飞机气动布局简介
北航大飞机班-大型客机气动设计
大飞机班大型客机气动设计结课论文2013/12/271,大型客机概述1.1大型客机概念大型客机项目是一个国家工业、科技水平和综合实力的集中体现,对增强中国的综合国力、科技实力和国际竞争力,使中国早日实现现代化具有极为重要的意义。
大飞机一般是指起飞总重超过100吨的运输类飞机,包括军用大型运输机和民用大型运输机,也包括一次航程达到3000公里的军用或乘坐达到100座以上的民用客机。
从地域上讲,我国把150座以上的客机称为大客机,而国际航运体系习惯上把300座位以上的客机称作“大型客机”,这主要由各国的航空工业技术水平决定的。
具体载客量要看机型和舱内布局。
最大的客机A380如果全经济布局的话可以载800多个人。
1.2大型客机研制较军机而言,民机有许多不同之处。
主要来讲,民机研制流程可以从时间角度划分为前期论证、型号研发、产品支援及客户服务三大阶段:1)前期论证阶段:这一阶段的主要工作任务是形成产品设想和立项,一个标志性里程碑是:长周期及通用技术准备工作正式启动。
2)型号研发之可行性论证阶段:这一阶段的主要工作任务是定义满足市场需求的产品方位和层次。
初步设计和详细设计阶段:这一阶段的主要工作任务是定义满足市场需求的具体产品。
产品研制阶段:这一阶段的主要工作任务是形成满足市场需求的合法的产品和服务。
3)产品支援及客户服务阶段。
1.3国产大飞机研制意义中国虽然在民用飞机制造方面拥有一定经验,但与发达国家相比还存在较大差距,难以满足我国经济社会发展和快速增长的民用航空市场的需求。
未来20年,是中国民用航空工业发展的重要战略机遇期。
中国实施大型客机项目具有以下六大重要意义:1)大型客机项目是一个国家工业、科技水平和综合实力的集中体现,对增强中国的综合国力、科技实力和国际竞争力,使中国早日实现现代化具有极为重要的意义。
2)航空工业产业链长、辐射面宽、连带效应强,在国民经济发展和科学技术进步中发挥着重要作用。
大型客机是现代制造业的一颗明珠,是现代高新科技的高度集成。
飞机气动布局简介.
飞机气动布局简介想必很多人对飞机很感兴趣,因为飞机大多是很漂亮的,流线型的机身,舒展的机翼,实现了人类在蓝天翱翔的梦想。
其实飞机外型的美观虽然是人类主动的设计创作,而实质却是受制于空气阻力的被动结果,从某种意义上讲,这种符合人类审美标准的流畅线条其实是空气动力原理的杰作。
大千世界千变万化,飞机也是形态各异,大的、小的、胖的、瘦的,四个翅膀的、两个翅膀的甚至还有一个翅膀的,打个比方,飞机的式样就像宠物狗一样,当真是品种丰富,血统复杂。
俗话说外行看热闹,内行看门道,既然飞机的外观是空气动力原理决定的,那么这么多种飞机的形状在飞机设计中就有个称谓,叫做空气动力布局。
下面我们就逐一介绍一下各种气动布局,当了解到气动布局这个概念后再回过头来看这些飞机,就会发现自己不会再看花眼了,其实全世界的飞机品种再多,也无非就以下这几种气动布局而已。
各种空气动力布局的主要差别就在于机翼位置上的差别,首先介绍一个最常见的布局——常规布局。
这种布局的特点是有主机翼和水平尾翼,大的主机翼在前,小机翼也就是水平尾翼在后,有一个或者两个垂直尾翼。
世界上绝大多数飞机属于这种气动布局,特别是客运、货运大型飞机,几乎全是这种布局,例如波音系列、欧洲的空中客车系列,我国的运七、运八、ARJ21,美国的C130等。
我国的军用飞机中除了歼10猛龙战斗机以外,都是常规气动布局。
常规布局最大的优点是技术成熟,这是航空发展史上最早广泛使用的布局,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡,所以目前无论是民用飞机还是军用飞机绝大多数使用这种气动布局。
常规气动布局机型——我国的ARJ21祥凤支线客机常规气动布局机型——我国的FC-1枭龙歼击机常规气动布局机型——我国的歼11B歼击机常规布局中还有一个另类——变后掠翼布局,就是主翼的后掠角度可以改变,高速飞行可以加大后掠角,相当于飞鸟收起翅膀,低速飞行时减小后掠角,展开翅膀。
飞机的常见气动布局
飞机的常见气动布局亲爱的同学们大家好:今天,我想和大家讲一讲,飞机的常见气动布局。
大家知道的都有哪些呢?目前我们所知的可行的飞机的空气动力布局方式有:常规、鸭式、三翼面、变后掠、无尾、飞翼、前掠翼。
这些布局方式各有特色各有长短,我将为大家逐个讲解。
首先是常规,常规布局也就是主翼在前,水平尾翼在后,有一个或两个垂尾的气动布局方式。
使用这种气动布局设计的具有代表性的战斗机有,美国——洛克希德马丁公司:F22猛禽。
俄罗斯——苏霍伊设计局:苏27侧卫。
但其实,我们常见的客货机几乎全是这种设计的。
常规布局的优点是技术成熟,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡。
只是由于均衡所以也没有特别出色的地方。
然后是鸭式。
因为当初这种气动布局的飞机飞起来像鸭子,故此得名。
说到鸭式布局,我们就不得不说世界上第一架飞机——莱特兄弟的飞行者一号。
它所使用的布局其实就是鸭式布局。
鸭式布局也是主翼在后面,前面加个小机翼叫做鸭翼。
简单地来看,鸭式布局就是将常规布局中的水平位移移到了主翼前方,但鸭翼与平尾并不是一个概念。
虽然鸭翼也承担着控制俯仰的责任,但除此之外,鸭翼还会产生涡流。
这些涡流吹过主翼会带来强大的增升效果,也就是说,鸭翼能提供额外的升力。
如此,鸭式布局的飞机的短距起降性能更强,因为它们在低速度状况下也能获得较高的升力。
鸭式布局的飞机在高速飞行中有着更高的稳定性,机动性也要比常规布局飞机更加出色。
有时鸭式布局飞机还会在机身的后下方增加两片叫做腹鳍的翼面,以增加大迎角情态下的飞行稳定性,这是因为在大迎角情态下,常规布局的飞机的垂尾还会接触到由主翼和平尾的间隙间吹过的气流,而鸭式布局的飞机的主翼往往会阻断流往垂尾的气流,如此垂尾便不能很好地控制飞机的水平方向稳定,而在机身下方增加的腹鳍则能解决这个问题。
这也是鸭式布局飞机的一个不同之处。
鸭式布局设计的代表战机有:中国成飞歼20,欧洲双风:阵风、台风。
气动布局技术在飞翼式飞机设计中的应用
气动布局技术在飞翼式飞机设计中的应用随着科技的不断进步和发展,航空工业也在快速发展中不断创新,不断推陈出新。
其中,飞翼式飞机的应用越来越受到人们的关注和青睐。
飞翼式飞机不仅可以提高飞机的飞行效率,降低能耗,还可以提高安全性能。
在现代飞翼式飞机中,气动布局技术是至关重要的一项技术,它能够帮助飞机实现更好的飞行性能和安全性能,大大推动了飞机的发展。
一、飞翼式飞机的优越性能飞翼式飞机是无尾翼、机身与机翼形成一个整体的飞机,而传统的飞机则是由机身和机翼两部分组成。
飞翼式飞机采用了翼身一体的设计,可以减少空气阻力,降低气动噪声,提高飞行效率。
与传统的飞机相比,飞翼式飞机的设计更加紧凑,在同等长度的情况下,它的机翼比传统的机翼更加宽广,起降距离更短,可以适应更多的起降场。
此外,飞翼式飞机的机身比传统的飞机宽,可以容纳更多的乘客和货物,扩大了使用范围。
同时,由于整个机身和机翼都是一个整体,因此在面对一些机件故障时,飞翼式飞机的表现更可靠,飞行更加安全。
二、气动布局技术的应用在飞翼式飞机的设计中,气动布局技术是非常重要的。
气动布局技术可以通过对飞机的外形进行优化设计,实现更优秀的飞行性能和安全性能。
其中,气动布局技术包括飞机机体的形状、机翼的布局和飞机的气动特性等方面。
下面,我们来分别探讨一下。
1. 机体的形状设计飞机的机身形状是影响飞机飞行性能和安全性能的关键因素之一。
气动布局技术可以通过机体的形状设计,对气动外形进行优化,减少空气阻力,提高飞机的飞行效率。
同时,在设计中还要考虑到飞机的姿态控制,内部空间利用等因素,以提高机身的合理性。
2. 机翼的布局优化机翼是飞机的关键部件之一,不仅要有高的升力系数,还要有较低的阻力系数。
气动布局技术在飞翼式飞机的机翼设计中更是起到了决定性的作用。
可以通过改变翼的弯曲形状、尺寸,以及翼面的气动布局等因素,来实现机翼的优化设计,提高升力系数、减小阻力系数、减少失速现象,更好的抵御各种外部环境因素。
飞行器气动布局与气动性能优化工艺研究
飞行器气动布局与气动性能优化工艺研究近年来,随着航空工业的不断发展,飞行器的设计和制造也得到了迅猛的发展。
其中,气动布局和气动性能的优化成为了关键技术之一。
本文将深入探讨飞行器气动布局与气动性能优化的工艺研究。
一、飞行器气动布局的意义飞行器气动布局是指设计飞行器的空气动力组件的空间位置和形状。
它在飞行器设计中具有重要的意义。
首先,正确的气动布局可以有效减少飞行器的空气阻力,提高飞行速度和航程。
其次,通过优化气动布局,可以提高飞行器的机动性能和灵活性,增强其利用性和适应性。
二、飞行器气动布局的研究方法研究飞行器气动布局的方法主要有风洞试验和计算流体力学模拟。
风洞试验是指在实验室中,通过模拟大气中的气流,测试飞行器模型在不同气动布局下的空气阻力系数和升阻比等参数。
计算流体力学模拟则是通过计算机程序,模拟飞行器在不同气动状态下的流场和气动力学参数。
两种方法各有优缺点,需要根据实际研究目的和问题选择合适的方法。
三、飞行器气动性能优化的研究方法飞行器气动性能优化是指在保证安全性的前提下,通过改变气动布局和组件形状,提高飞行器的空气动力性能和机动性能。
其研究方法同样主要有风洞试验和计算流体力学模拟。
此外,还可以采用基于人工智能和机器学习的优化算法进行研究。
四、飞行器气动布局与气动性能优化的案例分析以国外某航空公司的飞机设计为例,该公司通过对飞机机翼和机身的气动布局进行优化,成功提高了飞机的升阻比和空气动力性能。
具体方法是通过风洞试验和计算模拟,分析了不同气动组件的形状和位置对飞机升阻比的影响,如机翼横截面形状、机身长宽比等。
通过对多种设计方案进行模拟和优化,最终找到了最优的气动布局和组件形状,进一步提高了飞机的飞行速度和航程。
五、未来研究方向随着科技的不断进步,飞行器气动布局和气动性能优化的研究也将迎来新的机遇。
未来的研究方向主要包括以下几个方面:1. 气动布局与材料技术的结合:利用新型材料和技术手段,进一步优化飞行器气动布局和气动性能,以提高其安全性和经济性。
飞机气动布局优化技术研究
飞机气动布局优化技术研究近年来,随着航空业的发展,飞机设计的重要性越来越凸显出来。
在飞机设计的过程中,一个关键的点就是如何优化飞机的气动布局,以提高飞机的性能。
本文将探讨飞机气动布局优化技术的研究进展和未来发展趋势。
一、飞机气动布局优化技术概述飞机气动布局优化技术指的是利用计算机仿真技术对飞机的气动布局进行优化,以获得更好的飞行性能。
其核心是通过数值计算的方法来预测空气流动情况,从而优化翼型、机翼展弦比、机身形状等关键气动参数,达到提高飞机性能的目的。
目前,飞机气动布局优化技术已经成为飞机设计中的重要工具。
通过该技术,需要设计者可以在设计之前进行更精确的预测,避免了试验带来的高成本和高风险,同时还能够快速反馈设计优化结果,大大提高了设计效率。
二、飞机气动布局优化技术的研究进展1. 气动布局优化的数值方法在飞机设计中,有两种主要的气动布局优化方法:一种是基于经验和试验数据的方法,比如说基于飞机模型试验和飞行数据的方法,这种方法可以提供可靠的数据前提,但是测试过程成本高、周期长,且在设计早期需要考虑很多未知参数;另一种是基于数值仿真的方法,通过计算机仿真技术对复杂气动流进行模拟,能够以较低成本快速获得飞机气动布局优化结果,这种方法在近年来得到了飞速发展。
目前,数值方法主要有三种:CFD、VSAERO、RBF,其中CFD是当今最为流行和应用广泛的方法,其原理是通过分离计算区域,对流体流动问题建立数学模型,再应用基本物理学原理,求解问题数值解的方法。
2. 气动布局优化的关键参数气动布局优化涉及到很多关键参数,如机翼的展弦比、后缘的形状、进气道的位置和大小、机身剖面等。
同时,控制飞行器的流场分布位置、压力、重心、推力这些气动参数是优化的关键目标,其次是整个飞机的性能如滑行、爬升、减阻等。
3. 气动布局优化的自动化近年来,随着人工智能技术的飞速发展,飞机气动布局的优化不再需要人工进行大量计算、分析和试验,而是可以利用自动化技术来解决。
飞机气动布局
案现代作战飞机的气动布局有很多种,主要有常规布局、鸭式布局、无尾布局、三翼面布局和飞翼布局等。
自从莱特兄弟发明第一架飞机以来,飞机设计师们通常将飞机的水平尾翼和垂直尾翼都放在机翼后面的飞机尾部。
这种布局一直沿用到现在,也是现代飞机最经常采用的气动布局,因此称之为“常规布局”。
鸭式布局,是一种十分适合于超音速空战的气动布局。
早在二战前,前苏联已经发现如果将水平尾翼移到主翼之前的机头两侧,就可以用较小的翼面来达到同样的操纵效能,而且前翼和机翼可以同时产生升力,而不像水平尾翼那样,平衡俯仰力矩多数情况下会产生负升力。
早期的鸭式布局飞起来像一只鸭子,“鸭式布局”由此得名。
无平尾、无垂尾和飞翼布局也可以统称为无尾布局。
对于无平尾布局,其基本优点为超音速阻力小和飞机重量较轻,但其起降性能及其它一些性能不佳,总之以常规观点而言,无尾布局不能算是一种理想的选择。
然而,随着隐身成为现代军用飞机的主要要求之一以及新一代战斗机对超音速巡航能力的要求,使得无尾——特别是无垂尾形式的战斗机方案越来越受到更多的重视。
在常规布局的飞机主翼前机身两侧增加一对鸭翼的布局称为“三翼面布局”。
三翼面布局形式可以说最早出现在六十年代初,米高扬设计局由米格-21改型而得的Е-6Т3和Е-8试验机。
三翼面的采用使得飞机机动性得到提高,而且宜于实现直接力控制达到对飞行轨迹的精确控制,同时使飞机在载荷分配上也更趋合理。
俄罗斯的苏-34、苏-37和苏-47都采用这种布局。
早在二战期间,美国和德国就开始研究这种布局的飞机。
现代采用飞翼布局的最新式飞机,就是大名鼎鼎的美国B-2隐型轰炸机。
由于飞翼布局没有水平尾翼,连垂直尾翼都没有,只是像一片飘在天空中的树叶,所以其雷达反射波很弱,据说B-2在雷达上的反射面积只有同类大小飞机的百分之一。
变后掠布局较好的兼顾了飞机分别在高速和低速状态下对气动外形的要求,在六七十年代曾得到广泛应用,但由于变后掠结构所带来的结构复杂性、结构重量的激增,再加上其它一些更为简单有效的协调飞机高低速之间矛盾的措施的使用,在新发展的飞机中实际上已经很少有采用这种布局形式的例子了。
气动布局解析实验报告(3篇)
第1篇一、实验目的1. 了解和掌握不同气动布局的基本原理和特点。
2. 分析不同气动布局对飞行器性能的影响。
3. 通过实验验证理论知识的正确性。
二、实验器材1. 气动模型(如飞机模型、导弹模型等)2. 风洞实验装置3. 数据采集与分析软件4. 测量工具(如风速计、压力计等)三、实验原理气动布局是指飞行器各个部件的相对位置布置,它直接影响飞行器的空气动力学性能。
不同的气动布局具有不同的升力、阻力、稳定性、机动性等特性。
四、实验内容1. 常规气动布局实验(1)实验步骤:将气动模型置于风洞中,调整角度和速度,记录升力、阻力等数据。
(2)数据分析:分析常规气动布局在不同攻角和速度下的升力、阻力特性。
2. 鸭式气动布局实验(1)实验步骤:将鸭式气动布局模型置于风洞中,调整角度和速度,记录升力、阻力等数据。
(2)数据分析:比较鸭式气动布局与常规气动布局在不同攻角和速度下的升力、阻力特性。
3. 飞翼布局实验(1)实验步骤:将飞翼布局模型置于风洞中,调整角度和速度,记录升力、阻力等数据。
(2)数据分析:分析飞翼布局在不同攻角和速度下的升力、阻力特性。
4. 三翼面布局实验(1)实验步骤:将三翼面布局模型置于风洞中,调整角度和速度,记录升力、阻力等数据。
(2)数据分析:比较三翼面布局与常规气动布局在不同攻角和速度下的升力、阻力特性。
五、实验结果与分析1. 常规气动布局常规气动布局具有较好的稳定性和机动性,但升力系数相对较低。
在低速和低攻角下,升力系数较高;在高速和高攻角下,升力系数较低。
2. 鸭式气动布局鸭式气动布局具有较好的机动性和升力系数,但稳定性较差。
在低速和低攻角下,升力系数较高;在高速和高攻角下,升力系数较低。
3. 飞翼布局飞翼布局具有较好的升力系数和隐身性能,但机动性和稳定性较差。
在低速和低攻角下,升力系数较高;在高速和高攻角下,升力系数较低。
4. 三翼面布局三翼面布局具有较好的升力系数、稳定性和机动性。
歼-10气动布局特点及战斗性能分析
相比之下,鸭式布局比后尾式及无尾式布局优越之处在于:其抬头俯仰力矩可由飞机重心前的 正升力面(鸭翼)提供。这真是一举两得:既提供了配平力矩,又增加了升力。那么为什么以前人 们很少采用鸭式布局呢?这是因为常规的鸭式飞机有三大缺点:(1)前翼对主翼存在着强烈的下 洗,使主翼升力降低。尽管前翼的升力是正的,弥补了部分升力损失,但配平时的总升力不见 得比后尾式高很多。(2)鸭式布局配平问题不好解决。一般情况下。鸭翼的负荷要比尾翼大,往 往为尾翼的3~4倍。因为把鸭翼放到前面,全机焦点随之前移,重心也需向前调整。这样鸭翼
再加上主翼的面积大、翼载荷小。它的空战机动性能肯定不错。
该机的机翼与机身之间的过渡区明显采用了翼身融合体设计,不但“浸润”面积小、阻力小、雷 达反射截面积小,还大大增强了结构,扩大了机内容积。由此可以看出,其机内的载油系数较
高,航程和作战半径应该较大。
歼-10采用了可调式腹部进气道,这种进气道的外形阻力本来就比两侧进气方案的阻力要 小,再加上其进气道可以随 M 数的变化自动进行调节,推力损失小。因此,可以推断出,该机 的高空、高速性能和低空突防性能应该很好,明显优于 F-16、F/A-18M 采用固定式不可调进
大幅度提高。
新型鸭式飞机已经在上世纪90年代崭露头角,而且在气动上它们还大有潜力可挖。可以预言, 随着二元喷口、复合材料、前掠、动力增升以及主动控制等新技术的应用,鸭式飞机的性能将
会有更大的提高。
看图识歼-10 飞机研制是一个复杂的系统工程,涉及到气动、结构、材料、电子、机械、动力装置等方 方面面的学科,需要在研制的过程中不断地进行综合权衡,不断地解决出现的新问题,历经多 年才能完成一个研制周期。可以说,现代飞机尤其是先进的战斗机是代表一个国家技“外八字”式机身起落架,与采用机翼起落架的方案相比,其主翼下表面 比较“干净”,不受主起落架收放的影响,可布置更多的挂架;而且能在翼根部位挂载一些比较
战斗机气动布局设计
八、气动布局的发展趋势
翼 ➢ 最优的空气动力 ➢ 先进的控制技术 ➢ 更好的推进系统 ➢ 新型的结构材料 ➢ 精巧的航电武器
谢 谢!
谢谢大家!29Fra bibliotekF-102
火神 F-106
五、无尾布局
➢ 无尾布局飞机的翼面少,可以减少飞机的重量和阻力。缺点主要是起降性能差和中低空 跨音速机动性差,后逐渐被鸭式布局所取代。但是,随着推力矢量技术的发展和飞机隐 身要求增加,无尾布局的缺陷可以用推力矢量来弥补,无尾布局翼面简洁,利于隐身的 优点将会得到发挥。
六、三翼面布局 在常规布局飞机的机翼前增加一付鸭翼的布局称为“三翼面布局”。
三、常规布局
➢ 机翼后缘布置有内侧襟翼,外侧副翼,或者是内外侧一起偏转的襟副翼;水平尾翼一般 对称偏转,起俯仰操纵与平衡作用。部分飞机因外侧副翼滚转操纵能力不足,采用水平 尾翼差动偏转来补充。
三、常规布局
➢ 机翼位于飞机重心附近,襟翼增升产生的低头力矩较小。 ➢ 梯形机翼居多,亚、跨声速机翼升阻比较好。
七、飞翼布局
早在二战期间,美国和德国就开始研究这种布局的飞机。现代采用飞翼布局最成功的是 美国B-2隐型轰炸机。
七、飞翼布局
➢ 优点是气动力效率高、升阻比大;雷达反射截面积小,隐身性能好。 ➢ 缺点与无尾布局相同,另外还须解决没有垂直尾翼带来的航向稳定性和控制问题。
七、飞翼布局
➢ 飞翼布局目前受限于航向操纵效能低,只适用于机动性要求不高的机种。但将来的发展 前途未可限量。现在掌握的技术中,推力矢量能助其一臂之力。
六、三翼面布局
➢ 三翼面布局集合了常规布局和鸭式布局的优点,提高了飞机的机动性。缺点是增加了一 付翼面,带来阻力、重量和驱动装置增加。
六、三翼面布局
空气动力学的飞行器气动设计
空气动力学的飞行器气动设计一、引言飞行器的气动设计是飞行器研发过程中至关重要的一部分。
通过合理的气动设计,可以提升飞行器的性能和稳定性,为飞行任务的完成提供有力保障。
本文将从空气动力学的角度探讨飞行器气动设计的相关内容。
二、气动力学基础1. 升力和阻力升力和阻力是飞行器气动设计的两个核心要素。
升力是垂直于飞行方向的力,使得飞行器可以克服重力而上升。
阻力则是与飞行方向相反的力,会阻碍飞行器的前进。
合理地控制升力和阻力的大小和分布,可以提高飞行器的飞行效率和经济性。
2. 气动力特性气动力特性是指飞行器在运动过程中所受到的气动力的变化规律。
通过对气动力特性的研究,可以了解飞行器在不同飞行状态下的性能表现,从而指导气动设计的优化。
常见的气动力特性包括升力系数、阻力系数、气动力矩等。
三、飞行器气动设计的关键技术1. 翼型设计翼型是飞行器气动设计中最重要的组成部分之一,其形状和参数的选择直接影响飞行器的气动力性能。
合理的翼型设计可以提高飞行器的升力系数和升力阻力比,降低阻力系数,从而提高飞行器的爬升率和巡航速度。
2. 翼面布局翼面布局是指飞行器翼面的形状和位置安排。
翼面布局应考虑飞行器的气动布局和流场分布,在满足气动性能要求的前提下,尽量减少阻力和波阻。
3. 推进系统与气动外形的匹配推进系统与飞行器气动外形的匹配是飞行器气动设计的关键之一。
合理的推进系统设计可以提供足够的动力,同时减小阻力和干扰,提高飞行器的机动性能。
4. 飞行器的稳定和操纵性设计飞行器的稳定性和操纵性设计是保证飞行安全和实现飞行任务的基础。
通过合理的飞行器布局和控制系统设计,可以提高飞行器的稳定性和操纵性,减小操纵力矩和操纵响应时滞。
四、飞行器气动设计的优化方法1. 数值仿真数值仿真是飞行器气动设计中普遍采用的优化方法之一。
通过建立飞行器的数值模型和求解气动方程,可以预测飞行器的气动性能并进行参数优化,从而降低设计成本和风险。
2. 实验验证实验验证是优化设计的重要手段之一。
飞机气动布局设计简介
机翼的增升装置
增升装置:如果把机翼的前、后缘做成可活动的舵面,则其可 改变机翼剖面弯度和机翼面积,增加飞机升力,改善飞机飞行 性能。这种可增加飞机升力的活动舵面称为增升装置或襟翼。
襟翼一般分为 •前缘襟翼 •后缘襟翼
机翼的增升装置 增升装置
最主要的缺点: •飞机的纵向操纵和配平仅仅靠机翼后缘的升降舵来实现, 则由于力臂较短,操纵效率不高。 •在起飞着陆时,增加升力需升降舵下偏较大角度,由此带 来下俯力矩,为配平又需升降舵上偏,因而限制了飞机的
起飞着陆性能
三翼面布局
机翼前面有水平前翼 (鸭翼),机翼后面 有水平尾翼
Su-33
S-37
三翼面布局的优缺点
三翼面布局飞机 ny=7 5.2 常规布局飞机 ny=7 6.9
0.9 0.9 0.1
最主要的优点: •气动载荷分配上也更加合 理 •综合常规布局和鸭式布局 的优点
最主要的缺点: •漩涡破裂,产生非线性的 气动力 •小迎角时的阻力比两翼面 的要大
飞翼布局
飞机只有机翼的气动布局形式。
B-2
飞翼布局的优缺点
翼型
翼型:平行于飞机对称面的翼剖面
Y 平凸形
双凸形
对称形
圆弧形 X 菱形
弦长
后缘
前缘
翼弦
弦长
图1-3 翼型的中弧线和翼弦
相对弯度、相对厚度、前缘半径、后缘角
cmax
f max
Xc
Xf
翼型参数的定义
• 弦长:弦线被前、后缘所截线段的长度 • 相对弯度 :翼型中弧线与翼弦之间的距离叫弯度。最大弯 度与弦长的比值,叫相对弯度。相对弯度的大小表示翼型的不 对称程度。
未来大型客机气动布局设计.
未来大型客机气动布局设计我国C919大型客机项目于2009年通过了工业和信息化部组织的专家评审,顺利进入总体设计阶段,主要部件和系统的供应商已基本确定,并采取合资、联合研发与研制、设计要求是飞机设计的依据,现代客机设计要求主要包括飞机性能、安全性、可靠性和维护性、机载系统性能等内容,还要满足民航当局的适航管理条例要求。
转包生产等形式与供应商合作,以期实现飞机零部件生产的本土化以及降低飞机的直接使用成本。
本文将以未来大型客机为背景,重点探讨气动布局设计问题,提出我国今后民用客机布局设计技术发展的建议。
未来大型客机设计要求设计要求是飞机设计的依据,现代客机设计要求主要包括飞机性能、安全性、可靠性和维护性、机载系统性能等内容,还要满足民航当局的适航管理条例要求。
比如,空客公司A380主要采用增加座位的技术途径达到客公里成本降低10%以上的设计目标;波音公司787综合使用复合材料、高效发动机、健康监测、先进制造工艺等技术,满足了降低20%燃油消耗的设计要求,同时改善了飞机的舒适性和可维护性;我国C919的设计目标是在性能指标与现役同级别先进客机相当的前提下,直接使用成本同比降低10%。
安全性、经济性、环保型和舒适性仍然是下一代大型客机发展的主要设计要求,也是客机的评价准则体系。
波音公司将重点从气动、推进、材料和系统技术入手,力图从提高推进系统可靠度、材料、电击保护、结构和系统健康监测等方面增强飞机安全性,从减少耗油率和维护费用、减轻材料和结构重量、降低制造成本等方面提高飞机的经济性,从降低推进系统噪声、减少排放物污染、能源优化等方面加强环境保护;从降噪和人性化客舱设计等方面提高乘坐的舒适性。
空客公司也提出了下一代民机发展的战略目标,明确了更安全、更经济、更环保和更舒适的设计思想。
针对未来航空环境,美国航空航天局(NASA)于2008年10月请求工业界部门和学术单位对满足2030年代能源效率、环境和运营目标要求的未来商用飞机的先进概念进行研究,即N+3代客机计划,也就是在20~25年之后投入使用、比现役客机先进三代的飞机。
航空器气动布局的设计和分析
航空器气动布局的设计和分析一、概述航空器气动布局的设计和分析是航空工程学科中的一个重要分支,主要针对飞机在高速飞行中遇到的气动力学问题进行研究。
其目的是通过优化气动布局设计,提高飞机的性能和安全。
本文将分为以下几个部分,对航空器气动布局的设计和分析进行探讨。
二、气动布局设计飞机的气动布局设计包括机翼、机身、尾翼、发动机及各个部位之间的协调与匹配。
将各个部位的气动流场加以调整,使之达到最佳状态,以达到最佳性能。
1.机翼设计机翼的设计是飞机气动布局设计中最为重要的一部分。
机翼的气动设计不仅决定了飞机的外形,而且也影响了飞机的稳定性和飞行性能。
设计时需考虑以下几个方面:(1)机翼的平衡性一般来说,机翼设计必须满足平衡性的要求。
这意味着机翼必须在作用力的作用下,保持稳定运行,以防止其在飞行过程中出现不必要的姿态变化。
平衡性是机翼设计的重要考虑因素之一。
(2)机翼的升力与阻力特性机翼的升力与阻力特性也是设计的重要考虑因素。
升力特性决定了所需要的起飞和降落速度,而阻力特性则影响了飞机的航程。
设计时需要考虑这些因素来优化机翼的效率。
(3)机翼的强度与刚度机翼必须具有足够的强度和刚度,以支撑整个飞行器的质量,同时要满足对不同飞行载荷的要求。
(4)机翼的结构机翼结构的设计也是机翼设计的重要考虑因素之一。
需要考虑机翼的几何形状和材料属性,以满足不同的要求。
2.机身设计机身是整个飞机的骨架,负责承载机翼和发动机。
机身设计需要满足以下要求:(1)机身的气流稳定性机身必须具有良好的气流稳定性,以确保飞机在飞行过程中稳定。
(2)机身重量和刚度机身必须具有足够的强度和刚度,同时尽可能减少机身重量,确保飞机在飞行过程中能够承受飞行载荷的各种挑战。
(3)机身内部布局的合理性机身内部的设备必须合理布置,以便维修和保养。
3.尾翼设计尾翼的设计必须考虑与机翼的匹配,以及满足稳定性和机动性等要求。
尾翼可以帮助控制飞机的稳定性,同时也能通过变动尾翼的位置和角度来帮助控制飞机。
气动布局
飞机的气动布局飞机外形构造和大部件的布局与飞机的动态特性及所受到的空气动力密切相关。
关系到飞机的飞行特征及性能。
故将飞机外部总体形态布局与位置安排称作气动布局。
其中,最常采用的机翼在前,尾翼在后的气动布局又叫作常规气动布局。
气动布局形式是气动布局设计中首先需要考虑的问题。
目前飞机设计中主要采用的包括以下几种:正常布局;鸭式布局;变后掠布局;三翼面布局;无平尾布局;无垂尾布局;飞翼布局。
正常布局是迄今为止被使用最多的一种布局形式,目前仍然被应用于各类飞机之上。
鸭式布局在早期未能得到足够的重视,但随着超音速时代的来临,鸭式布局的优点逐渐为人们所认识。
目前广泛应用于战斗机之上的近距鸭式布局利用鸭翼与机翼的前缘分离涡之间相互有利干扰使涡系更加稳定,推迟了涡的破裂,为大迎角飞行提供了足够的涡升力,显著的提高了战斗机的机动性。
此外,采用ACT和静不稳定的鸭式布局的优点则更为突出。
变后掠布局较好的兼顾了飞机分别在高速和低速状态下对气动外形的要求,在六七十年代曾得到广泛应用,但由于变后掠结构所带来的结构复杂性、结构重量的激增,再加上其它一些更为简单有效的协调飞机高低速之间矛盾的措施的使用,在新发展的飞机中实际上已经很少有采用这种布局形式的例子了。
三翼面布局形式可以说最早出现在六十年代初,米高扬设计局由米格-21改型而得的Е- 6Т3和Е-8试验机。
三翼面的采用使得飞机机动性得到提高,而且宜于实现直接力控制达到对飞行轨迹的精确控制,同时使飞机在载荷分配上也更趋合理。
无平尾、无垂尾和飞翼布局也可以统称为无尾布局。
对于无平尾布局,其基本优点为:超音速阻力小和飞机中两较轻,但其起降性能及其它一些性能不佳,总之以常规观点而言,无尾布局不能算是一种理想的选择。
然而,随着隐身成为现代军用飞机的主要要求之一以及新一代战斗机对超音速巡航能力的要求,使得无尾——特别是无垂尾形式的战斗机方案越来越受到更多的重视。
对于一架战斗机而言,实现无尾布局将带来诸多优点。
国外亚音速大型飞机的气动布局综述
第1卷第2期2010年5月航空工程进展ADVANCES IN A ERONAU TICAL SCIENCE AND EN GIN EERIN G Vol 11No 12May 2010收稿日期:2010202204; 修回日期:2010204229通信作者:严仁达,yanrenda @文章编号:167428190(2010)022120205国外亚音速大型飞机的气动布局综述严仁达(海军特飞所,上海 200136)Aerodynamic Layout Summary of Subsonic Large Aircrafts AbroadYan Renda(The Special Aircraft Institute of Navy ,Shanghai 200136,China )摘 要:本文简述了世界航空运输业的发展和前景,亚音速大型旅客机和运输机的方案评定准则,国外对亚音速大型飞机的气动外形研究,苏俄对正常式布局的亚音速大型飞机研究,最后归纳了几架飞机的几个基本参数。
关键词:亚音速;运输机;旅客机;气动布局中图分类号:V221 文献标识码:AAbstract :In this paper ,the development and prospect of the world air transport business are presented.The criteria of project evaluation for subsonic large passenger aircraft and cargo 2transport plane are given.For subsonic large aircraft ,investigation in different kind of aerodynamic configuration abroad as well as in normal aerodynamic configuration at Russia is provided.Statistics of several aircraft overall design basic data are collected.K ey w ords :subsonic ;cargo 2transport plane ;passenger aircraft ;aerodynamic configuration1 世界航空运输的发展和前景从20世纪70年代开始,亚音速喷气式旅客机成为世界上主要交通运输工具,超过50%旅客和20%货物的运输是由航空业来担负的。
战斗机气动布局
• 狂风
• • •
英德意70年代联合研制的
在当时同时代研制的战机中,如米格29,苏27,F-15,F-16,幻影2000这些飞机中,都显得很差。
• 幻影2000 法国独立研制
从80年代服役至今,总体性能优异 无尾三角翼布局,没有鸭翼,只有两个小边条,使用先进的脉冲多普勒雷达,由于小型机体限制,无法换装更 强大但更重的相控阵雷达,最大的诟病就是发动机推力不足,油耗大。从八十年代服役至今,外销销量尚可, 目前仍有包括法国、印度、希腊、阿拉伯联合酋长国、中国台湾等一些国家和地区使用幻影2000,总体性能优 异
1常规布局
• 水平尾翼和垂直尾翼都放在机翼后面的飞机尾 部 • 新式战斗机很多都采用这种布局,如 • 俄罗斯的米格-29、苏-27、 • 美国的F-22、F-16、F-18等。
边条
• 如果在机翼前沿根部靠近机身两侧处增加一片 大后掠角圆弧形的机翼面积,就可以大为改善 飞机大迎角状态的升力。 • 这增加的部分在我国一般叫做“边条”。
• 这些飞机的鸭翼除了用以产生涡流外,还用于改 善跨音速过程中安定性骤降的问题,同时也可减 少配平阻力、有利于超音速空战。 • 在降落时,鸭翼还可偏转一个很大的负角,起减 速板的作用。 • 据称,俄罗斯下一代的飞机也考虑使用鸭式布局。 米格1.44 鸭翼布局
• 不同位置的鸭翼对涡升力和配平有所侧重。大体 分为两种: 1、远距耦合。阻力和重量较小。适合高速飞行; 坏处是远离机翼,难以形成涡升力。 2、近距耦合。近距耦合的鸭翼产生涡升力的作用 明显得多,有利于提高机动性,但力臂短,配平 和俯仰控制作用降低。
近 距 远 距 远距耦合 “台风”式战斗机 近距耦合 “阵风”式战斗机
飞机的气动布局
从人类第一架飞机“飞行者一号”开始,飞机气动布局发展就与鸭式布局结下了百年的渊源。
一直以来,鸭式气动布局被视为优点和缺点同样突出的气动布局,让飞机设计者们既爱又恨。
似乎已经形成了这样一个观点,那就是鸭式布局作为一种“旁门左道”的航空技术,无法撼动常规布局在战斗机设计中的主流地位。
而中国歼二十的亮相和首飞无疑推翻了这个论调,采用鸭式布局同样可以攀登上最先进战斗机的巅峰。
“丑小鸭”:早期鸭式布局实践人类第一架飞机“飞行者一号”采用的就是鸭式布局。
在人类刚刚接触飞机设计的时候,非常自然的想到,在机头设置控制翼面,翼面上偏,飞机抬头,翼面下偏,飞机低头,从而实现飞机的俯仰控制。
但是在飞机技术发展过程中,航空先驱者们发现,鸭式布局这个看似简单直接的气动控制手段,在工程应用的时候带来相当多而且凭借当时技术手段基本无法解决的问题。
第一,鸭翼上偏在提供升力或者抬头力矩的同时,干扰了后面主翼的流场。
鸭翼上偏或者设计成平飞时也产生升力的时候,由于升力产生的本质就是鸭翼上下表面的压力差,鸭翼上表面形成的低压区碰巧在主翼的位置,而且部分低压区产生在主翼之下。
这样就相当于降低了主翼下表面压力,从而降低了主翼升力。
第二,鸭翼的攻角是飞机攻角与鸭翼偏转角度的叠加,鸭翼偏转角度稍大就会因为迎角过大而失速,飞机迅速失去抬头力矩。
这就相当于限制了飞机俯仰操纵能力,由此带来飞机最关键的盘旋性能的下降。
第三,鸭翼带来严重的非线性操纵问题。
鸭翼在进行俯仰操纵的时候,鸭翼的偏角与飞机的俯仰角速度有着非常复杂而且非线性的控制关系,只在小迎角范围内存在近似线性的控制关系。
这样复杂的控制律除非采用计算机进行控制否则飞行员只能在非常小的迎角范围内稳定控制飞机。
第四,鸭式布局给飞机的俯仰力矩很大,需要主翼襟翼提供相应的配平力矩。
俯仰力矩大本来对于强调高俯仰速率的战斗机是有益的,但是高俯仰力矩需要主翼襟翼有足够的力矩去配平。
一旦飞机迅速拉起迎角,如果襟翼不能遏制飞机的上扬趋势,飞机就会进入上扬发散,紧接着就是失速尾旋。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞机气动布局简介
想必很多人对飞机很感兴趣,因为飞机大多是很漂亮的,流线型的机身,舒展的机翼,实现了人类在蓝天翱翔的梦想。
其实飞机外型的美观虽然是人类主动的设计创作,而实质却是受制于空气阻力的被动结果,从某种意义上讲,这种符合人类审美标准的流畅线条其实是空气动力原理的杰作。
大千世界千变万化,飞机也是形态各异,大的、小的、胖的、瘦的,四个翅膀的、两个翅膀的甚至还有一个翅膀的,打个比方,飞机的式样就像宠物狗一样,当真是品种丰富,血统复杂。
俗话说外行看热闹,内行看门道,既然飞机的外观是空气动力原理决定的,那么这么多种飞机的形状在飞机设计中就有个称谓,叫做空气动力布局。
下面我们就逐一介绍一下各种气动布局,当了解到气动布局这个概念后再回过头来看这些飞机,就会发现自己不会再看花眼了,其实全世界的飞机品种再多,也无非就以下这几种气动布局而已。
各种空气动力布局的主要差别就在于机翼位置上的差别,首先介绍一个最常见的布局——常规布局。
这种布局的特点是有主机翼和水平尾翼,大的主机翼在前,小机翼也就是水平尾翼在后,有一个或者两个垂直尾翼。
世界上绝大多数飞机属于这种气动布局,特别是客运、货运大型飞机,几乎全是这种布局,例如波音系列、欧洲的空中客车系列,我国的运七、运八、ARJ21,美国的C130等。
我国的军用飞机中除了歼10猛龙战斗机以外,都是常规气动布局。
常规布局最大的优点是技术成熟,这是航空发展史上最早广泛使用的布局,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡,所以目前无论是民用飞机还是军用飞机绝大多数使用这种气动布局。
常规气动布局机型——我国的ARJ21祥凤支线客机
常规气动布局机型——我国的FC-1枭龙歼击机
常规气动布局机型——我国的歼11B歼击机
常规布局中还有一个另类——变后掠翼布局,就是主翼的后掠角度可以改变,高速飞行可以加大后掠角,相当于飞鸟收起翅膀,低速飞行时减小后掠角,展开翅膀。
这种布局的优势在于可以适应高速和低速时的不同要求,起降性能好,缺点是结构的复杂性严重增加了飞机重量,随着发动机技术特别是矢量推力技术的不断发展和鸭翼的应用,这种布局逐渐趋于淘汰。
变后掠翼布局典型机型有前苏联的米格27、图22,美国的F14、F111、B1,北约的狂风等。
变后掠翼气动布局——俄罗斯图22逆火战略轰炸机
变后掠翼气动布局——美国F14雄猫舰载歼击机
变后掠翼气动布局——北约狂风战斗轰炸机
无尾布局,这种气动布局顾名思义就是没有尾巴的气动布局。
这里的“尾巴”指的是水平尾翼,主翼在机尾,实际起到水平尾翼的作用。
无尾布局的最大优点是高速飞行时性能优异,大家可以想象一下,无尾布局是最接近飞镖、导弹、火箭的气动布局,航天飞机采用的也是无尾布局,因为这是最适合高速飞行的布局,阻力小,结构强度大。
由于没有水平尾翼,无尾布局大大减少了空气阻力,因为在常规布局中,从主翼表面流过来的气流会在水平尾翼形成阻力,同时为了平衡主翼的升力,水平尾翼其实一直充当一个“向下压”的角色,会损失掉一部分升力,所以和常规布局相比没有水平尾翼的无尾布局的空气动力效率要高很多,更适合高速飞行。
无尾布局机翼承载重量更合理,和机身链接结构更稳固,这就简化了机身结构,再加上去掉了水平尾翼和相关的操控系统后,机身重量可以大大降低。
无尾布局的缺点是低速性能不好,这影响到飞机的低速机动性能和起降能力。
另外无尾布局因为只能依靠主翼控制飞行,所以稳定性也不理想。
无尾布局在欧洲应用最为普及,法国的幻影系列是典型机型。
无尾气动布局机型——法国幻影2000
无尾气动布局机型——英法联合研制的协和超音速客机
无尾气动布局机型——英国火神轰炸机
针对无尾布局的低速性能和稳定性的缺陷,后来飞机设计师们又重新搬出了莱特兄弟的世界上第一架飞机的气动布局——鸭式布局,因为当初这种气动布局的飞机飞起来像鸭子,故此得名。
鸭式布局也是主翼在后面,前面加个小机翼叫做鸭翼,所以这种气动布局其实就是无尾布局加个鸭翼,或者说是主翼缩小水平尾翼放大的常规布局。
有了这个鸭翼,无尾布局的缺点得到明显改善,高速飞行时更加稳定,起降距离明显缩短,甚至机动性能比常规布局更加出色。
欧洲最为推崇鸭式布局,瑞典的JAS39,英法德西班牙联合研制的欧洲战斗机EU2000,法国的阵风以及以色列的幼师全部采用鸭式布局。
可以说目前鸭式布局再次成为航空技术发展的趋势,俄罗斯和美国正在研制新型飞机都在使用这种布局,例如俄罗斯的s37金雕试验机和美国的QSST超音速客机。
我国最新研制的歼10猛龙就属于鸭式布局,或者称为无尾鸭翼布局。
鸭式气动布局机型——世界第一架飞机飞行者一号
鸭式气动布局机型——俄罗斯图144超音速客机
鸭式气动布局机型——我国的歼10猛龙战斗机
三翼布局,这种布局其实就是常规布局加个鸭翼,或者说鸭式布局加个水平尾翼。
这种气动布局的优势是又多了一个可以控制飞机的部位,三个机翼更好的平衡分配载重,机动性能更好,对飞机的操控也更精准更灵活,可以缩短起降距离。
缺点是会增加阻力,降低空气动力效率,增加操控系统复杂程度和生产成本。
综合评测,常规布局增加鸭翼取得的性能改进得不偿失,所以目前只有俄罗斯苏27的改进型苏30MKI、33、34、35、37系列采用了这种气动布局。
三翼气动布局机型——俄罗斯苏37歼击机
飞翼布局,这种布局简单说就是只有飞机翅膀的布局,看上去只有机翼,没有机身,机身和机翼融为一体。
无疑这种布局是空气动力效率最高的布局,因为所有机身结构都是机翼,都是用于产生升力,而且最大程度低降低了阻力。
空气阻力最小所以雷达波反射自然也是最小,所以飞翼布局是隐身性能最好的气动布局。
飞翼布局的最大缺陷是操控性能极差,完全依赖电子传感控制机翼和发动机的矢量推力,因此飞翼布局没有得到普及,只应用于用于大型飞机,例如轰炸机、运输机,目前投入使用的只有美国的B2轰炸机。
飞翼气动布局机型——美国B2隐形战略轰炸机
还有一种奇特的气动布局——前掠翼布局,这种布局的特点是主翼前掠而不是后掠,不过虽然很早就开展了这种气动布局的研制工作,但是因为机翼前掠致命的稳定性问题导致这种技术一直只停留在研发阶段,没有得到实际应用。
典型机型有俄罗斯正在研制的S37金雕试验机和美国早已停止研制的X29试验机。
前掠翼气动布局机型——俄罗斯S37金雕试验机
前掠翼气动布局机型——美国X29试验机
现在知道了如何辨别飞机的气动布局了,是不是感觉世界上的飞机不再那么眼花缭乱了?我们要回过头来说说纸飞机了。
对于纸飞机来说,最合适的气动布局是无尾布局,因为这种布局结构最稳固,即使用薄的纸折叠也能够保证机翼挺直,即使用力投掷高速飞出,纸飞机的结构也可以抵抗住风压不至于变形太大。
无尾布局阻力可以调整到最小,所以可以投掷得更远。
其实我们平时折叠的纸飞机都是无尾布局,即使初学者第一次折叠也可以获得很好的滑翔性能,这正验证了无尾气动布局的诸多优点。
只不过普通的纸飞机没有垂直尾翼,或者说垂直尾翼在下方,看上去不太漂亮,不过这也算是纸飞机独有的气动布局吧。
除了纸飞机,任何飞机都不敢把垂直尾翼放在下面,如何起飞姑且不说,降落时尾巴是注定要遭殃了。