表面活性剂与纳米材料的制备

表面活性剂与纳米材料的制备
表面活性剂与纳米材料的制备

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料的制备及合成

纳米材料的合成与制备 (1) 摘要 (1) 关键词 (1) The synthesis and preparation of nanomaterials (1) Abstract (1) Keywords (1) 引言 (1) 1纳米材料的化学制备 (2) 1.1纳米粉体的湿化学法制备 (2) 1.2纳米粉体的化学气相法制备 (2) 1.2.1气体冷凝法 (3) 1.2.2溅射法 (3) 1.2.3真空蒸镀法 (4) 1.2.4等离子体方法 (4) 1.2.5激光诱导化学气相沉积法(LICVD) (4) 1.2.6爆炸丝方法 (5) 1.2.7燃烧合成法 (5) 1.3纳米薄膜的化学法制备 (5) 1.4纳米单相及复相材料的制备 (6) 2纳米材料的物理法制备 (7) 2.1纳米粉体(固体)的惰性气体冷凝法制备 (7) 2.2纳米粉体的高能机械球磨法制备 (7)

2.3纳米晶体非晶晶化方法制备 (8) 2.4深度塑性变形法制备纳米晶体 (9) 2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (9) 2.6纳米薄膜物理气相沉积技术 (9) 3纳米材料的应用展望 (10) 4 总结 (11) 参考文献 (12)

纳米材料的合成与制备 摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。 关键词纳米材料,合成,制备 The synthesis and preparation of nanomaterials Abstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects. Keywords nano materials, synthesis, preparation 引言 纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

表面活性剂复配体系的分析

34收稿日期:2001-12-08 表面活性剂复配体系的分析 C B戈文德莱姆1等(印度),张健2 (11Anal y tical Chem istr y and S p ectrosco py S ection at the H industan Lever Research C entre,India) 摘要:介绍了一种使用经典的分析技术定量测定液体皂、皂胶、洗衣皂及香皂中存在的皂类、脂肪酸、非离子表面活性剂及除肥皂以外的阴离子表面活性剂和两性表面活性剂混合物的分析方法。这种方法克服了分析混合表面活性剂系统时常常会碰到的问题。 关键词:表面活性剂;肥皂;两相滴定法;萃取 中图分类号:T Q423文献标识码:A文章编号:1006-7264(2002)03-0034-04 现在市售的液体皂、皂胶及皂条中的活性成分大 部分是表面活性剂复配体系。常用的表面活性剂有肥皂(多半是脂肪酸的钠盐或钾盐)、游离脂肪酸(在富脂皂中)、阴离子表面活性剂(AOS、LAS、S LS、S LES 和椰油基羟基乙磺酸钠)、非离子表面活性剂(脂肪醇聚氧乙烯醚、椰子油-单/二乙醇酰胺)和两性表面活性剂(甜菜碱类)。 对于单独的表面活性剂类型和它们的一些混合物已有从基础的湿法化学分析到先进的光谱技术等许多分析方法的报道。在文献中被广泛使用的方法之一是用乙醇从产品中萃取出活性成分,然后通过离子交换树脂的混合床分离出非离子表面活性剂成分。这种技术的局限性在于脂肪酸不能被混合床截留而随非离子表面活性剂一起被洗提出来。有不少离子交换树脂可用来分离离子型的成分但是却未曾用于本文所述的表面活性剂复配体系。用溶剂从产品中萃取表面活性剂是另一种已知的技术。乙醇几乎能溶解所有类型的表面活性剂。据报道,肥皂不溶于丙酮,因此可用这种方法将非离子表面活性剂、除肥皂以外的阴离子表面活性剂与肥皂分离。但是在实际操作中发现,除肥皂以外的阴离子表面活性剂在丙酮中的溶解度是不定量的,特别是有肥皂存在的情况下。除肥皂以外的阴离子表面活性剂,在有非离子表面活性剂、肥皂、脂肪酸及两性表面活性剂存在时可以用亚甲基蓝或混合酸性指示剂通过常规的两相滴定法来测定。 我们介绍了一种可以回避在分析复杂的混合表面活性剂时会遇到的限制和困难的方法,即在丙酮萃取时将脂肪酸及除肥皂以外的阴离子表面活性剂与非离子表面活性剂一起萃取出来;在用石油醚从经酸化的样品溶液中萃取总脂肪物时,将除肥皂以外的阴离子表面活性剂与脂肪酸一起萃取出来。所采用的分析步骤见图1。 1实验 111表面活性剂在各种溶剂中的溶解性 将约015g~110g表面活性剂置于一试管中,然后加入10m L~15m L溶剂,在40℃左右的水浴中加热,用玻璃棒搅拌并记录观察到的结果(见表1)。112实验步骤的确证 日用化学品科学DETERGENT&COSMETICS V ol.25N o.3 June2002 第25卷第3期2002年6月 (总130 )

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

纳米相增强金属材料制备技术的研究进展及应用

纳米相增强金属材料制备技术的研究进展及应用 【摘要】目前纳米技术应用广泛,在高强金属材料应用方面尤为突出。本文针对现有主要几种纳米增强金属材料制备工艺方法进行概述并比较,讨论其优缺点。最后还探讨了纳米相增强制备技术未来的发展趋势和改进方向,并对纳米结构材料应用领域和前景进行展望。 【关键词】纳米增强制备方法优缺点 随着科技进步,各个领域对于相关材料的性能要求日益提高。纳米增强技术是改善材料性能的重要方法之一,其在金属材料领域尤其应用广泛。在电子、汽车、船舶、航天和冶金等行业对高性能复合材料需求迫切,选用最佳制备方法制备出性能更优良的纳米材料是当前复合材料发展的迫切要求。 1 纳米增强技术概述 纳米相增强金属材料是由纳米相分散在金属单质或合金基体中而形成的。由于纳米弥散相具有较大的表面积和强的界面相互作用,纳米相增强金属复合材料在力学、电学、热学、光学和磁学性能方面不同于一般复合材料,其强度、导电性、导热性、耐磨性能等方面均有大幅度的提高[1]。 1.1 机械合金化法 机械合金化法(MA)是一种制备纳米颗粒增强金属复合材料的有效方法。通过长时间在高能球磨机中对不同的金属粉末和纳米弥散颗粒进行球磨,粉末经磨球不断的碰撞、挤压、焊合,最后使原料达到原子级的紧密结合的状态,同时将颗粒增强相嵌入金属颗粒中。由于在球磨过程中引入了大量晶格畸变、位错、晶界等缺陷,互扩散加强,激活能降低,复合过程的热力学和动力学不同于普通的固态过程,能制备出常规条件下难以制备的新型亚稳态复合材料。 1.2 内氧化法 内氧化法(Internal oxidation)是使合金雾化粉末在高温氧化气氛中发生内氧化,使增强颗粒转化为氧化物,之后在高温氢气气氛中将氧化的金属基体还原出来形成金属基与增强颗粒的混合体,最后在一定的压力下烧结成型。因将材料进行内氧化处理,氧化物在增强颗粒处形核、长大,提高增强粒子的体积分数及材料的整体强度,这样可以提高材料的致密化程度,且可以改善相界面的结合程度,使复合材料的综合力学性能得到提高。 1.3 大塑性变形法 大塑性变形法(Severe plastic deformation)是一种独特的纳米粒子金属及金属合金材料制备工艺。较低的温度环境中,大的外部压力作用下,金属材料发

纳米材料的制备方法与应用要点

纳米材料的制备方法与应用 贾警(11081002) 蒙小飞(11091001) 1引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。引起了世界各国科学家的浓厚兴趣。几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。颗粒直径一般为1~100nm之间。颗粒可以是晶体,亦可以是非晶体。由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。 2纳米材料的制备方法 纳米材料有很多制备方法,在此只简要介绍其中几种。 2.1溶胶-凝胶法 溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。 2.2热合成法 热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。主要集中在陶瓷氧化物材料的制备中。 2.3有机液相合成 有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。最常用的反应方式就是在有机溶剂中进行回流制备。 2.4惰性气体冷凝法 惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。原料气体分子与惰性气体分子碰撞失去能量,凝集形成纳米尺寸的团簇,然后骤冷。该方法制备的纳米材料纯度高,工艺过程中无其它杂质污染,反应速度快,结品组织好,但技术设备要求高。 2.5反相胶束微反应器法

纳米材料的湿法合成

论文中英文摘要 作者姓名:孙旭平 论文题目:纳米材料的湿化学合成及新颖结构的自组装构建 作者简介:孙旭平,男,1972年08月出生,2000年09月师从于中国科学院长春应用化学研究所汪尔康研究员,于2006年03月获博士学位。 中文摘要 围绕论文题目“纳米材料的湿化学合成及新颖结构的自组装构建”,我们开展了一系列研究工作。通过湿化学途径,在贵金属纳米粒子及其二维纳米结构和导电聚合物纳米带的合成方面进行了深入研究。同时,利用界面自组装及溶液自组装技术,构建了一些新颖结构。本论文研究工作的主要内容和创新点表现在以下几个方面: (1)首次提出了一步加热法制备多胺化合物保护的贵金属纳米粒子。我们利用多胺化合物(包 括聚电解质和树枝状化合物)作为还原剂和保护剂,直接加热贵金属盐和多胺化合物的混合水溶液,在不加入其它保护剂和还原剂的情况下,一步制备得到了稳定的贵金属金和银的纳米粒子。我们在实验中发现,树枝状化合物聚丙烯亚胺能对反应生成的金纳米粒子的大小及成核和生长动力学进行有效控制。我们还发现,室温下直接混合浓的阳离子聚电解质分支型聚乙烯亚胺和浓的HAuCl4水溶液可得到高浓度的、稳定的胶体金。这种一步合成法操作简单且方便易行,是一种制备多胺化合物保护的贵金属纳米粒子的通用方法;同时,本方法合成的纳米粒子表面带正电荷,可用作加工纳米粒子功能化薄膜的构建单元。 (2)首次提出了一种无表面活性剂的、无模板的、大规模制备导电聚合物聚邻苯二胺纳米带的 新方法。我们通过在室温下直接混合邻苯二胺和HAuCl4水溶液,在没有表面活性剂或“硬模板”存在的条件下,获得了长度为数百微米、宽度为数百纳米、厚度为数十纳米的聚邻苯二胺。纳米带的自发形成可归因于反应中生成的金纳米粒子催化的邻苯二胺的一维定向聚合。本方法方便快速,无需加入表面活性剂或使用“硬模板”,且可用于大规模制备。 此外,我们通过在室温下直接混合AgNO3和邻苯二胺水溶液,也获得了大量的一维纳米结构,并发现其形貌可通过调节实验参数而改变。我们还发现,当溶液pH降低时,这些一维结构将分解成水溶性的低聚体,而如果再次升高pH,这些低聚体又将自组装形成一

表面活性剂最新设计研究进展

word整理版 表面活性剂最新研究进展 人类的日常生活,各类生产活动,多种科学和技术的进步对表面活性剂品种和性能提出越来越高的要求,促使表面活性剂科学不断发展,迄今方兴未艾,表面活性剂已经深入到生命起源以及膜材料、纳米材料、对映体选择性的反应等各个领域中,设计新的有特殊用途和应用价值的表面活性分子仍不断受到人们的关注。新的功能型表面活型剂与附加的官能基团的性质和位置有密切关系, 对传统的表面活性剂分子结构的修饰会导致其结构形态有很大的变化,近几年国内外的相关研究单位在表面活性剂领域的最新研究进展主要有以下方面。 一、高分子表面活性剂 高分子表面活性剂的合成成为近年来表面活性剂合成研究的热点课题之一。高分子表面活性剂是相对一般常言的低相对分子质量表面活性剂而讲的,通常指相对分子质量大于1000且具有表面活性功能的高分子化合物。它像低分子表面活性剂一样,由亲水部分和疏水部分组成。高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等性质,广泛应用作胶凝剂、减阻剂、增黏剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等。因此,高分子表面活性剂近年来发展迅速,目前已成为表面活性剂的重要发展方向之一。 高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。如阴离子型的高分子表面活性剂有聚(甲基)丙烯酸(钠)、羧甲基纤维素(钠)、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸酯等。两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸-阳离子丙烯酸酯共聚物、两性聚丙烯酰胺等。非离子型的高分子表面活性剂有羟乙基纤维素、聚丙烯酰胺、聚乙烯吡咯烷酮、聚氧乙烯类共聚物等。阳离子型的高分子表面活性剂有聚烯烃基氯化铵阳离子表面活性剂、亚乙基多胺与表氯醇共聚季铵盐、淀粉或纤维素高取代度季铵盐、多聚季铵盐、聚多羧基季铵盐等。 开发低廉、无毒、无污染和一剂多效的高分子表面活性剂将是今后高分子表面

磁性纳米材料的制备及应用前景

磁性纳米材料的制备及应用前景 摘要:磁性纳米材料因其具有独特的性质,在现代社会中有着广泛的应用,并越来越受到人们的关注。本文主要介绍了磁性纳米材料的制备及应用前景,概述了纳米磁性材料的制备方法,如机械球磨法,水热法,微乳,液法,超声波法等,总结了纳米磁性材料在实际中的应用,并对其研究前景进行了展望。 Abstract: magnetic nanomaterials due to their unique properties, in the modern society has a wide range of applications, and people pay more and more attention. This paper mainly introduces the magnetic nanometer material preparation and application prospect of nano magnetic materials, summarized the preparation methods, such as mechanical ball milling method, hydrothermal method, microemulsion, liquid method, ultrasonic method, summarizes the nanometer magnetic materials in practical application, and the research prospect.

前言 纳米材料因其尺寸小而具有普通块状材料所不具有的特殊性质,如表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,从而与普通块状材料相比具有较优异的物理、化学性能。磁性纳米材料由于其在高密度信息存储,分离,催化,靶向药物输送和医学检测等方面有着广泛的应用,已经受到了广泛关注。磁性复合纳米材料是以磁性纳米材料为中心核,通过键合、偶联、吸附等相互作用在其表面修饰一种或几种物质而形成的无机或有机复合材料。由于社会的发展和科学的进步,磁性纳米材料的研究和应用领域有了很大的扩展。磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高 信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。目前普遍采用化学法制备铁氧体磁性纳米颗粒,具体有溶胶~凝胶法、化学共沉淀法等,而由于生物合成的磁性纳米颗粒表现出更优良的性质。 1.磁性纳米材料的特点 量子尺寸效应:材料的能级间距是和原子数N 成反比的,因此,当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 2. 磁性复合纳米材料的制备方法 2.1水热合成法 水热合成法是液相中制备纳米粒子的一种新方法。一般是在100~300摄氏度温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗透析反应和物理过程的控制,得到改进的无机物,再过滤,洗涤,干燥,从而得到高纯,超细的各类微粒子。研究发现以FeC13为铁源,AOT为表面活性剂,N2H4·H20(50%)为还原剂水热合成 Fe3O4纳米颗粒时,反应温度和时间,表面活性剂和还原剂浓度对最终产物的尺寸形貌、分散性和磁性有明显影响。还有通过调节水热反

纳米材料的制备及应用

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

BiOBr纳米材料的制备与应用研究进展

2018年第18期广东化工 第45卷总第380期https://www.360docs.net/doc/ac263090.html, ·235 ·BiOBr纳米材料的制备与应用研究进展 代弢1,汪露2 (1.西南民族大学化学与环境保护工程学院,四川成都610041;2.西南民族大学生命科学与技术学院,四川成都610041) Progress of Preparation and Application of BiOBr Nanomaterials Dai Tao1, Wang Lu2 (1. College of Chemistry & Environment Protection Engineering, Southwest Mizu University, Chengdu 610041; 2. College of Life Science & Technology, Southwest Mizu University, Chengdu 610041, China) Abstract: BiOBr nanomaterials have a unique electronic structure, a suitable band gap width and good catalytic performance. In this paper, the preparation and modification methods of BiOBr are summarized. And the application of BiOBr in energy and environment is expounded. We also described the prospect of BiOBr in photocatalysis. Keywords:BiOBr;nanomaterials;preparation and anapplication 近年来,由于环境和能源的问题不断突出,BiOBr纳米材料作为一种新型的光催化纳米材料,对解决能源和环境这一世界性的难题具有重要的意义。BiOBr具有独特的电子结构和良好的催化活性。目前纳米BiOBr材料已采用多种方法成功制备,本文重点归纳了BiOBr纳米光催化材料的制备以及在能源和环境领域的应用研究进展,为今后的研究提供方向和指导。 1 BiOBr的结构特性 BiOBr属于典型的横跨五、六、七三主族三原子复合半导体材料,它一般的结构通式是Bi l O m Br n[1]。一般来说,它的晶型属于四方氟氯铅矿(PbFCl-型)结构。Bi3+周围的O2-和Br-成反四方柱配位。对于Bi l O m Br n来说,其价带主要是通过O 2p和Br 4p态形成以及其导带主要是通过Bi 6p态形成。Bi l O m Br n的稳定性主要依赖于其制备条件、结构尺寸和反应环境等[2-4]。 2 BiOBr纳米材料的设计与合成 随着合成技术的迅速发展,纳米材料得到进一步发展。发展了众多BiOBr纳米材料的方法。现对近年来BiOBr纳米材料的合成方法进行归纳: 2.1 水解法 水解法是利用Bi3+的水解特性[5],利用BiBr3在碱性条件下合成BiOBr沉淀。该方法操作简单,可以规模化生产。但获得的BiOBr纳米材料尺寸不均一,活性较差。 2.2 水热法 水热法是在密闭的容器内高压条件下合成的方法。将Bi源和Br源在反应釜内反应合成BiOBr晶体。反应时间和温度会对催化剂的活性产生一定的影响。水热法可以获得结晶相对较好的BiOBr晶体。 2.3 溶剂热法 溶剂热法是水热法的发展,它与水热法的区别是使用有机溶剂。Wu等人通过调控溶剂乙醇和水的体积比合成出了9 nm厚的BiOBr薄片[6],当溶剂热反应温度为333 K,溶剂为纯水溶液时,得到约32 nm厚,当反应溶剂变为乙醇:水=4:3时,BiOBr纳米片的厚度变为9 nm左右,并且形貌均匀分布,同时表现出良好的结晶性。乙二醇,甘油和甘露醇等也常用作溶剂制备BiOBr。 2.4 离子液法 离子液体是在室温下呈液态的物质,具有蒸汽压低,难挥发,热稳定性高,溶解性好等优点。与水和溶解相比,离子液体可以看成是一种优良的溶剂。因此利用离子液辅助溶剂合成BiOBr纳米材料,在可见光下可以有效降解污染物。 2.5 共沉淀法 采用共沉淀法可得到粒径约500 nm的BiOBr纳米催化剂,这种先调配前驱体溶液再高温处理的合成方法,易于通过调控温度处理条件来调控产物形貌。且共沉淀法制备得到的BiOBr纳米材料的催化活性是水热法制备的材料活性的5倍左右[7]。 2.6 微波超声法 通过微波辅助方法可以获得具有优异可见光降解能力的BiOBr纳米材料。Li等人通过自组装过程[8],采用一种简单的微波合成法制备了一种均匀分散的多级结构的BiOBr纳米材料,其形貌为花状结构的BiOBr材料。该材料对Cr6+在较广pH值范围内表现出优异的吸附去除能力。与其他方法相比,微波加热的反应体系由于受热更均匀体系分散更好制备得到的BiOBr粒径更为均匀因而广泛应用于无机纳米材料BiOBr的合成制备。 2.7 静电纺丝法 Veluru等人通过静电纺丝的方法合成的BiOBr纳米纤维[9],通过调控溶剂的粘性得到不同长度的BiOBr以及不同直径的BiOBr纳米材料。同时对茜素红表现出极高的光催化降解活性。 3 BiOBr纳米材料在光催化中的应用进展 3.1 在能源问题中的应用 3.1.1 光解水制氢 目前,氢气是一种公认的最重要的清洁的新能源。所谓的氢经济的成功在很大程度上依赖于找到一种有效的实际批量生产氢气的途径。自1967年发现使用光电化学电池组成的单晶二氧化钛阳极和铂阴极在紫外光照射下可以使水裂解为氢气以来,光催化水裂解反应已被广泛认为是大量获得氢气最具发展前景的一种手段。利用Cr掺杂的Bi系纳米材料有效的降低了禁带宽度,从而提升了在可见光下催化剂产氢的效率[10-12]。 3.1.2 光催化合成氨 目前氮气的固定主要是通过Haber-Bosch反应,但是严苛的反应条件(Fe基催化剂、15-25 MPa、573-823 K )使得消耗极大的其他能源并且释放出大量的温室气体。人们在催化合成氨领域没有停下奋斗的脚步。Zhang等人通过向BiOBr进行表面改性使得在BiOBr材料表面产生氧空位,而氧空位极大的有利于N2的吸附,进而进一步促使光固氮这一过程的发生,从而极大地提升了固氮效率[13,14]。 3.1.3 光催化二氧化碳还原 光催化二氧化碳还原是指模拟太阳光的光合作用将CO2转换为其他的含碳燃料,比如甲醇、甲醛以及一些其他的精细化学品[15-19]。Chai等人通过向多级结构的BiOBr纳米材料引入表面氧空缺以提高CO2向CH4的转化效率差,同时进一步的比较了不含氧空位的BiOBr纳米材料其转化产物主要为CO。 3.2 在环境问题中的应用 随着工业化进程的不断加快,工业废水所造成的水体污染问题越来越严重。其中,一些抗生素类的药物和有机染料造成的废水因为具有高毒性、强致癌性等危害,对日常生活带来极大的安全隐患。近年来,大量的研究发现铋系半导体光催化材料由于具有较好的可见光响应并且能够使有机污染深度矿化而被广泛的应 [收稿日期] 2018-08-30 [作者简介] 代弢(1992-),男,博士,四川省雅安市人,讲师,主要研究方向为类贵金属催化剂的可控合成及在催化中的应用。

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

表面活性剂复配

表面活性剂的复配(药剂学) 2011-01-04 16:40 【大中小】【我要纠错】 表面活性剂相互间或与其他化合物的配合使用称为复配,在表面活性剂的增溶应用中,如果能够选择适宜的配伍,可以大大增加增溶能力,减少表面活性剂用量。 1.与中性无机盐:在离子表面活性剂溶液中加入可溶性的中性无机盐,增加医`学教育 网搜集整理了烃类增溶质的增溶量。相反对极性物质的增溶量降低。 2.与有机添加剂的配伍:一般以碳医`学教育网搜集整理原子在12以下的脂肪醇有较好效果。一些多元醇如果糖、木糖、山梨醇等也有类似效果。与之相反,一些短链醇不仅不能与表面活性剂形成混合胶束,还可能破坏胶束的形成,如C1~C6的醇等。 极性有机物如尿素、N-甲基乙酰胺、乙二醇等均升高表面活性剂的临界胶束浓度。 3.与水溶性高分子的配伍:明胶、聚乙烯醇、聚乙二醇及聚维酮等水溶性高分子对表面活性剂分子有吸附作用,减少溶液中游离表面活性剂分子数量,临界胶束浓度因此升高。 表面活性剂的复配 作者: chx|发布: 2011-7-21 (15:37)|阅读: 3961|静态地址 一、协同效应: 表面活性剂复配的目的是达到加和增效作用,即协同效应。即把不同类型的表面活性剂人为地进行混合,得到的混合物性能比原来单一组分的性能更加优良,也就是通常所说的“1+1〉2”的效果。 例如:十二烷基硫酸钠中混有少量的十二醇、十二酰醇胺等物质,可改善其在洗涤剂配方中的起泡、洗涤、降低表面张力、乳化等性能。 表面活性剂的复配可以产生加和效应,已经应用到了实际的生产中,但其基础理论方面的研究仍只是近几年的事,其结果可以为预测表面活

性剂的加和增效行为提供指导,以便得到最佳复配效果。但其研究仍处于初级阶段,主要集中在双组分复配体系。在复配体系中,不同类型和结构的表面活性剂分子间的相互作用,决定了整个体系的性能和复配效果,因此掌握表面活性剂分子间相互作用是研究表面活性剂复配的基础。 二、表面活性剂分子间的相互作用参数 表面活性剂的两个最基本性质是表面活性剂的表面吸附及胶束的形成。因此,加和增效的产生首先会改变体系的表面张力和临界胶束浓度。一般情况下,当两种表面活性剂产生复配效应时,其混合体系的临界胶束浓度并不等于二者临界胶束浓度的平均值,而是小于其中任何一种表面活性剂单独使用的临界胶束浓度。造成这种情况的原因就是表面活性剂分子间的相互作用。 复配使用的两种表面活性剂,会在表面上形成混合单分子吸附层,在溶液内部形成混合胶束。无论是混合单分子吸附层还是混合胶束,两种表面活性剂分子间均存在相互作用。其相互作用的形式和大小可用分子间相互作用参数β表示。 表面活性剂分子间的相互作用参数β值和两种表面活性剂混合的自由能有关,β值为负值表示两种分子相互吸引;β值为正值时,表示两种分子相互排斥;β值接近0时,表明两种分子间几乎没有相互作用,近乎于理想混合。许多学者通过大量实验和计算发现β值一般在-2(弱排斥)到-40(强吸引)之间。

纳米材料制备与应用

1 纳米材料:是指在三维空间中至少有一维处于纳米尺度范围或由他们作为基本单元构成的具有特殊性能的材料。 2 (1)零维:指在空间三维尺度均在纳米尺度,如纳米颗粒、原子团簇等。 (2)一维:指在空间三维中有两维尺度处于纳米尺度,如纳米线、纳米带、纳米棒、纳米管等。 (3)二维:指在空间中有一维处于纳米尺度,如纳米片、薄膜等。 原子团簇是指几个至几百个原子的聚集体,是介于单个原子与固态之间的原子集合体。其粒径小于或等于1 nm,如Fen, CunSm, CnHm(n和m均为整数) 和碳族(C60, C70和富勒烯等)。原子团簇既不同于具有特定大小和形状的分子,也不同于分子间以弱相互作用结合而成的聚集体以及周期性很强的晶体。原子团簇的形状可以是多种多样的,它们尚未形成规整的晶体,除了惰性气体外,都是以化学键紧密结合的聚集体。 幻数:当团簇随着所含原子数目n在某个特定值n=N,团簇特别稳定,此时的N值就是团簇的幻数。 C60是一种碳的原子团簇。60个碳原子构成像足球一样的32面体,包括20个六边形,12个五边形。 C60制备:电弧法,两个石墨棒在抽真空通氦气下靠近并放电,气化出C等离子体,再合并形成C60. 纳米颗粒是指颗粒尺寸为纳米量级的超细微粒,它的尺寸大于原子团簇,小于通常的微粉。一般粒径在1-100 nm之间。 二维纳米材料:石墨烯、过度金属二硫化物、Co(OH)2。 纳米孔材料:孔径在1-100 nm且具有显著表面效应的多孔材料。d<2 nm,微孔(microporous)、2 nm 50 nm,大孔(macroporous)

相关文档
最新文档