2017年苏州中考数学试卷(含解析)

合集下载

2017江苏苏州市中考数学试卷解析

2017江苏苏州市中考数学试卷解析

2017年江苏省苏州市中考数学试卷满分:130分 版本:苏教版第Ⅰ卷(共30分)一、选择题(每小题3分,共10小题,合计30分) 1.(2017江苏苏州,1,3分)(—21)÷7的结果是 A .3B .—3C .13D .13-答案:B ,解析:根据有理数除法法则,同号得正,异号得负;除以一个不为0的数等于乘以其倒数.2.(2017江苏苏州,2,3分)有一组数据:2,5,5,6,7,这组数据的平均数为 A .3B .4C .5D .6答案:C ,解析:根据平均数的计算方法,2+5+5+6+7=55,故答案选C .3.(2017江苏苏州,3,3分)小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为 A .2B .2.0C .2.02D .2.03答案:D ,解析:根据“近似数的计算方法”,用四舍五入法将2.026精确到0.01的近似值,精确到百分位,则2.026≈2.03.4.(2017江苏苏州,4,3分)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1B .—1C .2D .—2答案:A ,解析:根据一元二次方程有两个相等的实数根,即根的判别式.5.(2017江苏苏州,5,3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70B .720C .1680D .2370答案:C ,解析:根据用样本估计总体的统计思想,所以,故答案选C . 6.(2017江苏苏州,6,3分)若点A (m ,n )在一次函数y =3x +b 的图象上,且3m —n >2,则b 的取值范围为 A .b >2B .b >—2C .b <2D .b <—2答案:D ,解析:根据一次函数图象上点的特征,点A (m ,n )在一次函数y =3x +b 的图象上,则n =3m+b ,—b =3m —n ,所以—b >2,故答案为b <—2.7.(2017江苏苏州,7,3分)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为=4401k k ∆-=⇒=702400=1680100⨯A .30°B .36°C .54°D .72°答案:B ,解析:根据“正多边形的定义:各边都相等,各角都相等”可计算出正五边形一个内角的度数∠A=108°,再根据等腰△ABE 两底角相等,可计算底角∠ABE=36°.8.(2017江苏苏州,8,3分)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程 a (x -2)2+1=0的实数根为A .x 1=0,x 2=4B .x 1=—2,x 2=6C . x 1=32,x 2=52D .x 1=—4,x 2=0答案:A ,解析:根据“二次函数图象上点的坐标特征”可得4a +1=0,a =-14,则21(2)104x --+=,解一元二次方程得x 1=0,x 2=4.9.(2017江苏苏州,9,3分)如图,在Rt △ABC 中,∠ACB=90°,∠A=56°.以BC 为直径的 O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为A .92°B .108°C . 112°D .124°答案:C ,解析:根据“圆中圆心角圆周角性质”.∵∠ACB=90°,∠A=56°∴∠B=34°.在O 中,∵C CD E =,∴∠B=12∠CBD=∠COE =68°,∴∠F=112°,故答案选C . 10.(2017江苏苏州,10,3分)如图,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点.过点F 作FE ⊥AD ,垂足为E .将△AEF 沿点A 到点B 的方向平移,得到△AE 'F '.设P 、P '分别是EF 、E 'F '的中点,当点A '与点B '重合时,四边形PP 'CD 的面积为A .B .C .D .8答案:A ,解析:根据平移性质,四边形PP 'CD 为平行四边形,再通过做辅助线,构造直角三角形,利用三角函数求出平行四边形PP 'CD 的高的长度,进而求出□PP 'CD 的面积. 作DH ⊥AB ,PK ⊥AB ,FL ⊥AB ,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点,∴AF =4,EF =4,∴EL .∵P 是EF 的中点,∴PK ∵DH =∴□PP 'CD 的高为∴=82S =故答案选A .第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(2017江苏苏州,11,3分)计算:()22a = .答案:4a ,解析:根据“幂的乘方运算法则”,幂的乘方,底数不变,指数相乘,()224a a =.12.(2017江苏苏州,12,3分)如图,点D 在∠AOB 的平分线OC 上,点E 在OA 上,ED ∥OB , ∠1=25°,则∠AED 的度数为 .答案:50,解析:根据“平行线性质、三角形外角性质”,∵DE ∥OB ,∴∠EDO =∠1=25°.∵OD 平分∠AOB ,∴∠AOD =25°.∴∠AED =25°+25°=50°.13.(2017江苏苏州,13,3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.答案:8,解析:根据“中位数的定义”,计算中位数先按照从小到大的顺序排列,11个数据的中位数由第6个数据决定,故中位数是8.14.(2017江苏苏州,14,3分)因式分解:2441a a -+= .答案:()221a -,解析:根据“公式法分解因式:2222()a ab b a b ++=+”,()2244121a a a -+=-.15.(2017江苏苏州,15,3分)如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是 .答案:13,解析:根据“轴对称图形定义”,有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是13.16.(2017江苏苏州,16,3分)如图,AB 是O 的直径,AC 是弦,AC =3,∠BOC =2∠AOC .若用扇形OAC (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .答案:12,解析:根据“圆锥的侧面展开图的弧长等于地面圆的周长”,∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°.∴R =3.∴6032180l r ππ⨯==.∴r =12.2117.(2017江苏苏州,17,3分)如图,在一笔直的沿湖道路上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4km .游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为v 1、v 2,若回到A 、B 所用时间相等,则12v v = (结果保留根号).解析:根据“特殊角三角函数的应用”,作CD ⊥AB ,垂足为D ,∵AC =6,∠CAB=30°,∴CD =2.在Rt △BCD 中,∠CBD=45°,∴BC=.∵开往码头A 、B 的游船回到A 、B 所用时间相等,12v v ==.18.(2017江苏苏州,18,3分)如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边B C ''交CD 边于点G .连接BB '、CC ',若AD =7,CG =4,AB B G ''=,则CC BB '='(结果保留根号).D解析:根据“旋转的性质、勾股定理”,连接AG ,设DG =x ,则4AB B G x ''==+.在Rt AB G ∆'中,x 2+49=2(x +4)2,∴x =1.则AB =5,BC =7,∴CC BB'=='. 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(2017江苏苏州,19,5分)计算:()013π-+-.思路分析:根据“实数的运算法则”,计算绝对值、算数平方根、0次幂,即可得出答案. 解:.原式=1+2-1=2.20.(2017江苏苏州,20,5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.思路分析:根据“不等式组解集的求解方法”,先求出各不等式的解集,再利用数轴判断公共解集,即可求出不等式组的解集.解:解不等式○1得,44x +≥,解得3x ≥;解不等式○2得,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<.21.(2017江苏苏州,21,6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-.思路分析:分式的化简求值,先将括号内的进行通分,各分子、分母因式分解,再约分.解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =时,原式===.22.(2017江苏苏州,22,6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量.思路分析:(1)用待定系数法求一次函数的表达式;(2)旅客最多可免费携带行李的质量就是y =0时x 的值.解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg .23.(2017江苏苏州,23,8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有名男生、名女生的概率.思路分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.解:(1)m =8,n =3; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:该组频数数据总数360⨯︒也可使用树状图.由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有8种可能.P ∴( 名男生、名女生)82123==. 24.(2017江苏苏州,24,8分)如图,∠A=∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.思路分析:(1)用ASA 证明两三角形全等;(2)利用全等三角形的性质得出EC =ED ,∠C=∠BDE ,再利用等腰三角形性质:等边对等角,即可求出底角∠BDE =69°.解:(1)证明:∵AE 和BD 相交于点O ,AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.25.(2017江苏苏州,25,8分)如图,在△ABC 中,AC =BC ,AB ⊥x 轴,垂足为A .反比例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知AB =4,BC =52. (1)若OA =4,求k 的值;(2)连接OC ,若BD =BC ,求OC 的长.思路分析:(1)利用勾股定理,先求出C 的坐标,再代入反比例函数即可;(2)利用勾股定理,求OC 的长度.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22⎛⎫⎪⎝⎭,点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=.,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,OC OF CF OC =+∴=. 26.(2017江苏苏州,26,10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形ABCD 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在B 、C 处拐弯时分别用时).设机器人所用时间为t (s )时,其所在位置用点P 表示,P 到对角线BD 的距离(即垂线段PQ 的长)为d 个单位长度,其中d 与的函数图像如图②所示. (1)求AB 、BC 的长;(2)如图②,点M 、N 分别在线段EF 、GH 上,线段MN 平行于横轴,M 、N 的横坐标分别为t 1、t 2.设机器人用了t 1(s )到达点P 1处,用了t 2(s )到达点P 2处(见图①).若CP 1+CP 2=7,求t 1、t 2的值.思路分析:根据“特殊角三角函数值,平行线分线段成比例定理”,(1)利用勾股定理求出BT ,再利用正切值求出BC ;(2)平行线分线段成比例定理列出方程,即可求解.解:(1)作,AT BD ⊥ 垂足为T ,由题意得,248,5AB AT ==. 在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴= 即6BC =.(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ P Q . 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20CP t CP t t t =-=-∴==.27.(2017江苏苏州,27,10分)如图,已知△ABC 内接于O ,AB 是直径,点D 在O 上,OD∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:△DOE ∽△ABC ;(2)求证:∠ODF =∠BDE ;(3)连接OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若1227S S =,求sinA 的值.思路分析:(1)利用两角对应相等,证明两三角形相似;(2)相似三角形对应角相等,同弧所对的圆周角相等;(3)转化角度,放在直角三角形ODE 中,即可求∠A 的正弦值.解:(1)AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠.//,OD BC DOE ABC ∴∠=∠,DOE ∴∆∽ABC ∆.(2)DOE ∆∽ABC ∆.ODE A A ∴∠=∠∠和BDC ∠是BC 所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭∽ ,即144ABC DOE S S S ∆∆== , OA OB =,12BOC ABC S S ∆∆∴= , 即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++ , 112DBE S S ∆∴= ,12BE OE ∴= , 即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠==. 28.(2017江苏苏州,28,10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,OB =OC .点D 在函数图像上,CD ∥x 轴,且CD =2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段OC 上的点F 关于直线的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.思路分析:(1)根据二次函数的对称轴公式,抛物线上的点代入,即可求出c 的值;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值.解:(1)CD x 轴,2CD = ,∴抛物线对称轴为直线 1.l x =: ∴()1, 2.,0,2b b OB OC Cc -==-=∴点B 的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c =(舍去), 3.c ∴=-(2)设点F 的坐标为()0,.m 对称轴为直线1l x =:,∴点F 关于直线的对称点F 的坐标为()2,m .直线BE 经过点()()3,0,1,4,B E -∴利用待定系数法可得直线BE 的表达式为26y x =-. 因为点F 在BE 上,∴2262m =⨯-=-,即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++ ∴1QR =.①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n n n -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴=时,NQ 取最小值.此时Q 点的坐标为115,.24⎛⎫- ⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭ 综上所述:满足题意得点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

2017年江苏省苏州市中考数学试卷及答案解析

2017年江苏省苏州市中考数学试卷及答案解析

()
A. 3
B. 4
C. 5
D. 6
卷 3.小亮用天平称得一个罐头的质量为 2.026 kg ,用四舍五入法将 2.026 精确到 0.01的近
似值为
()
03
4.关于 x 的一元二次方程 x2 2x k 0 有两个相等的实数根,则 k 的值为
()
D. x1 4 , x2 0
9.如图,在 Rt△ABC 中,∠ACB =90 ,∠A =56 .以 BC 为直径的 O 交 AB 于点 D , E
是 O 上一点,且 CE CD ,连接 OE ,过点 E 作 EF⊥OE ,交 AC 的延长线于点 F ,则
F 的度数为
()
A. 92
B.108
绝密★启用前 在
江苏省苏州市 2017 年中考试卷
数学
本试卷满分 120 分,考试时间 120 分钟.
一、选择题(每小题 2 分,共 20 分) 此 1. (21) 7 的结果是
()
A. 3
B. 3
C. 1
3
D. 1 3
2.有一组数据: 2 , 5 , 5 , 6 , 7 , 这组数据的平均数为
v1 若回到 A、B 所用时间相等,则 v2
(结果保留根号).
18.如图,在矩形 ABCD 中,将∠ABC 绕点 A 按逆时针方向旋转一定角度后, BC 的对应 边 BC 交 CD 边于点 G .连接 BB、CC ,若 AD 7 , CG 4 , AB BG , 则 CC BB (结果保留根号).
22.(6 分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过 规定时,需付的行李费 y (元)是行李质量 x (kg) 的一次函数.已知行李质量为 20 kg

2017年江苏省苏州市中考数学试卷(含答案解析版)

2017年江苏省苏州市中考数学试卷(含答案解析版)

2017年江苏省苏州市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.2.(3分)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.63.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.034.(3分)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣25.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.23706.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b 的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣27.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x ﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2=D.x1=﹣4,x2=0 9.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O 交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°10.(3分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)计算:(a2)2=.12.(3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为°.13.(3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14.(3分)分解因式:4a2﹣4a+1=.15.(3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.17.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C 在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).18.(3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则=(结果保留根号).三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:|﹣1|+﹣(π﹣3)0.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣2.22.(6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表项目男生(人数)女生(人数)机器人793D打印m4航模2 2其他5n根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD 相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.25.(8分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.26.(10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N 的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.27.(10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD ∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.28.(10分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.2017年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.【分析】根据有理数的除法法则计算即可.【解答】解:原式=﹣3,故选B.【点评】本题考查有理数的除法法则,属于基础题.2.(3分)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.6【分析】把给出的这5个数据加起来,再除以数据个数5,就是此组数据的平均数.【解答】解:(2+5+5+6+7)÷5=25÷5=5答:这组数据的平均数是5.故选C【点评】此题主要考查了平均数的意义与求解方法,关键是把给出的这5个数据加起来,再除以数据个数5.3.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.03【分析】根据题目中的数据和四舍五入法可以解答本题.【解答】解:2.026≈2.03,故选D.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的表示方法.4.(3分)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣2【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4k=0,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴△=(﹣2)2﹣4k=4﹣4k=0,解得:k=1.故选A.【点评】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.5.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.2370【分析】先求出100名学生中持“赞成”意见的学生人数,进而可得出结论.【解答】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100﹣30=70名,∴全校持“赞成”意见的学生人数约=2400×=1680(名).故选C.【点评】本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.6.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b 的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m﹣n>2,即可得出b<﹣2,此题得解.【解答】解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.故选D.【点评】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征结合3m﹣n>2,找出﹣b>2是解题的关键.7.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选B.【点评】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x ﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2=D.x1=﹣4,x2=0【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x﹣2)2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选A.【点评】本题考查了二次函数与x轴的交点问题,一元二次方程的解,正确的理解题意是解题的关键.9.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O 交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE 的度数是解题关键.10.(3分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8【分析】如图,连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH即可解决问题.【解答】解:如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,∵DF=4,∴DH=4﹣=,∴平行四边形PP′CD的面积=×8=28.故选A.【点评】本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)计算:(a2)2=a4.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(a2)2=a4.故答案为:a4.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.(3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为50°.【分析】根据平行线的性质得到∠3=∠1,根据角平分线的定义得到∠1=∠2,等量代换得到∠2=∠3,由三角形的外角的性质即可得到结论.【解答】解:∵ED∥OB,∴∠3=∠1,∵点D在∠AOB的平分线OC上,∴∠1=∠2,∴∠2=∠3,∴∠AED=∠2+∠3=50°,故答案为:50.【点评】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握平行线的性质是解题的关键.13.(3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是8环.【分析】11名成员射击成绩处在第6位的是8,则中位数为8.【解答】解:∵按大小排列在中间的射击成绩为8环,则中位数为8.故答案为:8.【点评】本题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)分解因式:4a2﹣4a+1=(2a﹣1)2.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:4a2﹣4a+1=(2a﹣1)2.故答案为:(2a﹣1)2.【点评】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.15.(3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.【分析】根据轴对称的性质设计出图案即可.【解答】解:如图,∵可选2个方格∴完成的图案为轴对称图案的概率==.故答案为:.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.【分析】根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.【解答】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C 在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC的长,然后根据=求解.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•s in∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),∴===.故答案是:.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.18.(3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则=(结果保留根号).【分析】先连接AC,AG,AC',构造直角三角形以及相似三角形,根据△ABB'∽△ACC',可得到=,设AB=AB'=x,则AG=x,DG=x﹣4,Rt△ADG 中,根据勾股定理可得方程72+(x﹣4)2=(x)2,求得AB的长以及AC的长,即可得到所求的比值.【解答】解:连接AC,AG,AC',由旋转可得,AB=AB',AC=AC',∠BAB'=∠CAC',∴=,∴△ABB'∽△ACC',∴=,∵AB'=B'G,∠AB'G=∠ABC=90°,∴△AB'G是等腰直角三角形,∴AG=AB',设AB=AB'=x,则AG=x,DG=x﹣4,∵Rt△ADG中,AD2+DG2=AG2,∴72+(x﹣4)2=(x)2,解得x1=5,x2=﹣13(舍去),∴AB=5,∴Rt△ABC中,AC===,∴==,故答案为:.【点评】本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是本题的难点所在.三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:|﹣1|+﹣(π﹣3)0.【分析】直接利用绝对值的性质以及二次根式的性质和零指数幂的性质分别化简求出答案.【解答】解:原式=1+2﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由x+1≥4,解得x≥3,由2(x﹣1)>3x﹣6,解得x<4,所以不等式组的解集是3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣2.【分析】把分式进行化简,再把x的值代入即可求出结果.【解答】解:原式=.当时,原式=.【点评】本题主要考查了分式的混合运算﹣化简求值问题,在解题时要乘法公式的应用进行化简.22.(6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.【分析】(1)根据(20,2)、(50,8)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【解答】解:(1)设y与x的函数表达式为y=kx+b.将(20,2)、(50,8)代入y=kx+b中,,解得:,∴当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2.(2)当y=0时,x﹣2=0,解得:x=10.答:旅客最多可免费携带行李10kg.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出y与x之间的函数表达式;(2)令y=0,求出x值.23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表项目男生(人数)女生(人数)机器人793D打印m4航模2 2其他5n根据以上信息解决下列问题:(1)m=8,n=3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为144°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【分析】(1)由航模的人数和其所占的百分比可求出总人数,进而可求出3D打印的人数,则m的值可求出,从而n的值也可求出;(2)由机器人项目的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;(3)应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:男1男2女1女2男1﹣﹣男2男1女1男1女2男1男2男1男2﹣﹣女1男2女2男2女1男1女1男2女1﹣﹣女2女1女2男1女2男2女2女1女2﹣﹣由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.24.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD 相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C 的度数,从而可求出∠BDE的度数;【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.25.(8分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.【分析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.【点评】此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出C点坐标是解题关键.26.(10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N 的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.【分析】(1)作AT⊥BD,垂足为T,由题意得到AB=8,AT=,在Rt△ABT中,根据勾股定理得到BT=,根据三角函数的定义即可得到结论;(2)如图,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.根据平行线的性质得到d1=d2,得到P1Q1=P2Q2.根据平行线分线段成比例定理得到.设M,N的横坐标分别为t1,t2,于是得到结论.【解答】解:(1)作AT⊥BD,垂足为T,由题意得,AB=8,AT=,在Rt△ABT中,AB2=BT2+AT2,∴BT=,∵tan∠ABD=,∴AD=6,即BC=6;(2)在图①中,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.∵在图②中,线段MN平行于横轴,∴d1=d2,即P1Q1=P2Q2.∴P1P2∥BD.∴.即.又∵CP1+CP2=7,∴CP1=3,CP2=4.设M,N的横坐标分别为t1,t2,由题意得,CP1=15﹣t1,CP2=t2﹣16,∴t1=12,t2=20.【点评】本题考查了动点问题的函数图象,勾股定理矩形的性质,平行线分线段成比例定理,正确的作出辅助线是解题的关键.27.(10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD ∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.【分析】(1)根据圆周角定理和垂直求出∠DEO=∠ACB,根据平行得出∠DOE=∠ABC,根据相似三角形的判定得出即可;(2)根据相似三角形的性质得出∠ODE=∠A,根据圆周角定理得出∠A=∠BDC,推出∠ODE=∠BDC即可;(3)根据△DOE~△ABC求出S△ABC =4S△DOE=4S1,求出S△BOC=2S1,求出2BE=OE,解直角三角形求出即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE~△ABC,∴,即S△ABC =4S△DOE=4S1,∵OA=OB,∴,即S△BOC=2S1,∵,∴,∴,即,∴.【点评】本题考查了相似三角形的性质和判定,圆周角定理,平行线的性质,三角形的面积等知识点,能综合运用知识点进行推理是解此题的关键.28.(10分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n 的值,则可求得Q点的坐标,【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.【点评】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR的长,用勾股定理得到关于n的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.。

2017年江苏省苏州市中考数学试题及答案

2017年江苏省苏州市中考数学试题及答案

2017年苏州市初中毕业暨升学考试试卷数学第I 卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分在每小题给出的四个选项 中,只有一项是符合题目要求的.1. -21 “7的结果是A . 3B .-3C .1 3 1 D . ——32有 组数据: 2, 5,5,6, 7, 这组数据的平均数为 A . 3B . 4C .5D . 63•小亮用天平称得一个罐头的质量为 2.026 kg ,用四舍五入法将 2.026精确到0.01的近似值为 A . 2 B .2.0C .2.02 D . 2.034.关于x 的一元二次方程X 2 -2x • k =0有两个相等的实数根,则k 的值为A . 1B .-1 C.2D . -25.为了鼓励学生课外阅读,学校公布了 阅读奖励”方案,并设置了 赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了 100名学生的意见,其中持 反对”和 无所 谓”意见的共有30名学生,估计全校持 赞成”意见的学生人数约为6.若点Z m,n 在一次函数y =3x • b 的图像上,且 A . b 2B . b -2C .b 2D . b :: -27.如图,在正五边形 JTCD ;:中,连接,^y • 丁叮:的度数为 A . 30B . 36 C.54 D . 72°A . 70B . 720 C.1680 D . 23703m - n 2,贝U b 的取值范围为8•若二次函数y=ax?+1的图像经过点(—2,0),则关于x的方程a(x —2:+ 1 = 0的实数根3c.「,Z... C3 =90,.二=56 .以三C为直径的U O交二m于点D,C上二CD,连接O!-.,过点上作I :F..「);:,交二C的延长线于点F , 则.F的度数为10•如图,在菱形JTCD中,•丄=60:,丄D=8 , F是兀的中点.过点F作F;: .「:D , 垂足为上.将.*: F沿点Z到点三的方向平移,得到7 :. F .设P、〉分别是i'F、- F' 的中点,当点与点三重合时,四边形??CD的面积为A. 28、、3B. 24,3C.32,3D. 32,3-8第U卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)2211. 计算:a 二 ______________12. 如图,点D在•一二己的平分线匚C上,点;:在「2上,;:D〃cm , - 1 = 25」y,::D 9•如图,在Rt.UdC中,上是U G上一点,且A. 92 108 C.112 D. 124B.的度数为___________ .13•某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计16•如图,d 是L '--1的直径,--C 是弦,--C =3, -3() C 二2・・:1••丿C .若用扇形,••丿■■C (图 中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是17•如图,在一笔直的沿湖道路l 上有二、两个游船码头,观光岛屿C 在码头Z 北偏东60A的方向,在码头m 北偏西45"的方向,厶C =4 km .游客小张准备从观光岛屿 C 乘船沿CA 回到码头Z 或沿C2回到码头2 ,设开往码头 二、2的游船速度分别为 v 1、v 2,若回到二、三所用时间相等,贝U 也二 __________ (结果保留根号)v人数A图•由图可知,11名成员射击成绩的中位数是 环.214•因式分解:4a -4a -1二15.如图,在3 3”网格中,有3个涂成黑色的小方格.若再从余下的 6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是(第13题)(第16题)18•如图,在矩形厶BCD 中,将• JTC 绕点Z 按逆时针方向旋转一定角度后, BC 的对应— __ — _ —CC边三C ■交CD 边于点G •连接-注、CC ,若丄D =7 , CG =4,二 -3 G ,则上上=BB H__________ (结果保留根号)•三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演 算步骤.)19. (本题满分5分) 计算:-1 +V 4 兀 -3 ,. 20. (本题满分5分)X x 1 - 4解不等式组:2(x-1 )A 3X -621. (本题满分6分) 先化简,再求值: 1亠亡二9,其中x 二.3-2 .V x+2丿 x+322. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费 y (元)是行李质量 x ( kg )的一次函数•已知行李质量 为20 kg 时需付行李费2元,行李质量为50 kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求 y 与x 之间的函数表达式; (2 )求旅客最多可免费携带行李的质量.j 1flI 用 ----- 东23. (本题满分8分)初一(1)班针对你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.(第23题)根据以上信息解决下列问题:(1) m = ___________ , n = _____________ ; (2) 扇形统计图中机器人项目所对应扇形的圆心角度数为(3 )从选航模项目的 4名学生中随机选取 2名学生参加学校航模兴趣小组训练,请用列举 法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24. (本题满分8分)如图,•丄-三上,点D 在ZC 边上,.仁• 2,汀 和 2D 相交于点 (1) 求证:—! C 也 D ;(2) 若• 1 =42:,求厶!D ;:的度数.25. (本题满分8分)如图,在 jme 中,丄一c-^c ,丄三_ x 轴,垂足为二•反比例函k5数y ( x 0)的图像经过点C ,交兀于点D .已知上三-4,二C =— •学生所选项目人数扇形统计图项tJ 男坐(人数)女生(人数)机器人 79 3D 打印 m 4 航模 22其他53D 打叩 30% 机器人乩他航模 10%男*女生所选项目人数统计袁x 2(1 )若门」-4,求k的值;(2)连接匚C,若三D ,求OC的长.26. (本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练•机器人从点丄出发,在矩形厶BCD边上沿着--C > D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1 s(即在三、C处拐弯时分别用时1s)•设机器人所用时间为t s时,其所在位置用点m表示,m到对角线3D 的距离(即垂线段?Q的长)为d个单位长度,其中d与t的函数图像如图②所示.(1 )求二三、三C的长;(2)如图②,点上|、、分别在线段上F、GI上,线段二平行于横轴,上I、、的横坐标分别为t1、t2 •设机器人用了t1 s到达点?1处,用了t2 s到达点?2处(见图①)•若C3 • CP2=7,求t1、t2的值.(图27.(本题满分10分)如图,已知厶二三C 内接于L ° ,是直径,点D 在L °上,o D//2 C ,D 作D _二三,垂足为上,连接CD 交门上边于点F •连接':":'C ,设的面积为S i ,四边形三C 「)D 的面积为S 2,若■S L-,求sin 二S 2 7过点 (1) 求证:S ."■:.-.BC ; (2) 求证:•「)DF = • BD ;(3)的值.228.(本题满分10分)如图,二次函数y = x bx c的图像与x轴交于二、三两点,与y轴交于点C,「用-OC •点D在函数图像上,CD//X轴,且CD = 2,直线I是抛物线的对称轴,上是抛物线的顶点.(1 )求b、c的值;(2)如图①,连接m;:,线段0C上的点F关于直线I的对称点F•恰好在线段三;:上,求点F的坐标;(3)如图②,动点P在线段「用上,过点?作x轴的垂线分别与2C交于点二1 ,与抛物线交于点X .试问:抛物线上是否存在点Q ,使得.口QX与的面积相等,且线段乂Q参考答案(的27题)(第28、选择题、填空题当 x =20时,y = 2,得 2 =20k b .当 x =50时,y = 8,得 8 = 50k b .1 l20k+b=2 l k =」1 解方程组 ,得 5,所求函数表达式为 y x-2.|50k+b=8 L 5L l b = -2当 y =0 时,丄乂-2=0,得 x =10.523.解:(1)m =8,n =3 ;⑵ 144 ;(3) 将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4 .用表格列出所有可能 出现的结果:1-5:BCDAC6-10:DBACA11.a 412.50 13.8 214.(2a —1)1 15.-31 16.217. .2.74 18.5三、解答题19.解:原式20.解:由 x • 4 _ 4,解得 x _3,由 2 x -1〕>3x -6,解得 x 4 ,所以不等式组的解集21.解:原式_ x -3 . x 3 x -3 _x -3_ x 2x 2 x 3 x-3 x 2原式=一丁3_2+2V 322.解:(1)根据题意,设y 与x 的函数表达式为 y = kx ■ b .答: 旅客最多可免费携带行李10kg .由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中名男生、1名8 2女生”有8种可能..P(1名男生、1名女生).(如用树状图,酌情相应给分)12 324.解:⑴证明:;AE和BD相交于点0, . A0D二/BOE .在厶AOD和BOE中,.A = • B,. . BEO — 2 •又:• 1 二2, . 1 = • BEO, . AEC 二.BED •在AEC 和BED 中,.A "BIAE =BE ,• : AEC 三BED ASA .AEC "BED(2) ;AEC 二BED, EC =ED, C =/BDE •在EDC 中,V EC 二ED, • 1 = 42【C =EDC =69”,BDE = • C = 6& •25.解:(1)作CE JB,垂足为E, , AC 二BC, AB = 4,AE 二BE = 2 .在Rt 二BCE 中,BC T BE也C「3,;O…C点的坐标为詐宀点C在的图象上,” k — 5 •,* 5 3⑵设A点的坐标为m,0 ,;BD=BC , AD .. D, C两点的坐标分别为2 2f m 3)L_3 2) m,2 ,口2,2 .9 CF _x轴,垂足为F,. OF ,CF =2•在Rt OFC 中,2OC2 =OF2 CF2,. OC =—97226. ( 1 )作AT_BD,垂足为T ,由题意得,AB =8, AT 二24.在Rt ABT 中, 5AB2=BT2AT2,. BT 二32. ;tan. ABD 二俎二AT5 ABv在图②中,线段MN平行于横轴,.d i二d2,即PQ"P2Q2.瞅叽誓嚅即CP^ =-CP2.又;CP +CF2 =7,二CP =3,CP2=4.6 8题意得,CP1=15 -t|,CP2 =t2-16, t| =12,t2=20.I I _27.解:.AB是O O的直径,ACB =90.U DE — AB, DEO =90. DEO "ACB .TOD//BC, DOE =/ABC, : DOE 〜ABC.(2DOE〜ABC ODE=/A.:・A和・BDC是BC所对的圆周角,k 3:点C,D都在y 的图象上,mx 2=2 m—2I 2,2 6, C点的坐标为|,2.作BT‘ AD-6,即BC"垂足为Q1,Q2.则RQ丄P2Q2.设M,N的横坐标分别为H ,由(2)在图①中,连接pp2.过P,P2分别作BD的垂线,2, 4 .A= BDC, ODE 二 BDC.. ODF 二 BDE .-b =1,b - -2.:OB =OC,C 0,c , B 点的坐标为 -c,0 ,2 .0 二 c 2c c,解得 c - -3 或 c = 0 (舍去),c - -3.(2)设点F 的坐标为 0,m .“”'对称轴为直线丨:x=1,.点F 关于直线l 的对称点F 的 坐标为2, m .v 直线BE 经过点B 3,0 ,E 1, -4 ,利用待定系数法可得直线BE 的表达式 为y = 2x -6 .因为点F 在BE 上,.m =2 2-6=—2,即点F 的坐标为 0,-2 . (3)存在点Q 满足题意.设点P 坐标为n,0 ,则 PA 二 n 1,PB 二 PM =3 - n,PN 二-n 22 n 3.1 1作 QR —PN,垂足为 R, TS/QN -S APM , ?n 1 3-n =- - n 2 2n 3i_QR,QR =1.①点Q 在直线PN 的左侧时,Q 点的坐标为n -1,n 2 -4n ,R 点的坐标为n,n 2-4n ,N2223点的坐标为(n,n —2n — 3).二 在 Rt^QRN 中,NQ =1+(2n — 3) J n = ?时,NQ取最小值1 .此时Q 点的坐标为-S D)BE =劳.BE OE222OE 2 OE : OB = —A = s ODE» .s33OD328.解: :(1) TCD_x 轴,CD =2 , 抛物线对称轴为直线 l : x = 1* S 2* S ,7,S2 =S 「BOC ' SCDOE ' SDB^ -2S I ' S l 'SDBE(3)「 :DOE_ . ABC,2S DOE (OD 〕1S ABC AB 4,即 S ABC = 4S ・poE = 4S , t OA = OB ,1S =2SABCSB -2S1②点Q在直线PN的右侧时,Q点的坐标为n 11,n? _ 4 .同理,〈315、n出寸,NQ取最小值1•此时Q点的坐标为,•12 4丿综上所述:满足题意得点Q的坐标为i和11.⑵4丿2 4丿数学试题参韦答案第1页(戏6項)2017年苏州市初中毕业暨升学考试数学试题参考答案一、选择题:(每小題3分”共汕分〉1. B 1. C3. D & D7. H8, A二、填空题;(毎小題3分.共】4分》 4. A 9. C5. C 10. A11. a 12. 50 13.14T (2—1)15. -16,丄17,IX. >/7425三、卿答题:(共力分)19. 解:原式=1+2—1=2*20, 斛:由"124,解得虫3・由 2(.r- l)>3.t-6 t 懈得盂<4・ 儿不等式纽的解卑£3签工<4 .2L 解:跖<=口」"3)(*-3)J + 2x + 3x — 3 x + 3 1 = ------- « ------------------ ■= ----- . Ji + 2 (x + 3)(jt — 3) x + 2 肖工二厲_2时*皿式=——二丄=巴. V3-2 + 2 V3 322.解:(1〉根据题总*设V J J-r 的鞘数丧込式为皿也 当 尸20时* 祈2三20才十芳尸刃时,严&得*一5以+八所求函數&込式为>=|x-2.(2)当jT 时.*上一2 = 0,得尸10・ 悴:族客时篦可免彷携带行卒10煌-解方程组20A+/> = 2t 501 + 6 = 8.⑵ 144;⑶ 将选航模项闾的2名刃生编上号码1、2>将2名女生编上号码氛4•用表格列由我格町知■共有12种可能出现的结杲'井且它们都足零可能的,其中r名班* I名女生”冇8种可能.Ap CI名男主、1斜女牛)=兰工2・(如川树状图.酌情柑咸給分)12 324 - (!)肚明:\AE和刃JfH 交F点0 :.ZAOD=ZBOE.在△昇OD和厶号心血中* ,\ZBEO=Z2.乂/< Z I = ZBEO. :, ZAEC=ZRED.[/心皿在△沖EC 和\ AE ~= BE,[ZAEC^ZBED^二HAEWbRED (ASA).<2) TAJEQ空△BED’ :.EC = ED. ZC- ZBDE.襄AEDC屮,V£C=£D, Z172°・AZC=Z£'/>C-69O .:.ZBDE=ZC^9J *25・解,(1)作CELABf®足为& VAC^fiC t Aff-4,:.AE=BE-2.数学试题参韦答案第1页(戏6項)(2)设白亞的坐标人E 0), :.AD=丄・2 2:.D.C两点的坐标分别为5” -).(折-』,2).2 2丁点C、。

2017年江苏省苏州市中考数学试题及答案(word版)

2017年江苏省苏州市中考数学试题及答案(word版)

2017年苏州市初中毕业暨升学考试试卷数学注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人相符合;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题须用0.5毫米黑色墨水签字笔填写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。

一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

请将选择题的答案用2B铅笔涂在答题卡相对应的位置上。

...........1.12()2⨯-的结果是A.-4 B.-1 C.14-D.322.△ABC的内角和为A.180°B.360°C.540°D.720°3.已知地球上海洋面积约为316 000 000km2,316 000 000这个数用科学记数法可表示为A.3.61×106B.3.61×107C.3.61×108D.3.61×1094.若m·23=26,则m等于A.2 B.4 C.6 D.85.有一组数据:3,4,5,6,6,则下列四个结论中正确的是A.这组数据的平均数、众数、中位数分别是4.8,6,6B.这组数据的平均数、众数、中位数分别是5,5,5C.这组数据的平均数、众数、中位数分别是4.8,6,5D.这组数据的平均数、众数、中位数分别是5,6,66.不等式组30,32xx-≥⎧⎪⎨<⎪⎩的所有整数解之和是A.9 B.12 C.13 D.157.已知1112a b-=,则aba b-的值是A .12 B .-12C .2D .-2 8.下列四个结论中,正确的是A .方程12x x +=-有两个不相等的实数根B .方程11x x +=有两个不相等的实数根C .方程12x x +=有两个不相等的实数根D .方程1x a x+=(其中a 为常数,且2a >)有两个不相等的实数根9.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点。

2017年江苏省苏州市中考数学试题及答案(word版)(20200813171622)

2017年江苏省苏州市中考数学试题及答案(word版)(20200813171622)

2017年苏州市初中毕业暨升学考试试卷数学
第I卷(共30分)
一、选择题:本大题共10个小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的.
1. -21 “7的结果是
c c 1 1
A. 3 B . -3 CD .-
3 3
2•有一组数据:2 , 5 , 5 , 6 , 7,这组数据的平均数为
A. 3 B . 4 C. 5 D . 6
3•小亮用天平称得一个罐头的质量为 2.026 kg ,用四舍五入法将2.026精确到0.01的近似
值为
A. 2
B. 2.0
C. 2.02 D . 2.03
2
4•关于x的一元二次方程x -2x ^0有两个相等的实数根,则k的值为
A . 1
B . -1 C.2 D . -2
5•为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”
三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和
“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为
A . 70
B . 720 C.1680 D . 2370
6•若点Z m,n在一次函数y =3x • b的图像上,且3m - n 2,则b的取值范围为
A . b 2
B . b -2 C. b :: 2 D . b ::—2
7•如图,在正五边形JTCD;:中,连接y • 丁叮:的度数为
A . 30
B . 36 C. 54 D . 72
2 . 2
8若二次函数y =ax 1的图像经过点-2,0 ,则关于x的方程a x - 2 7 = 0的实数根。

2017年江苏省苏州市中考数学试卷和解析答案

2017年江苏省苏州市中考数学试卷和解析答案

2017年江苏省苏州市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.2.(3分)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.63.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.034.(3分)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣25.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.23706.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣27.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36° C.54° D.72°8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2=D.x1=﹣4,x2=09.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°10.(3分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)计算:(a2)2= .12.(3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为°.13.(3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14.(3分)分解因式:4a2﹣4a+1= .15.(3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.17.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头 A北偏东60°的方向,在码头 B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到 A、B所用时间相等,则= (结果保留根号).18.(3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则= (结果保留根号).三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:|﹣1|+﹣(π﹣3)0.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣2.22.(6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m= ,n= ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.25.(8分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.26.(10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段 PQ的长)为d 个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.27.(10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.28.(10分)如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.2017年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•苏州)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.【分析】根据有理数的除法法则计算即可.【解答】解:原式=﹣3,故选B.【点评】本题考查有理数的除法法则,属于基础题.2.(3分)(2017•苏州)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.6【分析】把给出的这5个数据加起,再除以数据个数5,就是此组数据的平均数.【解答】解:(2+5+5+6+7)÷5=25÷5=5答:这组数据的平均数是5.故选C【点评】此题主要考查了平均数的意义与求解方法,关键是把给出的这5个数据加起,再除以数据个数5.3.(3分)(2017•苏州)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.03【分析】根据题目中的数据和四舍五入法可以解答本题.【解答】解:2.026≈2.03,故选D.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的表示方法.(2017•苏州)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()(3分)4.A.1 B.﹣1 C.2 D.﹣2【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4k=0,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴△=(﹣2)2﹣4k=4﹣4k=0,解得:k=1.故选A.【点评】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.5.(3分)(2017•苏州)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.2370【分析】先求出100名学生中持“赞成”意见的学生人数,进而可得出结论.【解答】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100﹣30=70名,∴全校持“赞成”意见的学生人数约=2400×=1680(名).故选C.【点评】本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.6.(3分)(2017•苏州)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m﹣n>2,即可得出b<﹣2,此题得解.【解答】解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.故选D.【点评】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征结合3m ﹣n>2,找出﹣b>2是解题的关键.7.(3分)(2017•苏州)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36° C.54° D.72°【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选B.【点评】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.8.(3分)(2017•苏州)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2=D.x1=﹣4,x2=0【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x ﹣2)2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选A.【点评】本题考查了二次函数与x轴的交点问题,一元二次方程的解,正确的理解题意是解题的关键.9.(3分)(2017•苏州)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键.10.(3分)(2017•苏州)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8【分析】如图,连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH即可解决问题.【解答】解:如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,∵DF=4,∴DH=4﹣=,∴平行四边形PP′CD的面积=×8=28.故选A.【点评】本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)(2017•苏州)计算:(a2)2= a4.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(a2)2=a4.故答案为:a4.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.(3分)(2017•苏州)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为50 °.【分析】根据平行线的性质得到∠3=∠1,根据角平分线的定义得到∠1=∠2,等量代换得到∠2=∠3,由三角形的外角的性质即可得到结论.【解答】解:∵ED∥OB,∴∠3=∠1,∵点D在∠AOB的平分线OC上,∴∠1=∠2,∴∠2=∠3,∴∠AED=∠2+∠3=50°,故答案为:50.【点评】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握平行线的性质是解题的关键.13.(3分)(2017•苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是8 环.【分析】11名成员射击成绩处在第6位的是8,则中位数为8.【解答】解:∵按大小排列在中间的射击成绩为8环,则中位数为8.故答案为:8.【点评】本题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•苏州)分解因式:4a2﹣4a+1= (2a﹣1)2.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:4a2﹣4a+1=(2a﹣1)2.故答案为:(2a﹣1)2.【点评】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.15.(3分)(2017•苏州)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.【分析】根据轴对称的性质设计出图案即可.【解答】解:如图,∵可选2个方格∴完成的图案为轴对称图案的概率==.故答案为:.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.16.(3分)(2017•苏州)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.【分析】根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.【解答】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)(2017•苏州)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头 A北偏东60°的方向,在码头 B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C 乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到 A、B所用时间相等,则= (结果保留根号).【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC 的长,然后根据=求解.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),∴===.故答案是:.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.18.(3分)(2017•苏州)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则= (结果保留根号).【分析】先连接AC,AG,AC',构造直角三角形以及相似三角形,根据△ABB'∽△ACC',可得到=,设AB=AB'=x,则AG=x,DG=x﹣4,Rt△ADG中,根据勾股定理可得方程72+(x﹣4)2=(x)2,求得AB的长以及AC的长,即可得到所求的比值.【解答】解:连接AC,AG,AC',由旋转可得,AB=AB',AC=AC',∠BAB'=∠CAC',∴=,∴△ABB'∽△ACC',∴=,∵AB'=B'G,∠AB'G=∠ABC=90°,∴△AB'G是等腰直角三角形,∴AG=AB',设AB=AB'=x,则AG=x,DG=x﹣4,∵Rt△ADG中,AD2+DG2=AG2,∴72+(x﹣4)2=(x)2,解得x1=5,x2=﹣13(舍去),∴AB=5,∴Rt△ABC中,AC===,∴==,故答案为:.【点评】本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是本题的难点所在.三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)(2017•苏州)计算:|﹣1|+﹣(π﹣3)0.【分析】直接利用绝对值的性质以及二次根式的性质和零指数幂的性质分别化简求出答案.【解答】解:原式=1+2﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)(2017•苏州)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由x+1≥4,解得x≥3,由2(x﹣1)>3x﹣6,解得x<4,所以不等式组的解集是3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•苏州)先化简,再求值:(1﹣)÷,其中x=﹣2.【分析】把分式进行化简,再把x的值代入即可求出结果.【解答】解:原式=.当时,原式=.【点评】本题主要考查了分式的混合运算﹣化简求值问题,在解题时要乘法公式的应用进行化简.22.(6分)(2017•苏州)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.【分析】(1)根据(20,2)、(50,8)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【解答】解:(1)设y与x的函数表达式为y=kx+b.将(20,2)、(50,8)代入y=kx+b中,,解得:,∴当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2.(2)当y=0时,x﹣2=0,解得:x=10.答:旅客最多可免费携带行李10kg.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出y与x之间的函数表达式;(2)令y=0,求出x值.23.(8分)(2017•苏州)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m= 8 ,n= 3 ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为144 °;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【分析】(1)由航模的人数和其所占的百分比可求出总人数,进而可求出3D打印的人数,则m 的值可求出,从而n的值也可求出;(2)由机器人项目的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;(3)应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1名男生、1名女生”有8种可能.所以P( 1名男生、1名女生)=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.24.(8分)(2017•苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.25.(8分)(2017•苏州)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.【分析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.【点评】此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出C点坐标是解题关键.26.(10分)(2017•苏州)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段 PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.【分析】(1)作AT⊥BD,垂足为T,由题意得到AB=8,AT=,在Rt△ABT中,根据勾股定理得到BT=,根据三角函数的定义即可得到结论;(2)如图,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.根据平行线的性质得到d1=d2,得到P1Q1=P2Q2.根据平行线分线段成比例定理得到.设M,N的横坐标分别为t1,t2,于是得到结论.【解答】解:(1)作AT⊥BD,垂足为T,由题意得,AB=8,AT=,在Rt△ABT中,AB2=BT2+AT2,∴BT=,∵tan∠ABD=,∴AD=6,即BC=6;(2)在图①中,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.∵在图②中,线段MN平行于横轴,∴d1=d2,即P1Q1=P2Q2.∴P1P2∥BD.∴.即.又∵CP1+CP2=7,∴CP1=3,CP2=4.设M,N的横坐标分别为t1,t2,由题意得,CP1=15﹣t1,CP2=t2﹣16,∴t1=12,t2=20.【点评】本题考查了动点问题的函数图象,勾股定理矩形的性质,平行线分线段成比例定理,正确的作出辅助线是解题的关键.27.(10分)(2017•苏州)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.【分析】(1)根据圆周角定理和垂直求出∠DEO=∠ACB,根据平行得出∠DOE=∠ABC,根据相似三角形的判定得出即可;(2)根据相似三角形的性质得出∠ODE=∠A,根据圆周角定理得出∠A=∠BDC,推出∠ODE=∠BDC 即可;(3)根据△DOE~△ABC求出S△ABC=4S△DOE=4S1,求出S△BOC=2S1,求出2BE=OE,解直角三角形求出即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE~△ABC,∴,即S△ABC=4S△DOE=4S1,∵OA=OB,∴,即S△BOC=2S1,∵,∴,∴,即,∴.【点评】本题考查了相似三角形的性质和判定,圆周角定理,平行线的性质,三角形的面积等知识点,能综合运用知识点进行推理是解此题的关键.28.(10分)(2017•苏州)如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.【点评】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR的长,用勾股定理得到关于n的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.。

(答案版)2017年江苏省苏州市中考数学试卷

(答案版)2017年江苏省苏州市中考数学试卷

2017年江苏省苏州市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.2.(3分)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.63.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.034.(3分)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣25.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.23706.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣27.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=09.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°10.(3分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)计算:(a2)2=.12.(3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为°.13.(3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14.(3分)分解因式:4a2﹣4a+1=.15.(3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.17.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C 在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B 的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).18.(3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则=(结果保留根号).三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:|﹣1|+﹣(π﹣3)0.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣2.22.(6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.25.(8分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.26.(10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s (即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.27.(10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.28.(10分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE 上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.2017年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•苏州)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.【分析】根据有理数的除法法则计算即可.【解答】解:原式=﹣3,故选B.【点评】本题考查有理数的除法法则,属于基础题.2.(3分)(2017•苏州)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.6【分析】把给出的这5个数据加起来,再除以数据个数5,就是此组数据的平均数.【解答】解:(2+5+5+6+7)÷5=25÷5=5答:这组数据的平均数是5.故选C【点评】此题主要考查了平均数的意义与求解方法,关键是把给出的这5个数据加起来,再除以数据个数5.3.(3分)(2017•苏州)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.03【分析】根据题目中的数据和四舍五入法可以解答本题.【解答】解:2.026≈2.03,故选D.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的表示方法.4.(3分)(2017•苏州)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣2【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4k=0,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴△=(﹣2)2﹣4k=4﹣4k=0,解得:k=1.故选A.【点评】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.5.(3分)(2017•苏州)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.2370【分析】先求出100名学生中持“赞成”意见的学生人数,进而可得出结论.【解答】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100﹣30=70名,∴全校持“赞成”意见的学生人数约=2400×=1680(名).故选C.【点评】本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.6.(3分)(2017•苏州)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m﹣n>2,即可得出b<﹣2,此题得解.【解答】解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.故选D.【点评】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征结合3m﹣n>2,找出﹣b>2是解题的关键.7.(3分)(2017•苏州)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选B.【点评】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.8.(3分)(2017•苏州)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x 的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=0【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x﹣2)2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选A.【点评】本题考查了二次函数与x轴的交点问题,一元二次方程的解,正确的理解题意是解题的关键.9.(3分)(2017•苏州)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键.10.(3分)(2017•苏州)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8【分析】如图,连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH即可解决问题.【解答】解:如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,∵DF=4,∴DH=4﹣=,∴平行四边形PP′CD的面积=×8=28.故选A.【点评】本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)(2017•苏州)计算:(a2)2=a4.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(a2)2=a4.故答案为:a4.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.(3分)(2017•苏州)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为50°.【分析】根据平行线的性质得到∠3=∠1,根据角平分线的定义得到∠1=∠2,等量代换得到∠2=∠3,由三角形的外角的性质即可得到结论.【解答】解:∵ED∥OB,∴∠3=∠1,∵点D在∠AOB的平分线OC上,∴∠1=∠2,∴∠2=∠3,∴∠AED=∠2+∠3=50°,故答案为:50.【点评】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握平行线的性质是解题的关键.13.(3分)(2017•苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是8环.【分析】11名成员射击成绩处在第6位的是8,则中位数为8.【解答】解:∵按大小排列在中间的射击成绩为8环,则中位数为8.故答案为:8.【点评】本题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•苏州)分解因式:4a2﹣4a+1=(2a﹣1)2.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:4a2﹣4a+1=(2a﹣1)2.故答案为:(2a﹣1)2.【点评】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.15.(3分)(2017•苏州)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.【分析】根据轴对称的性质设计出图案即可.【解答】解:如图,∵可选2个方格∴完成的图案为轴对称图案的概率==.故答案为:.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.16.(3分)(2017•苏州)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.【分析】根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.【解答】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)(2017•苏州)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC的长,然后根据=求解.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),∴===.故答案是:.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.18.(3分)(2017•苏州)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则=(结果保留根号).【分析】先连接AC,AG,AC',构造直角三角形以及相似三角形,根据△ABB'∽△ACC',可得到=,设AB=AB'=x,则AG=x,DG=x﹣4,Rt△ADG中,根据勾股定理可得方程72+(x﹣4)2=(x)2,求得AB的长以及AC的长,即可得到所求的比值.【解答】解:连接AC,AG,AC',由旋转可得,AB=AB',AC=AC',∠BAB'=∠CAC',∴=,∴△ABB'∽△ACC',∴=,∵AB'=B'G,∠AB'G=∠ABC=90°,∴△AB'G是等腰直角三角形,∴AG=AB',设AB=AB'=x,则AG=x,DG=x﹣4,∵Rt△ADG中,AD2+DG2=AG2,∴72+(x﹣4)2=(x)2,解得x1=5,x2=﹣13(舍去),∴AB=5,∴Rt△ABC中,AC===,∴==,故答案为:.【点评】本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是本题的难点所在.三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)(2017•苏州)计算:|﹣1|+﹣(π﹣3)0.【分析】直接利用绝对值的性质以及二次根式的性质和零指数幂的性质分别化简求出答案.【解答】解:原式=1+2﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)(2017•苏州)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由x+1≥4,解得x≥3,由2(x﹣1)>3x﹣6,解得x<4,所以不等式组的解集是3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•苏州)先化简,再求值:(1﹣)÷,其中x=﹣2.【分析】把分式进行化简,再把x的值代入即可求出结果.【解答】解:原式=.当时,原式=.【点评】本题主要考查了分式的混合运算﹣化简求值问题,在解题时要乘法公式的应用进行化简.22.(6分)(2017•苏州)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.【分析】(1)根据(20,2)、(50,8)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【解答】解:(1)设y与x的函数表达式为y=kx+b.将(20,2)、(50,8)代入y=kx+b中,,解得:,∴当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2.(2)当y=0时,x﹣2=0,解得:x=10.答:旅客最多可免费携带行李10kg.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出y与x之间的函数表达式;(2)令y=0,求出x值.23.(8分)(2017•苏州)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=8,n=3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为144°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【分析】(1)由航模的人数和其所占的百分比可求出总人数,进而可求出3D打印的人数,则m的值可求出,从而n的值也可求出;(2)由机器人项目的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;(3)应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.24.(8分)(2017•苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.25.(8分)(2017•苏州)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.【分析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA 的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.【点评】此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出C点坐标是解题关键.26.(10分)(2017•苏州)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.【分析】(1)作AT⊥BD,垂足为T,由题意得到AB=8,AT=,在Rt△ABT中,根据勾股定理得到BT=,根据三角函数的定义即可得到结论;(2)如图,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.根据平行线的性质得到d1=d2,得到P1Q1=P2Q2.根据平行线分线段成比例定理得到.设M,N的横坐标分别为t1,t2,于是得到结论.【解答】解:(1)作AT⊥BD,垂足为T,由题意得,AB=8,AT=,在Rt△ABT中,AB2=BT2+AT2,∴BT=,∵tan∠ABD=,∴AD=6,即BC=6;(2)在图①中,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.∵在图②中,线段MN平行于横轴,∴d1=d2,即P1Q1=P2Q2.∴P1P2∥BD.∴.即.又∵CP1+CP2=7,∴CP1=3,CP2=4.设M,N的横坐标分别为t1,t2,由题意得,CP1=15﹣t1,CP2=t2﹣16,∴t1=12,t2=20.【点评】本题考查了动点问题的函数图象,勾股定理矩形的性质,平行线分线段成比例定理,正确的作出辅助线是解题的关键.27.(10分)(2017•苏州)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.【分析】(1)根据圆周角定理和垂直求出∠DEO=∠ACB,根据平行得出∠DOE=∠ABC,根据相似三角形的判定得出即可;(2)根据相似三角形的性质得出∠ODE=∠A,根据圆周角定理得出∠A=∠BDC,推出∠ODE=∠BDC即可;=4S△DOE=4S1,求出S△BOC=2S1,求出2BE=OE,(3)根据△DOE~△ABC求出S△ABC解直角三角形求出即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE~△ABC,∴,=4S△DOE=4S1,即S△ABC∵OA=OB,=2S1,∴,即S△BOC∵,∴,∴,即,∴.【点评】本题考查了相似三角形的性质和判定,圆周角定理,平行线的性质,三角形的面积等知识点,能综合运用知识点进行推理是解此题的关键.28.(10分)(2017•苏州)如图,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE 上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c 表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.【点评】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR的长,用勾股定理得到关于n的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.。

2017江苏苏州中考数学解析

2017江苏苏州中考数学解析

2017年江苏省苏州市初中毕业暨升学考试试卷数 学(满分130分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.(2017江苏苏州, 1, 3分) (-21)÷7的结果是 A. 3 B. -3 C.31 D. 31【答案】B【考点解剖】本题目考查了有理数的除法,正确掌握有理数的除法运算是解题的关键.【解题思路】先根据有理数的除法法则,两数相除同号为正,异号为负,并把绝对值相除. 【解答过程】解:∵(-21)÷7=-(21÷7)=-3,故选B . 【易错点津】此类问题容易出错的地方是符号和计算. 【试题难度】★★【关键词】有理数的除法;有理数计算; 2.(2017江苏苏州,2,3分)有一组数据:2,5,5,6,7,这组数据的平均数为 A. 3 B. 4 C. 5 D. 6 【答案】C【考点解剖】本题目考查了平均数的计算,掌握平均数的计算方法是解题的关键. 【解题思路】先把这一组数据的和求出,再除以数据的个数即可. 【解答过程】 解:(2+5+5+6+7)÷5=5,故选C .【易错点津】此类问题容易出错的地方是平均数的计算方法不熟练. 【试题难度】★★ 【关键词】平均数; 3.(2017江苏苏州,2,3) 小亮用天平秤得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A. 2B. 2.0C. 2.02D. 2.03 【答案】D .【考点解剖】本题目考查了近似数的知识,解题的关键是熟练掌握近似数的求法. 【解题思路】根据题意要精确到0.01,四舍五入后保留两位小数. 【解答过程】 解:∵要精确到0.01,主要看千分位,千分位是6,根据四舍五入应该进1,∴2.026≈2.03,故选D . 【易错点津】此类问题容易出错的地方是没有进行四舍五入. 【试题难度】★★ 【关键词】近似数; 4.(2017江苏苏州,4,3分) 关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为A.1B. -1C.2D. -2.【答案】A.【考点解剖】本题目考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.【解题思路】先根据一元二次方程有两个相等的实数根,得出b2-4ac=0,再代入求出k的值即可.【解答过程】解:∵方程有两个相等的实数根,∴b2-4ac=(-2)2-4k=0,化简得4-4k=0,解得k=1,故选A.【易错点津】此类问题容易出错的地方是根的判别式掌握不扎实,不能把相等的实数根转化为关于k的方程.【试题难度】★★【关键词】根的判别式;一元一次方程;5.(2017江苏苏州,5,3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数为A. 70B. 720C. 1680D. 2370【答案】C【考点解剖】本题目考查了统计的知识,解题的关键是找出持有“赞成”意见的所占的百分数. 【解题思路】先根据100名学生中持“反对”和“无所谓”的人数,持“赞成”意见的学生人数,得到所占的百分数,再用这个百分数乘以总人数即可.【解答过程】解:∵(100-30)÷100=70%,∴估计全校持“赞成”意见的学生人数为70%×2400=1680(人),故选C.【易错点津】此类问题容易出错的地方是审题不清,把30名学生当成“赞成”的人数.【试题难度】★★【关键词】统计;百分数计算;6.(2017江苏苏州,6,3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为A. b>2B. b>-2C. b<2D. b<-2【答案】D.【考点解剖】本题目考查了一次函数图象上点的坐标,解题的关键是把点A的坐标代入一次函数.【解题思路】把点A坐标代入一次函数的解析式中,得到的关于b的等式,再代入不等式中即可求.【解答过程】解:∵A(m,n)在一次函数y=3x+b的图象上,∴n=3m+b,∴-b=3m-n,又∵3m-n>2,∴-b>2,∴b<-2,故选D.【易错点津】此类问题容易出错的地方是在解不等式两边同时除以一个负数时,不等号没有改变方向.【试题难度】★★【关键词】一次函数;解不等式;7.(2017江苏苏州,7,3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为A. 30°B. 36°C. 54°D. 72°【答案】B.【考点解剖】本题目考查了正五边形的内角和以及等腰三角形的性质,解题的关键是求出正五边形的每个内角.【解题思路】先根据多边形的内角和公式求出内角和,再求出每个内角的度数,再结合△ABE是等腰三角形,求出底角,或者根据外角和求出每个外角的度数,再根据相邻外角与内角的互补关系求出每个内角的度数【解答过程】解:∵正五边形ABCDE中,∴内角和=(5-2)×180°=540°,∴每一个内角=540÷5=108°,又∵正五边形ABCDE中,∴AB=AE,∴∠ABE=(180°-108°)÷2=36°,故选B.【易错点津】此题易错地方主要是求不出每一个内角的度数.【试题难度】★★【关键词】多边形内角和公式;等腰三角形性质;8.(2017江苏苏州,8,3分)若二次函数y=ax2+1的图象经过点(-2,0),则关于x的方程a(x -2)2+1=0的实数根为A. x1=0,x2=-4B. x1=-2,x2=-6C. x2=32,x1=52D. x1=-4,x2=0【答案】A【考点解剖】本题考查了二次函数以及一元二次方程的结合,解题的关键是根据二次函数求出a的值.【解题思路】把点(-2,0)代入二次函数解析式中求出a的值,再把a的值代入方程中,解出x的之即可.【解答过程】解:∵二次函数y=ax2+1的图象经过点(-2,0),∴4a+1=0,解得a=-14,所以-14(x-2)2+1=0,(x-2)2=4,∴x-2=±2,解得x1=0,x2=-4,故选A.【易错点津】此题易错地方主要是有两点,第一点不会根据函数图象过点求出a的值,第二点在解一元二次方程时出错.【试题难度】★★【关键词】二次函数;一元一次方程;一元二次方程;9.(2017江苏苏州,9,3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°,以BC为直径的⊙O交AB于点D,E是⊙O上一点,且»CE=»CD,连接OE,过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为A. 92°B. 108°C. 112°D. 124°【答案】C【考点解剖】本题考查了圆周角和圆心角的知识,解题的关键是掌握等弧弧所对的圆心角和圆周角的关系.【解题思路】先根据互余关系求出∠B的度数,再根据等弧所对的圆心角和圆周角关系求出∠COE 的度数,最后根据四边形内角和是360°,可以求出∠F度数.【解答过程】解:∵∠ACB=90°,∠A=56°,∴∠B=34°,∵»CE=»CD,∴∠COE=2∠B=68°,又∵EF⊥OE,∴∠OEF=90°,∴∠F=360°-90°-90°-68°=112°.故选C.【易错点津】此类问题容易出错的地方是不能根据条件求出∠COE的度数.【试题难度】★★★【关键词】圆周角和圆心角;三角形内角和;四边形内角和;【方法规律】圆心角和圆周角的考查是中考的一个重点,这类题目主要从等弧入手,依次去找弧所对的圆周角和圆心角,即可得到关系.10.(2017江苏苏州,10,3)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点,过点F 作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△''AE F,设点P,'P分别是EF、''E F的中点,当点'A与点B重合时,四边形'PP CD的面积为A. B. C. D. 8【答案】A【考点解剖】本题考查了菱形有关的性质以及解直角三角形,解题的关键是找出所求四边形的高.【解题思路】连接DF,与P'P交于点G,根据菱形性质可得DF⊥AB,根据∠A=60°,AD=8可求出DF,AE,EF,以及所求四边形的高DG,即可得出面积.【解答过程】解:连接FD ,与P 'P 交于点G ,∵在菱形ABCD 中,∠A =60°,F 是AB 的中点,∴DF ⊥AB ,∵在菱形ABCD 中, AD =8,∴AB =8,∵F 是AB 的中点,∴AF =4,∵∠A =60°,∴DF =sinA ·AD =在Rt △AEF 中,∴EF =cosA ·AF =sin 60°·4=2×4=P 为EF 的中点,∴PF∠GPF =∠EF A =30°,∴FG =12PF =12DG =72,所求四边形的面积=DC ·DG =8×72A.【易错点津】此类问题容易出错的地方是菱形的性质不熟悉,其次在运用时候对于辅助线的把握上不够扎实.【试题难度】★★★★【关键词】菱形的性质;解直角三角形;【方法规律】解决与面积有关的题目,首先要结合条件作高,该题目就因为菱形的性质以及结合特殊角就可以求出高,但是在运用的时候要注意条件的一次或者多次运用,这类题目有很强的综合性,需要学生平时多注意总结归纳.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.(2017江苏苏州,11,3分) 计算(a 2)2=______▲________. 【答案】a 4.【考点解剖】本题考查了幂的乘方,解题的关键是熟练掌握幂的运算法则. 【解题思路】根据幂的运算法则公式(a m )n =a mn ,直接得出答案. 【解答过程】解:∵(a 2)2=a 2×2=a 4,故填a 4.【易错点津】此类问题容易出错的地方是公式识记不清. 【试题难度】★【关键词】幂的乘方;【方法规律】对于幂的有关运算,关键掌握其运算法则:12.(2017江苏苏州,12,3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为______▲________.【答案】50°【考点解剖】本题考查了角平分的性质和平行的性质,解题的关键是根据角平分线得出∠AOB的度数.【解题思路】根据条件得出OD是∠AOB的平分线,可得出∠AOB的度数,结合ED∥OB,两直线平行同位角相等,可得出结论.【解答过程】解:∵D在∠AOB的平分线OC上,∴∠AOB=2∠1=50°,又∵ED∥OB,∴∠AED=∠AOB=50°,故答案为50°.【易错点津】此类问题容易出错的地方是对两直线平行的性质不熟练.【试题难度】★★【关键词】两直线平行的性质;角平分线的性质;13.(2017江苏苏州,13,3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是______▲________.环.【答案】8.【考点解剖】本题考查了中位数的知识,解题的关键是会读图表.【解题思路】根据题意11个人,中位数为从小到大的第6个数,即可得出答案.【解答过程】解:射击成绩依次为7,8,8,8,8,8,9,9,9,10,10,所以中位数为8.故答案为8.【易错点津】此类问题容易出错的地方是对中位数进行分析时没有进行排序.【试题难度】★★【关键词】中位数;条形统计图;14.(2017江苏苏州,14,3分)因式分解:4a2-4a+1=______▲________.【答案】(2a-1)2.【考点解剖】本题考查了因式分解,解题的关键是掌握完全平方公式进行因式分解.【解题思路】根据完全平方公式的知识进行因式分解.【解答过程】解:4a2-4a+1=(2a-1)2.【易错点津】此类问题容易出错的地方是看不出这是完全平方公式.【试题难度】★★【关键词】因式分解;完全平方公式;15.(2017江苏苏州,15,3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______▲________.【答案】1 3 .【考点解剖】本题考查了概率的知识,解题的关键是找出所有轴对称图案.【解题思路】把剩余的6个小方格依次去分析,看是否能组成轴对称图案.【解答过程】解:如图所示,在6个方格中,第3个空白方格和第5个空白方格都能够与原来的3个黑色小方格组成轴对称图案,所有P(轴对称图案)=26=13.故答案为13.【易错点津】此类问题容易出错的地方是会出现遗漏情况.【试题难度】★★【关键词】概率;轴对称图案;16.(2017江苏苏州,16,3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是_____▲________.【答案】12. 【考点解剖】本题考查了弧长计算,解题的关键是求出∠AOC 的度数.【解题思路】先根据∠BOC +∠AOC =180°以及二者关系求出∠AOC 的度数,可得出»AC 的长,再结合弧长即为圆锥的底面周长即可得出半径.【解答过程】解:∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°,∵OA =OC ,∴△OAC 是等边三角形,∴OA =OC =AC , »AC 的长l =180n r π=60180π×3=π.∴2πr =π,∴r =12.故答案为12.【易错点津】此类问题容易出错的地方是公式不熟练以及找不到扇形和圆锥的关系. 【试题难度】★★★【关键词】弧长计算公式;17.(2017江苏苏州,17,3分)如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4km .游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为v 1、v 2,若回到A 、B 所用时间相等,则12v v =_____▲_______(结果保留根号).【考点解剖】本题考查了特殊角的锐角三角函数值,解题的关键是作出辅助线. 【解题思路】过点作CD ⊥AB ,再根据AC 和60°求出CD 的长,即可求出CB 的长也就可以求出速度的比.【解答过程】解:过点作CD ⊥AB ,∵观光岛屿C 在码头A 北偏东60°的方向,AC =4km ,∴∠CAD =30°.∴CD =12AC =12×4=2km ,又∵观光岛屿C 在码头B 北偏西45°的方向,∴∠CBD =45°,∴CB =,∴12v v【易错点津】此类问题容易出错的地方是不会添加辅助线,不能进行转化. 【试题难度】★★★【关键词】解直角三角形;【方法规律】在一般三角形中已知一些边和角求另外的边长的问题,通常都是通过添作高线,构造直角三角形,运用解直角三角形的知识来解决问题. 18.(2017江苏苏州,18,3分)如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边C ''B 交CD 边于点G .连接'BB 、'CC ,若AD =7,CG =4,G ''AB =B ,则''CC BB =_____▲_______(结果保留根号).【答案】5【考点解剖】本题考查了旋转,相似的综合运用,解题的关键是连接作出辅助线.【解题思路】旋转的思维以及最后求比值,我们会去找三角形相似,于是连接AC ',AG ,AC ,从而''CC BB 就转化成求ACCB,结合条件设AB =x ,再利用Rt △ADG 用勾股定理处理,结合相似可求.【解答过程】解:连接AC ',AG ,AC ,∠ABC 绕点A 旋转,∴△ABC ≌△A 'B C ,∴∠BAC =∠B'AC ',∴∠BAB'=CAC',AB =AB',AC =AC',∴△BAB'∽△CAC',∴''CC BB =ACCB,∵AB'=AG ,∴△A B'G 是等腰直角三角形,设AB =x ,所以AB'=B'G =x ,AG ,∵AD =7,CG =4,∴AD 2+DG 2=AG 2,∴72+(x -4)2=)2,∴x =5,∴AB =5,∴''CC BB =ACCB5=5.故答案为5.【易错点津】此类问题容易出错的地方是运用旋转的思想,不易想到辅助线需要连接AC ',AG ,AC . 【试题难度】★★★★【关键词】旋转;相似;等腰直角三角形;【归纳拓展】此题目较难,不管是辅助线还是求CG 的长度都不容易,这类题目综合性较高,需要学生扎实的基础和能力,有很强的选拔性,完成时,先从所求的结论出发,想明白应该求出相似,再结合旋转,作出辅助线.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.(2017江苏苏州,19,5分) |-1|+-(π-3)0【考点解剖】本题考查了实数的计算,解题的关键是掌握绝对值,根号和0次幂的相关计算. 【解题思路】先根据绝对值,二次根式以及0次幂的知识进行计算. 【解答过程】解:原式=1+2-1=2.【易错点津】此类问题容易出错的地方是绝对值的计算以及0次幂的知识,其次是符号问题. 【试题难度】★★【关键词】绝对值;二次根式;0次幂;实数计算;【方法规律】实数的计算先把绝对值化简,二次根式的知识掌握就能得分.20.(2017江苏苏州,20,5分)解不等式组:12x 13x 6x +⎧⎨⎩≥4(-)>-【考点解剖】本题考查了解不等式组,解题的关键是熟练掌握解不等式组的方法.【解题思路】先分别求出两个不等式的解集,再根据“同大取大,同小取小,大小小大取中间,大大小小无解”求出不等式解集.【解答过程】解:由x +1≥4,解得x ≥3,由2(x -1)>3x -6,解得x <4,∴不等式组的解集是3≤x <4.【易错点津】此类问题容易出错的地方是不等式的两边同时除以一个负数时,不等式没有改变符号. 【试题难度】★★【关键词】一元一次不等式组;【方法规律】这类题目都是先解出每一个不等式的解集,再求出公共解集即可.21.(2017江苏苏州,21,6分) 先化简,再求值:(1-52x +)÷29x+3x -其中x 2.【考点解剖】本题考查了分式的化简求值,解题的关键是先熟练掌握分式的计算. 【解题思路】先把括号里的式子进行通分,再相减,所得的差乘以29x+3x -的倒数,再进行约分,最后把x 的值代入计算即可. 【解答过程】解:原式=3x+2x -÷(3)(3x+3x x +-)=3x+2x -·(3)(3)(3x x x ++-)=1x+2.当x 23.【易错点津】此类问题容易出错的地方是分式计算出现错误. 【试题难度】★★【关键词】分式的计算;二次根式的化简;【方法规律】分式化简求值时,先乘除,后加减,有括号要先算括号,把复杂的分式计算化成简单的分式后再代入求值即可. 22.(2017江苏苏州,22,6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量规定超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数,已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量.【考点解剖】本题考查了一次函数在实际生活中的运用,解题的关键是先求出需付的行李费y 与行李质量x 的函数表达式.【解题思路】先根据题意用待定系数法确定函数表达式,再求出y =0时x 的值即可. 【解答过程】 解:(1)根据题意,设y 与x 的函数表达式为y =kx +b . 当x =20时,y =2,得2=20k +b 当x =50时,y =8,得8=50k +b解方程组20k b250k b++⎧⎨⎩==8,得15kb⎧⎪⎨⎪⎩==-2所求函数表达式y=15x-2.(2)当y=0时,15x-2=0,得x=10.答:旅客最多可免费携带行李10kg.【易错点津】此类问题容易出错的地方是再用待定系数法确定函数关系式出现错误,其次是不能理解旅客最多可免费携带行李的质量的意义.【试题难度】★★【关键词】一次函数;待定系数法确定函数关系式;【方法规律】这类题目首先应该用待定系数法确定函数关系式,然后再找出一点的坐标进行分析讨论.23.(2017江苏苏州,23,8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m=_____▲_______n=_____▲_______;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为_____▲_______°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【考点解剖】本题考查了统计图,解题的关键读懂统计图.【解题思路】(1)可以确定航模的人数和所占的百分数就可以确定总人数,再确定3D打印的人数依次可以得出人数和所占的百分比.(2)用机器人的百分数乘以360°即可以得到圆心角.(3)把所有可能性用树状图或表格列出来,即可以的到概率.【解答过程】解:(1)m=8,n=3;(2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1名男生、1名女生”有8种可能.∴P( 1名男生、1名女生)=812=23.(如用树状图,酌情相应给分) .【易错点津】此类问题容易出错的地方是在求概率问题时,不能把所有情况都考虑完全【试题难度】★★【关键词】扇形统计图;概率;树状图和表格;【方法规律】统计是生活中经常应用的数学知识,它与实际生活联系密切,因此也成为中考的热点,但这类问题并不难.只要把握好概念间的相互联系以及概念的灵活应用,这样的问题会迎刃而解.本题概率和统计结合起来考查学生的识图能力,以及对图中数据的处理能力.24.(2017江苏苏州,24,8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【考点解剖】本题考查了三角形全等的判定和性质,解题的关键是找出全等的判定方法.【解题思路】(1)结合∠A=∠B以及∠BEO=∠2,可以得出∠AEC=∠BEO,用ASA即可证明三角形全等.(2)根据三角形全等的性质得到对应边CE=ED,可得出∠C的度数,转化可以结论.【解答过程】解:(1)证明:∵AE 和BD 相交于点O ,∴∠AOD =∠BOE .在△AOD 和△BOE 中,∠A =∠B ,∴∠BEO =∠2,又∵∠1=∠BEO ,∴∠AEC =∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ⎧⎪⎨⎪⎩∠=∠=∠=∠ ∴△AEC ≌△BED (ASA ).(2)∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE .在△EDC 中,∵EC =ED ,∠1=42°. ∠C =∠EDC =69°,∠C =∠BDE =69°.【易错点津】此类问题容易出错的地方是不能根据条件转化为三角形全等的条件,证明全等方法不熟练.【试题难度】★★【关键词】三角形全等的判定和性质;【方法规律】证明三角形全等主要去找边和角,根据已知条件得出两个三角形的对应边和对应角相等,用AAS ,SAS ,ASA ,SSS 来证明两个三角形全等,直角三角形还可以用HL 来证明.25.(2017江苏苏州,25,8分) 如图,在△ABC 中,AC =BC ,AB ⊥x 轴,垂足为A .反比例函数y =k x(x >0)的图像经过点C ,交AB 于点D .已知AB =4,BC =52.(1)若OA =4,求k 的值;(2)连接OC ,若BD =BC ,求OC 的长.【考点解剖】本题考查了反比例函数和三角形的结合,解题的关键是作CE ⊥AB 求点C 坐标.【解题思路】(1)作CE ⊥AB ,垂足为E ,在Rt △BCE 中求出点C 坐标,可求出k 的值.(2)设A 点的坐标为(m ,0),表示出点D 和点C 的坐标,再根据点C ,D 都在y =kx的图象上求出D 和C 坐标,作CF ⊥x 轴,垂足为F ,在Rt △OFC 中用勾股定理可求. 【解答过程】解:(1)作CE ⊥AB ,垂足为E ,∵AC =BC ,AB =4,∴AE =BE =2.在Rt △BCE 中,BC =52,BE=2,∴CE =32.∵OA =4,∴C 点的坐标为(52,2),∵点C 在y =kx的图象上,∴k =5.(2)设A点的坐标为(m,0),∵BD=BC=52,∴AD=32,D、C两点的坐标分别为(m,32),(m-32,2).Q点C,D都在y=kx的图象上,∴32m=2(m-32),∴m=6.C点的坐标为(92,2).作CF⊥x轴,垂足为F,∴OF=92,CF=2.在Rt△OFC中,OC2=OF2+CF2,∴OC2.【易错点津】此类问题容易出错的地方是不能把三角形的边转化到点的坐标中,其次作出辅助线也是解题的关键.【试题难度】★★★【关键词】反比例函数;等腰三角形;勾股定理;【方法规律】反比例函数和三角形,四边形结合是考试的一个热点,解题中要把线段之间的关系用勾股,相似,全等等方法转化成点的坐标,进而求出结论.26.(2017江苏苏州,26,10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图像如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.【考点解剖】本题考查了动点问题,解题的关键是作出合理的辅助线. 【解题思路】(1)在Rt △ABT 中先求出BT 的长,再用∠ABD 的正切值可求出结论.(2)过点P 1,P 2分别作BD 的垂线,垂足为Q 1,Q 2,可根据对应边成比例列出比例式,可求CP 1和 CP 2,即可结合动点求时间. 【解答过程】解:(1)作AT ⊥BD , 垂足为T ,由题意得,AB =8,AT =245在Rt △ABT 中,AB 2=BT 2+AT 2,∴BT =325∵tan ∠ABD =AD AB=AT BT ,∴AD =6, 即BC =6.(2)在图①中,连接P 1P 2,过点P 1,P 2分别作BD 的垂线,垂足为Q 1,Q 2,则P 1Q 1∥P 2Q 2, ∵在图②中,线段MN 平行于横轴,∴d 1=d 2,即P 1Q 1=P 2Q 2,∴P 1P 2∥BD ,∴1CP CB =2CP CD ,即16CP =28CP ,又∵CP 1+CP 2=7,∴CP 1=3, CP 2=4.设M ,N 的横坐标分别为t 1,t 2 ,由题意得,CP 1=15-t 1,CP 2=t 2-16,∴t 1=12,t 2=20.【易错点津】此类问题容易出错的地方是不会作出合理的辅助线,其次方法不够灵活. 【试题难度】★★★【关键词】正切角;勾股定理;对应边成比例;【方法规律】动点类的题目也是近几年中考的热门,解决这一类题目的关键是(1)找出动点的运动方法,(2)用含t 的代数式表示出各边,(3)用相似,勾股或者全等找出关系求解. 【一题多解】设线段EF 所在的直线的函数表达式为d =kt +b ,由题意得,E ,F 坐标分别为(9,0),(15,245),∴9k 02415k 5b b ++⎧⎪⎨⎪⎩==,得4k 536b 5⎧⎪⎪⎨⎪⎪⎩==-∴所求的函数表达式为y =45t -365. 由题意得,G 、H 两点的坐标为(16,245),(24,0),同理可得,直线GH 的函数表达式为d =-35t +725.在图②中M ,N 的横坐标分别为t 1,t 2 ,∴d 1=45t 1-365,d 2=-35t 2+725.又线段MN 平行于横轴,∴d 1=d 2,∴45t 1-365=-35t 2+725,即4t 1+t 2=108.∵机器人用了t 1(s )到达点P 1,用了机器人用了t 2(s )到达点P 2处,且CP 1+CP 2=7,t 2-t 1=8,解方程组4t 310812t t 8.21t +=⎧⎪⎨⎪⎩=,-,得t 1t 20.2=⎧⎪⎨⎪⎩=12,.27.(2017江苏苏州,27,10分)如图,已知△ABC 内接于⊙O ,AB 是直径,点D 在⊙O 上,OD ∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F . (1)求证:△DOE ∽△ABC ; (2)求证:∠ODF =∠BDE ;(3)连接OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若12S S =27,求sin A 的值.【考点解剖】本题考查了圆的基本性质以及与相似的结合运用,解题的关键是熟练掌握圆的基本性质.【解题思路】(1)根据OD ∥BC ,可得到一组角相等,结合直径所对的圆周角是90°,可得出另一组角相等即可证.(2)△DOE ∽△ABC 可得对应角相等∠ODE =∠A ,再结合同弧所对的圆周角相等可得结论. (3)结合三角形的面积比=相似比的平方,进行面积的转化S △DBE 转化为S 1有关的式子,再得出OE 和OD 的数量关系即可.【解答过程】解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵DE ⊥AB ,∴∠DEO =90°.∴∠DEO =∠ACB . ∵OD ∥BC ,∴∠DOE =∠ABC ,∴△DOE ∽△ABC .(2)∵△DOE ∽△ABC ,∴∠ODE =∠A ,∵∠A 与∠BDC 是»BC 所对的圆周角,∴∠A =∠BDC ,∴∠ODE =∠BDC ,∴∠ODF =∠BDE.(3)∵△DOE ∽△ABC ,∴S ODE S ABC△△=(OD AB )2=14,即S △ABC =4S △DOE =4S 1 ,∵OA =OB ,∴S △BOC =12S △ABC ,即S △BOC =2S 1 . ∵12S S =27,S 2=S △BOC +S△DOE+S △DBE =2S 1+ S 1+ S △DBE ,∴S △DBE =12S 1 ,∴BE =12OE ,即OE =23OB =23OD ,∴sinA =sin∠ODE =OE OD=23.【易错点津】此类问题容易出错的地方是对圆的性质不熟悉,不能对条件灵活处理,其次直径所对的圆周角是重要的性质,是非常重要的考点,希望多留意. 【试题难度】★★★★【关键词】圆的性质;三角形相似;相似三角形的性质;【方法规律】解圆有关的题目时,相似是一种常见的数学手段,注意从同弧(等弧)所对的圆周角相等和直径所对的圆周角是90°出发,找出相似三角形,再根据对应边的关系很多问题也就迎刃而解.28.(2017江苏苏州,28,10分)如图,二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,与y 轴交于点C ,OB =OC .点D 在函数图像上,CD ∥x 轴,且CD =2,直线l 是抛物线的对称轴,E 是抛物线的顶点. (1)求b 、c 的值;(2)如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F 恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作X 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档