石墨烯纳米带场效应管
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯纳米带场效应管原理
微电子与固体电子学专业
学生潘立丁S111411 指导教师石瑞英摘要:由于石墨烯的导带与价带之间没有能隙,做成晶体管器件时,很难实现开关特性,而且若要运用于现在普遍使用的逻辑电路,其金属性也是一个巨大的难题。如何在石墨烯中引入能隙,成为了石墨烯晶体管器件制造的关键。本文主要关注的石墨烯纳米带场效应管,通过对肖特基势垒石墨烯纳米带场效应管和金属氧化物半导体石墨烯纳米带场效应管这两种结构进行对比和分析来了解其主要特性。
关键词:石墨烯纳米带场效应管肖特基势垒
Abstract:Because there is no energy gap in graphene,it is very difficult to achieve on-off characteristic while use it to make transistors, and it is metallic behavior also have been a big problem if we want to use it in logical circuits. How to get an energy gap in grapheme has become the key point of the fabrication of grapheme transistors. This paper focus on graphene nanoribbon FETs, the comparison of two structures (GNR SBFET and GNR MOSFET) is used to analyze the main behaviors of graphene nanoribbon FETs.
Key words:graphene nanoribbon field-effect-transistor schottky barrier
1、引言
石墨烯[1](Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。2004年,石墨烯被成功地从石墨中分离出来。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比碳纳米管或硅晶体迁移率高,而电阻率只约10-6Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子传输的速度极快,因此被期待为可用来发展出更薄、导电速度更快的新一代电子元件或电晶体的材料。
2、石墨烯纳米带基本结构
目前已知可以在石墨烯中引入能隙的手段主要有:(1) 利用对称性破缺场或相互作用等使朗道能级发生劈裂,在导带与价带之间引入能隙。这主要通过掺杂、外加电场、化学势场等方式在双层石墨烯中引入对称破缺,实现人工调制能隙。
(2) 利用量子陷阱效应和边缘效应,通过形成石墨烯纳米结构(如纳米带)引入能
隙,通过调节带宽,可以实现对能隙宽度的调节。(3) 利用化学气相沉积法掺杂产生能隙,通过调节掺杂程度可实现对能隙的调节。(4) 利用基底作用诱导(如SiC基底上的外延石墨烯)产生能隙,通过调节基底的作用程度可实现对能隙的调节。本文主要关注的是石墨烯纳米带结构。
为了要赋予单层石墨烯某种电性质,会按照特定样式切割石墨烯,形成石墨烯纳米带(Graphene nanoribbon)。切开的边缘形状可以分为扶手椅形[2](图1a)和锯齿形[3](图1b)。
a 扶手椅形纳米带
b 锯齿形纳米带
图1
根据密度泛函理论计算得到的结果,显示出扶手椅形具有半导体性质,其能隙与纳米带带宽成反比。而采用紧束缚近似模型做出的计算,预测锯齿形具有金属键性质,又预测扶手椅形具有金属键性质或半导体性质;到底是哪种性质,要依宽度而定。实验结果明确显示,随着纳米带带宽减小,能隙会增大。
石墨烯纳米带的边缘效应[4]如图2所示。
图2
影响边缘散射的因素主要是纳米带宽度和边缘粗糙程度。加上晶格声子散射和量子陷阱等作用,石墨烯纳米带就具备了产生能隙的因素。而一些人也通过计算和模拟的方式来分析其影响。
由图3和图4可以看出,扶手椅形纳米带在n为适当值的情况下,显示出半导体的特性,其能隙也可以利用到电子器件中,从而为石墨烯纳米带场效应管的
产生提供了条件。锯齿型结构石墨烯纳米带显示出较强的金属特性。数字电路应用主要集中在用扶手椅型作为沟道材料。
n = 3 n = 4 n = 5
n = 6 n = 7 n = 8
图3 采用紧束缚近似计算得出的扶手椅形纳米带结构带宽与能隙的关系
其中n为纳米带边缘碳原子个数
n = 4 n = 6 n = 8
n = 10 n = 12 n = 14
图4 采用紧束缚近似计算得出的锯齿形纳米带结构带宽与能隙的关系
其中n为纳米带边缘碳原子个数
3、石墨烯纳米带场效应管结构及特性
典型的石墨烯纳米带场效应管[5、7]结构图如图5所示。以碳化硅为衬底,沟道材料为石墨烯纳米带,源和漏采用肖特基接触,而栅介质层则用氧化铝和氢烷。
图5 石墨烯纳米带场效应管结构
图6显示的是在图5中结构之下纳米带宽度为10nm,长度1.5um,栅介质厚度为15nm,漏源电压为20mV的情况下,在4K和295K下的开关效率。我们可以看到温度对石墨烯纳米带场效应管的开关效率影响非常之大。
图6 不同温度下的开关效率
图7 4K情况下的石墨烯纳米带场效应管输出特性曲线
由图7我们也可以看到,虽然石墨烯纳米带场效应管有良好的开关效率、截止频率等等特性,但是没有饱和特性,也就是非常难以在数字电路中得到广泛的应用。
下面我们再通过两种不同结构来对比分析石墨烯纳米带场效应管的结构及其特性。这两种结构分别是肖特基势垒石墨烯纳米带场效应管[6](GNR SBFET)和金属氧化物半导体石墨烯纳米带场效应管(GNR MOSFET)。