数学人教版六年级下册圆锥体积计算

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥体积教学设计圆锥体积

教学目标:

1使学生探索并初步掌握圆锥体积的计算方法和推导过程;

2使学生会应用公式计算圆锥的体积并解决一些实际问题;

3提高学生实践操作、观察比较、抽象概括的能力,发展空间观念;教学重点:

使学生初步掌握圆锥体积的计算方法并解决一些实际问题。

教学难点:

探索圆锥体积的计算方法和推导过程。

教具准备:

1、多媒体课件。

2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。

教学过程:

(一)创设情境,导入新课

1、创设情境引发猜想

同学们,我们学过了圆柱体积的计算,你们能计算圆锥的体积吗?

教师:学完今天的内容后,同学们就能正确计算圆锥的体积了!2、圆锥实物揭示课题

①教师出示一筒沙,师:将这筒沙倒在桌上,会变成什么形状?(学生猜想后教师演示)

②师:在这堂课上,你希望学到哪些知识呢?(生自主回答,确立学习目标)

③揭题:圆锥的体积师:好,我们一起努力吧!

(二)自主探索,合作交流

1、直观引入直觉猜想

(1)教师演示刨铅笔:把一支圆柱形铅笔的笔头刨成圆锥形。

(2)引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?

①教师鼓励学生大胆猜想。(生说可能的情况)

②师:你们是怎样理解“相应的”一词的?说说你的看法。

生说后,师总结:“相应的”,即圆锥与圆柱是等底等高的。(用实物演示给生看)

2、实验探索发现规律

(1)小组讨论填写材料单,有顺序地领取材料

学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、米、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子、米等,等底不等高和等高不等底的圆柱形和圆锥形容器各一个)

(2)组际交流,得出结论:

结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。

结论2:等底不等高的圆锥体与圆柱体,圆锥的体积是圆柱体积的二分之一。结论3:等高不等底的圆锥体与圆柱体,圆锥的体积是圆柱体积的四分之一。

结论4:圆柱的体积正好是圆锥体积的3倍。

结论5:圆柱的体积是等底等高的圆锥体积的3倍。

……

师:同学们实验的结论各不相同,到底哪组的结论对呢?

(各小组纷纷叙述自己小组的实验过程、结论;说明自己小组的准确性,学生的思维处于高度集中状态)。

(5)参与处理信息。

围绕三分之一或3倍关系的情况讨论:

师:我们先来看得出三分之一或3倍关系的这几个小组;请小组代表说说他们是怎样通过实验得出这一结论的?

师:其他小组得出的结论不同,是不是由于实验过程或结论有错误呢?我们也请小组代表说说你们的看法。

(生说明他们的过程和结论都是对的,只是他们的圆锥和圆柱不是即等底又等高的)。

师:总结以上各个小组的看法,我们可以得出什么样的结论?生1:圆锥的体积等于和它等底等高圆柱体积的三分之一。

生2:圆柱的体积是等底等高的圆锥体积的3倍。

生3:我认为第一种说法较合理,强调了圆锥体积的求法。

……

师总结并板书:

圆锥的体积等于和它等底等高的圆柱体积的。

3、启发引导推导公式

师:对于同学们得出的结论,你能否用数学公式来表示呢?生:因为圆柱的体积计算公式V=sh;所以我们可以用表示圆锥的体积。

师:其他同学呢?你们认为这个同学的方法可以吗?

生:可以。

师:那我们就用表示圆锥的体积。

计算公式:

师:(1)这里Sh表示什么?为什么要乘?

(2)要求圆锥体积需要知道哪两个条件?

生回答,师做总结

(三)、巩固练习,运用拓展

1、试一试

一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?

2、xx计算下面各圆锥的体积:

3、实践性练习

师:请你们将做实验时装在圆柱容器里的沙(或米)倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。

4、开放性练习

一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)

(四)整理归纳,回顾体验

1、上了这些课,你有什么收获?(互说中系统整理)

2、用什么方法获取的?你认为哪组表现最棒?

3、通过这节课的学习,你有什么新的想法?还有什么问题?(五)问题解决。(电脑呈现出动画情境)

小明和小强到底买哪种形状的冰淇淋更合算呢?

师:谁能帮他们解决这个问题呢?

(学生说出买圆柱形的冰淇淋更合算的理由。)

六、板书设计:

圆锥的体积

圆锥的体积等于和它等底等高的圆柱体积的。

相关文档
最新文档