)非平衡态(非稳定)材料日益受到重视。

7,单晶体的基本性质:(1)均匀性(2)各向异性(3)自限性(4)对称性(5)最小内能和最大稳定性。

7,晶体生长类型:晶体生长有固相-固相平衡,液相-固相平衡,气相-固相平衡。

晶体生长分为成核和长大两阶段。

成核主要考虑热力学条件。

长大主要考虑动力学条件。

新相核的发生和长大称为成核过程。

成核过程分为均匀成核和非均匀成核。

8,过冷度:每种物质都有平衡结晶温度或称为理论结晶温度。

在实际结晶中,实际结晶温度总低于理论结晶温度,称为过冷现象。

两者温度差值被称为过冷度,它是晶体生长的驱动力。

冷却速度↑,过冷度↑,晶体生长速度↑冷却速度↓,过冷度↓,晶体生长速度↓。

9,定向凝固:凝固过程中采用强制手段,在凝固金属和凝固熔体中建立特定方向的温度梯度,使熔体沿与热流相反的方向凝固,获得具有特定取向柱状晶的技术。

简述纳米材料的发展历程

简述纳米材料的发展历程

简述纳米材料的发展历程纳米材料问世至今已有20多年的历史,大致已经完成了材料创新、性能开发阶段,现在正步人完善工艺和全面应用阶段。

“纳米复合聚氨酯合成革材料的功能化”和“纳米材料在真空绝热板材中的应用”2项合作项目取得较大进展。

具有负离子释放功能且释放量可达2000以上的聚氨酯合成革符合生态环保合成革战略升级方向,日前正待开展中试放大研究。

该产品的成功研发及进一步产业化将可辐射带动300多家同行企业的产品升级换代。

联盟制备出的纳米复合绝热芯材导热系数可控制为低达4.4mW/mK。

该产品已经在企业实现了中试生产,正在建设规模化生产线。

联盟将重点研究开发阻燃型高效真空绝热板及其在建筑外墙保温领域的应用研发和产业化,该技术的开发将进一步促进我国建筑节能环保技术水平的提升,带动安徽纳米材料产业进入高速发展期。

纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。

纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。

由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。

并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。

纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。

当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。

纳米材料及其水热法制备(上)

纳米材料及其水热法制备(上)
3O 0 O多种 产 品 中有 6 %是 属 于 纳米 粉 体 或 以 2
维普资讯




第 2 卷 3 , b 等 A
纳 米 粉体 为 基 础 的产 品 , 占化 工产 品产 值 的 4 % ….超细 粉体 的生产 和技 术广 泛应 用 在 改 0

牛认
的 粉体材 料. 8 o年代 中期 .他 采用惰 性气体 凝 聚 法制 得 了纯 的纳 米级 粉体 _,又在 高洁净 的 】 】 真 空条件 下 ,原位 加压成 型制 得 了纳 米微 晶块 体, 从此 宣告 了纳米 晶的诞生 .但直 至 8 o年代 末 ,0年代 初 . 9 特别是 扫描 隧道 显 微镜 (T 问 S M) 世 以后 .对纳 米 晶的结 构与形 成机理 等 才有 了 进 一步 的认识 . 自此 ,人们 开始热衷 于对 纳米 材 料 的研究 ,很快 就取 得 了长足 的进步 . 当前 纳c 料 已成 为材 料科 学 中独立 的一个重 要分 米材 )
支.
的研 究包 括 了原 子 ,分子特 性和 相互 作 用 的探 讨 ,着重 在其原 子和 分子 尺度上 所表 现 出来 的
特性 .
第, 吖
纳米 晶具有 高浓度 界 面以及 由界 面上原 子 特殊 结构所 产 生 的界 面效 应 ,导 致 了材料 力 学 性能 , 磁性 , 电性 , 导性 , 介 超 光学性 乃 至 热力 学 性 能 的 改变 ,所 以 纳米 材 料 具 有 广 泛 的 实 用 性 .它是 电子器 件微 型化 , 录介 质 , 记 精细 陶 瓷 和 电子技术 新兴 产业 发展 的物 质基 础 .纳米材 料在 新技术 中的潜在柞 用更 是令 人 鼓舞 .德 国 科学 家 Gee等 制备 出具有 纳米 晶结构 的 陶瓷 lt ir 薄 片 .它们 在温 度低 于 1O 8 ℃时所 表 现 出的 超

三氧化钨

三氧化钨

纳米WO3材料的制备、应用及发展班级:** 姓名:** 学号:**摘要:结合近年来的相关文献,综述了纳米WO3材料的研究现状与进展,重点概述了超细WO3粉体和纳米WO3薄膜的各种制备方法及各自优缺点,并介绍了纳米WO3薄膜的稀有金属掺杂研究等;分析了纳米WO3材料的研究意义,介绍了纳米WO3材料在变色及催化等方面的应用。

最后分析了纳米WO3料应用的发展趋势。

关健词:纳米WO3材料制备方法、掺杂、改性、应用0引言自20世纪80年代以来,纳米科技迅速发展,纳米材料已成为凝聚态物理化学和材料科学的一个新的成长点[1,2]在信息功能材料、催化、磁性材料等方面具有广阔的应用前景。

纳米WO3材料是一种引人注目的可逆变色性(电/气致变色材料)和离子敏感性材料(如H2 , NH3 , NO2 , H2S,O3,O2等[3]。

纳米WO3也可用于共催化剂中,增强金属或金属氧化物催化剂的催化效果.此外,纳米W03因具有较大的比表面,表面效应显著,对电磁波有很强的吸收能力,可用作优良的太阳能吸收材料和隐形材料。

本文主要综述了纳米WO3薄膜与超细粉体的制备方法,纳米WO3薄膜的掺杂改性材料,研究现状及应用。

1纳米WO3材料的制备纳米WO3材料按制作方法和结构形式,可分为烧结型、薄膜型、厚膜型等。

其中烧结型、厚膜型气敏器件都以超细微粉作为原料[4]。

现在分别介绍纳米WO3薄膜和超细粉体的制备。

1.1纳米WO3薄膜的制备纳米WO3薄膜的制备方法很多,薄膜的性质与制备方法及工艺条件密切相关,用不同制备方法制备的WO3薄膜在尺寸和晶型等方面有所不同,仅就常见的方法简述如下。

1. 1. 1蒸发法利用物质在高温下的蒸发现象,可以制备各种薄膜材料。

蒸发法具有一些明显的优点,如较高的沉积速度、相对较高的真空度,以及由此导致的较高的薄膜纯度等。

蒸发法包括蒸发冷法、电子束蒸镀法、电弧蒸发法、激光蒸发法、空心阴极蒸发法、热蒸发法等,其中热蒸发法是使用比较多的方法之一R.Sivakumar等[5]采用电子束蒸镀法成功研制成了WO3薄膜.李建军等[6]也采用电子束蒸发法制备不同MoO3,掺杂量的氧化钨薄膜,都有较好的电致变色性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新型材料及其应用期末论文 纳米材料制备简述 作者:盛建飞 班级:冶金1班 学号:1045562119 摘要:由于纳米材料的特殊结构以及所表现出来的特异效应和性能, 使得纳米材料具有不同于常规材料的特殊用途。行之有效的制备方法将会成为纳米材料得以快速发展的基础。本文就纳米材料的制备方法进行简述。

关键词:纳米材料 制备方法 问题 措施 0前言:通常我们把组分或晶粒结构控制在100nm以下的材料称为纳米材料。广义地说,纳米材料是指在三维空间中至少有一维处于纳米尺寸范围的基本单元。纳米材料因其小尺寸效应,使其在热力学、电性能、性能、光性能、化学性能等方面具有诸多优良特性。纳米技术以其带给人类的全新的对物质领域的认识, 无疑正在掀起一场技术革命,因此提高纳米材料的制备技术就显得尤其重要,本文就纳米材料的的制备作一些简单的论述。

1纳米微粒的制备方法: 纳米微粒的制备方法一般可分为物理方法和化学方法,制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1物理方法 1.1.1蒸发冷凝法 又称为物理气相沉积法( PhysicsVapor Depos-ition 简称 PVD 法),是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中急冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但其技术设备要求高。 根据加热源的不同可分为: (1)真空蒸发-冷凝法。其原理是在高纯度惰性气氛(如Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。此法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒;但其仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时存在局限性。 (2)激光加热蒸发法。它是以激光为快速加热源,使气相反应物分子内部快速吸收和传递能量,瞬间完成气相反应的成核、长大和终止。特点:可获得粒径小(小于50nm)且粒度均匀的纳米微粒。但由于激光器的效率低,电能消耗较大,投资大,难以实现规模化生产。 (3)高压气体雾化法。它是利用高压气体雾化器将﹣20~﹣40℃的氦气和氩气以3倍于音速的速度射入熔融材料的液流内,熔体被破碎成极细颗粒的射流,然后急剧骤冷得到超微粒。特点:微粒粒径小且粒度分布较窄。 (4)高频感应加热法。是以高频线圈为热源,使坩埚内的物质在低压(1~10kPa)的He、N2

等惰性气体中蒸发,蒸发后的金属原子与惰性气体原子碰撞,冷却凝聚成颗粒。特点: 微粒

纯度高,粒度分布较窄;但成本较高,难以获得高沸点的金属。 (5)热等离子体法。它是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。 (6)电子束照射法。1995年许并社等人利用高能电子束照射母材, 成功地获得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物, 如用电子束照射Al2O3后,表层的Al-O键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝、形核、长大,形成Al的纳米微粒。但目前该方法获得的纳米微粒限于金属纳米微粒。 1.1.2物理粉碎法 通过机械粉碎、冲击波诱导爆炸反应等方法合成单一或复合纳米粒子。特点:操作简单、成本较低;但易引入杂质,降低纯度,粒度不易控制且分布不均,难以获得粒径小于100nm 的微粒。 1.1.3机械合金化法 利用高能球磨方法, 控制适当的球磨条件以获得纳米级晶粒的纯元素、合金或复合材料。特点:工艺简单、制备效率高,并能制备出常规方法难以获得的高熔点金属和合金纳米材料,成本较低,不仅适用于制备纯金属纳米材料,还可以制得互不相溶体系的固溶体、纳米金属间化合物及纳米金属陶瓷复合材料等;但制备中易引入杂质,纯度不高,颗粒分布也不均匀。 1.1.4严重塑形变形法 严重塑性变形法是指在静压力的作用下,使块状材料发生严重的形变,最细化到纳米尺度,得到晶态材料和非晶态材料的合物,再经过一定的热处理,从而得到纳米材料。特点:制备的纳米材料纯度高,粒度可控性好。 此外,制备纳米微粒的物理方法还有:溅射法、流动液面上真空蒸镀法、金属蒸气合成法以及混合等离子法等。

1.2化学方法 1.2.1气相燃烧合成法 气相燃烧合成是指在气体燃烧火焰中形成纳米颗粒。该法不仅可以合成氧化物纳米颗粒,而且通过气体的无氧燃烧,可以合成金属氮化物、碳化物等非氧化物纳米颗粒,气相燃烧合成已应用于批量生产纳米石墨、超细氧化钛涂料。特点:合成的纳米颗粒粒度细,粒子团聚少,粒度分布窄,产物纯度高。 1.2.2溶胶-凝胶法 溶胶-凝胶法制备纳米材料的主要步骤是先制备金属化合物,然后金属化合物溶解在适当的溶剂中,经过溶胶、凝胶过程而固化,再经低温热处理得到纳米粒子。热点:与其他方法比,该法具有反应物种多、各组分混合均匀性好、合成温度低、过程易控制等优点,广泛应用于制备陶瓷纳米颗粒和氧化物纳米颗粒;该法的不足之处是必须进行后处理才能得到纳米颗粒,而且纳米颗粒容易发生团聚。 1.2.3有机液相合成法 有机液相合成法主要用在有机溶剂中,能够稳定存在的金属有机化合物和某些无机物成为反应原料,在适当的反应条件下生成纳米材料。特点:该法的显著优点是克服了某些反应物在水溶液中不能稳定存在的缺点,可以在许多介质中制备纳米材料,反应产物可以通过精馏或结晶达到很高纯度;缺点是反应时间过长,产物须进行后处理才能得到结晶较好的纳米颗粒。 1.2.4其它方法 其他化学方法还有相转移法、配位沉淀法、气相蒸发法、热解法、气相反应法、微波等离子体化学气相沉积法、机械化学法等制备方法。

2纳米材料的制备中存在的问题及措施 纳米材料制备中存在的一个突出问题是团聚问题,即纳米粒子会重新团聚成较大的粒子,给制备、稳定化贮存及在复合时的均匀分散和高密度素坯的形成带来了极大的困难。 引起团聚的原因有很多,有关机理尚须进一步研究,以下几点在国内外学术界已基本取得了共识: ①分子间力、氢键、静电作用等通常是引起颗粒团聚的因素,在纳米粒子中表现得更为强烈。 ②由于颗粒间的量子隧道效应、电荷转移和界面原子的相互耦合,使微粒极易通过界面发生相互作用和固相反应而团聚。 ③由于纳米粒子的比表面积巨大,使之与空气或各种介质接触后,极易吸附气体、介质或与其作用,从而失去原来的表面性质,导致粘连与团聚。 ④因其极高的表面能和较大的接触界面,使晶粒生长的速度加快,因而颗粒尺寸很难保持不变。 显然,防止团聚现象发生,以获得粒径小、粒径分布窄、分散性好的纳米粒子,是目前本领域研究最关心的问题之一。以往所采用的一些方法,包括利局部表面化学反应、利用机械-化学反应以及用表面活性剂或聚合物包覆等,虽能够在一定程度上防止团聚现象的发生,但这些方法均具有明显的局限性,因为它们都不能从根本上解决团聚问题。 为此出现了两种新型纳米材料制备方法:超声技术和超临界流体技术。 超声技术在制备纳米材料中的应用: 超声波作用原理:超声波是由一系列疏密相间的纵波构成的,并通过液体介质向四周传播。当超声波能量足够高时,就会产生“超声空化”现象。空化气泡的寿命约0.1µs,它在爆炸时可释放出巨大的能量,并产生速度约110m·s-1、具有强烈冲击力的微射流,使碰撞密度高达1.5kg·cm-2。空化气泡在爆炸的瞬间产生约4000K和100MPa的局部高温高压环境,冷却速度可达109K·s-1。这些条件足以使有机物在空化气泡内发生化学键断裂、水相燃烧或热分解,并能促进非均相界面间的扰动和相界面更新,从而加速界面间的传质和传热过程。化学反应和物理过程的超声强化作用主要是由于液体的超声空化产生的能量效应和机械效应引起的。 显然,利用超声空化技术对于解决制备纳米材料过程中所存在的团聚问题是很有帮助的,通过空化时产生的局部高温、高压或强冲击波和微射流等,可大幅度地减少纳米粒子间的结合力,从而有效地阻止团聚现象的产生。当然,如何利用超声技术来减小有关的结合力仍然是一个需要深入探索的问题,因为声场影响纳米粒子团聚的主要因素包括了声场的频率、输出功率、声强以及声压等,必须改变不同的因素,研究它们对纳米材料制备效果的影响规律,在定量分析的基础上研究声场对纳米粒子团聚现象的作用机理等,这些都是将来科研工作主要探讨的内容。 超临界流体技术在制备纳米材料中的应用: 超临界流体(SCF)是指在临界温度和临界压力之上的流体,具有黏度低,密度大,较好的流动、传质、传热等特性。超临界流体对状态参数的改变十分敏感,温度和压力的微小变化就会使流体的性质发生较大的改变,不仅是其溶剂化性能的改变,也包括其介电性能等物理化学性能的改变。超临界流体所具有的可调节性以及低的表面张力,优异的表面润湿性能、高扩散性都使得其成为合成和制备纳米材料潜在的良好介质。 目前研究最为广泛的是超临界二氧化碳(SCCO2),因为其不燃、本质上无毒、价廉环保。超临界二氧化碳有对小分子和非极性聚合物较好的溶解性,因此在反应结束后对杂质的分离、产品的纯化和组分(如催化剂等) 的回收,特别是作为热敏性物质的分离纯化都有很好的效果。就SCCO2中纳米材料的制备机理来看,很多情况下都用到了快速的相分离技术, 这种利用惯性或分子链运动的滞后性来阻碍分子团聚(或限制不平衡性的过程叠加效应)对制备纳米尺寸或包含纳米尺寸的材料都具有重要意义。因此可以预见在神奇的低黏度的可调节性超临界二氧化碳中,加上磁场、电场等外场以及新奇有效的模板的应用,连同分子固有的自组装特性,我们相信制备不同功能的纳米材料及其应用都有美好的前景。

个人小结:纳米材料在热力学、电性能、性能、光性能、化学性能等方面具有的诸多优良特

相关文档
最新文档