常用抽样方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.非概率抽样(Non-probability sampling)

又称非随机抽样,指根据一定主观标准抽取样本,令总体中每个个体的被抽取不是依据其本身的机会,而是完全决定于调研者的意愿。

其特点为不具有从样本推断总体的功能,但能反映某类群体的特征,是一种快速、简易且节省的数据收集方法。当研究者对总体具有较好的了解时可以采用此方法,或是总体过于庞大、复杂,采用概率方法有困难时,可以采用非概率抽样来避免概率抽样中容易抽到实际无法实施或"差"的样本,从而避免影响对总体的代表度。

常用的非概率抽样方法有以下四类:

方便抽样(Convenience sampling)

指根据调查者的方便选取的样本,以无目标、随意的方式进行。例如:街头拦截访问(看到谁就访问谁);个别入户项目谁开门就访问谁。

优点:

适用于总体中每个个体都是"同质"的,最方便、最省钱;可以在探索性研究中使用,

另外还可用于小组座谈会、预测问卷等方面的样本选取工作。

缺点:

抽样偏差较大,不适用于要做总体推断的任何民意项目,对描述性或因果性研究最好不要采用方便抽样。

判断抽样(Judgment sampling)

指由专家判断而有目的地抽取他认为"有代表性的样本"。例如:社会学家研究某国家

的一般家庭情况时,常以专家判断方法挑选"中型城镇"进行;也有家庭研究专家选取某类

家庭进行研究,如选三口之家(子女正在上学的);在探索性研究中,如抽取深度访问的样

本时,可以使用这种方法。

优点:

适用于总体的构成单位极不相同而样本数很小,同时设计调查者对总体的有关特征具有相当的了解(明白研究的具体指向)的情况下,适合特殊类型的研究(如产品口味测试等);操作成本低,方便快捷,在商业性调研中较多用。

缺点:

该类抽样结果受研究人员的倾向性影响大,一旦主观判断偏差,则根易引起抽样偏差;不能直接对研究总体进行推断。

配额抽样(Quota sampling)

指先将总体元素按某些控制的指标或特性分类,然后按方便抽样或判断抽样选取样本元素。

相当于包括两个阶段的加限制的判断抽样。在第一阶段需要确定总体中的特性分布(控制特征),通常,样本中具备这些控制特征的元素的比例与总体中有这些特征的元素的

比例是相同的,通过第一步的配额,保证了在这些特征上样本的组成与总体的组成是一致的。在第二阶段,按照配额来控制样本的抽取工作,要求所选出的元素要适合所控制的特性。例如:定点街访中的配额抽样。

优点:

适用于设计调查者对总体的有关特征具有一定的了解而样本数较多的情况下,实际上,配额抽样属于先"分层"(事先确定每层的样本量)再"判断"(在每层中以判断抽样的方法

选取抽样个体);费用不高,易于实施,能满足总体比例的要求。

缺点:

容易掩盖不可忽略的偏差。

滚雪球抽样(Snowball sampling)

指先随机选择一些被访者并对其实施访问,再请他们提供另外一些属于所研究目标总体的调查对象,根据所形成的线索选择此后的调查对象。

第一批被访者是采用概率抽样得来的,之后的被访者都属于非概率抽样,此类被访者彼此之间较为相似。例如:如在目前中国的小轿车车主等。

优点:

可以根据某些样本特征对样本进行控制,适用寻找一些在总体中十分稀少的人物。

缺点:

有选择偏差,不能保证代表性。

2.概率抽样(Probability sampling)

又称随机抽样,指在总体中排除人的主观因素,给予每一个体一定的抽取机会的抽样。

其特点为,抽取样本具有一定的代表性,可以从调查结果推断总体;操作比较复杂,需要更多的时间,而且往往需要更多的费用。

常用的有以下六种类型:

简单抽样(Simple sampling)

即简单随机抽样,指保证大小为n的每个可能的样本都有相同的被抽中的概率。例如:按照"抽签法"、"随机表"法抽取访问对象,从单位人名目录中抽取对象。

优点:

随机度高,在特质较均一的总体中,具有很高的总体代表度;是最简单的抽样技术,有标准而且简单的统计公式。

缺点:

未使用可能有用的抽样框辅助信息抽取样本,可能导致统计效率低;有可能抽到一个"差"的样本,使抽出的样本分布不好,不能很好地代表总体。

系统抽样(Systematic random sampling)

将总体中的各单元先按一定顺序排列,并编号,然后按照不一定的规则抽样。其中最常采用的是等距离抽样,即根据总体单位数和样本单位计算出抽样距离(即相同的间隔),

然后按相同的距离或间隔抽选样本单位。例如:从1000个电话号码中抽取10个访问号码,间距为100,确定起点(起点<间距)后每100号码抽一访问号码。

优点:

兼具操作的简便性和统计推断功能,是目前最为广泛运用的一种抽样方法。

如果起点是随机确定的,总体中单元排列是随机的,等距抽样的效果近似简单抽样;与简单抽样相比,在一定条件下,样本的分布较好。

缺点:

抽样间隔可能遇到总体中某种未知的周期性,导致"差"的样本;未使用可能有用的抽

样框辅助信息抽取样本,可能导致统计效率低。

分层抽样(Stratified random sampling)

是把调查总体分为同质的、互不交叉的层(或类型),然后在各层(或类型)中独立抽

取样本。例如:调查零售店时,按照其规模大小或库存额大小分层,然后在每层中按简单随机方法抽取大型零售店若干、中型若干、小型若干;调查城市时,按城市总人口或工业生产额分出超大型城市、中型城市、小型城市等,再抽出具体的各类型城市若干。

优点:

适用于层间有较大的异质性,而每层内的个体具有同质性的总体,能提高总体估计的

相关文档
最新文档