红外光谱解析最新版本

合集下载

(完整word版)如何解析红外光谱图解读

(完整word版)如何解析红外光谱图解读

如何解析红外光谱图一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中::化合价为4价的原子个数(主要是C原子),n4:化合价为3价的原子个数(主要是N原子),n3n:化合价为1价的原子个数(主要是H,X原子)1(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。

3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。

红外光谱谱图解析课件

红外光谱谱图解析课件

第19页,幻灯片共70页
(3) 双键伸缩振动区( 2000 1500 cm-1 )
① RC=CR’ 1620 1680 cm-1
强度弱, R=R’(对称)时,无红外活性。
②单核芳烃 的C=C键伸缩振动(1626 1650 cm-1 )
202222//11//1188
第20页,幻Βιβλιοθήκη 片共70页苯衍生物的C=C
(3)2000 1500 cm-1
双键伸缩振动区
(4)1500 670 cm-1
X—Y伸缩,
X—H变形振动区
202222//11//1188
第15页,幻灯片共70页
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸
a)由于支链的引入,使CH3的对称变形振动发生变化。
b)C—C骨架振动明显
H C C H3 C H3
C H3 C C H3
C H3 C C H3 C H 202222//11//1188
3
CH3 δs C—C骨架振动
1385-1380cm-1
第1页,幻灯片共70页
概述 introduction
分子中基团的振动和转动能级跃迁产生:振-转光谱
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构
近红外区:低能电子跃 迁、含氢原子团伸缩 振动的合频吸收;稀 土、过渡金属
中红外区: 远红外区:纯转动能级跃 迁,变角、骨架振动;异 构体、金属有机物、氢键
2002222//11//1188
第2页,幻灯片共70页
一、认识红外光谱图
2002222//11//1188

红外光谱谱图解析

红外光谱谱图解析
作判断有无甲基存在的依据。 烯烃的C—H弯曲振动在1000~800 cm-1范围,可以借以鉴别各种取代类
型的烯烃。 芳烃的C—H弯曲振动主要是900~650 cm-1处的面外弯曲振动,对确定
苯的取代类型很有帮助。
19:06:26
②C—O伸缩振动 这类振动产生的吸收带常常是该区中的最强峰。 醇的C—O在1260~1000 cm-1;酚的C—O1350~1200 cm-1; 醚的C—O在1250~1100 cm-1;饱和醚常在1125 cm-1出现; 芳香醚多靠近1250 cm-1。
19:06:26
酸酐的C=O
双吸收峰:1820~1750 cm-1 ,两个羰基振动偶合裂分; 线性酸酐:两吸收峰高度接近,高波数峰稍强; 环形结构:低波数峰强;
19:06:26
羧酸的C=O
1820~1750 cm-1 , 氢键,二分子缔合体;
19:06:26
(4)确定好可能基团后,对指纹区的谱带进行分析
19:06:26
(六)确证解析结果 按以下几种方法验证 1、设法获得纯样品,绘制其光谱图进行对照,但必须考虑 到样品的处理技术与测量条件是否相同。 2、若不能获得纯样品时,可与标准光谱图进行对照。当谱 图上的特征吸收带位置、形状及强度相一致时,可以完全确 证。当然,两图绝对吻合不可能,但各特征吸收带的相对强 度的顺序是不变的。 常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz 学会谱图集、API光谱图集、DMS光谱图集。
19:06:26
3、再根据谱带的位置、强度、宽度等特征,推测官能团可能与什么取 代基相连接。
=C-H C-H CC C=C
O-H O-H(氢键)
C=O C-C,C-N,C-O
S-H P-H N-O N-N C-F C-X

红外光谱谱图解析

红外光谱谱图解析
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
18:02:04
一、认识红外光谱图
18:02:04
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
任务2-4
infrared absorption spec-
正溴丁烷的波谱解析 troscopy,IR
18:02:04
概述 introduction
分子中基团的振动和转动能级跃迁产生:振-转光谱 辐射→分子振动能级跃迁→红外光谱→官能团→分子结构
近红外区:低能电子 跃迁、含氢原子团伸 缩振动的合频吸收; 稀土、过渡金属
18:02:04
3000 cm-1 以上
(2) 叁键(C C)伸缩振动区(2500 2000 cm-1 )
18:02:04
在该区域出现的峰较少; ①RC CH (2100 2140 cm-1 )
RC CR’ (2190 2260 cm-1 ) R=R’ 时,无红外活性 ②RC N (2100 2140 cm-1 ) 非共轭 2240 2260 cm-1
18:02:04
1、红外光谱信息区
常见的有机化合物基团频率出现的范围:4000 670 cm-1 依据基团的振动形式,分为四个区: (1)4000 2500 cm-1 X—H伸缩振动区(X=O,N,C,S) (2)2500 2000 cm-1 三键,累积双键伸缩振动区 (3)2000 1500 cm-1
18:02:04
(二)计算不饱和度
定义: 不饱和度是指分子结构中达到饱和所缺一价元素的“对”数。如: 乙烯变成饱和烷烃需要两个氢原子,不饱和度为1。 计算: 可按下式进行不饱和度的计算:

红外光谱谱图解析共272页

红外光谱谱图解析共272页
• 气体分子的纯转动光谱大多数出现在微波 区和远红外区
• 刚性双原子分子的纯转动光谱是一系列等 间距的谱线
J=4
20Bhc
8Bhc
J=3
12Bhc
6Bhc
J=2
4Bhc
J=1
J=0
能量
2Bhc
刚性双原子分子转动能级示意图
6Bhc
2Bhc 0
刚性双原子分子的纯转动光谱
分子的振-转光谱
• 把原子的振动看作谐振子,若振动能级由 n=0向n=1跃迁,即当振动量子数由n=0 变到n=1时,分子所吸收光的波数等于谐 振子的振动频率,这种振动叫作基频振动, 基频振动的频率叫作基频
• 双原子分子的力常数k只与电子云密度和核 电荷有关,而与质量无关。同种元素,k值 相同。如O-H和O-D,k值相同,折合质量µ
不相同,基频振动频率不相同
分子的转动光谱
• 分子的转动光谱主要是指气体的转动光谱。 由于气体中分子之间的距离很大,分子可 以自由转动,吸收光辐射后,能观察到气 体分子转动光谱的精细结构。液体中分子 之间的距离很短,分子之间的碰撞使分子 的转动能级受到微绕,因此观察不到液体 分子转动光谱的精细结构。固体样品也观 察不到转动光谱
• 在中红外区,基团的振动模式分为 两大类:伸缩振动和弯曲振动
伸缩振动 • 伸缩振动(双原子分子) • 对称伸缩振动 • 反对称(不对称)伸缩振动 弯曲振动 • 变角振动
剪式振动(三原子分子) 对称变角振动 反对称(不对称)变角振动 • 面内弯曲振动 • 面外弯曲振动 • 面内摇摆振动 • 面外摇摆振动 • 卷曲(扭曲)振动
背景单光束光谱(水汽和CO2光谱,分辨率4cm-1)
水汽的吸收光谱(4cm-1),即水汽的振转光谱

红外光谱最全最详细明了分解ppt课件

红外光谱最全最详细明了分解ppt课件

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1.3.2 分子结构对基团吸收谱带位置的影响
(1)诱导效应(I效应):基团邻近有不同电负性的取代 基时,由于诱导效应引起分子中电子云分布的变化,从而 引起键力常数的改变,使基团吸收频率变化。
4. 色散型红外光谱仪主要部件
(1) 光源
能斯特灯:氧化锆、氧化钇和氧化钍烧结制成 的中空或实心圆棒,直径1-3 mm,长20-50mm;
室温下,非导体,使用前预热到800 C; 特点:发光强度大;寿命0.5-1年; 硅碳棒:两端粗,中间细;直径5 mm,长2050mm;不需预热;两端需用水冷却;
(2) 单色器
(2)共轭效应(C效应): 共轭效应要求共轭体系有共平面性。
(3)瞬间偶极矩大,吸收峰强;键两端原子电 负性相差越大(极性越大),吸收峰越强; (4)由基态跃迁到第一激发态,产生一个强的 吸收峰,基频峰; (5)由基态直接跃迁到第二激发态,产生一个 弱的吸收峰,倍频峰.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
某一基团的特征吸收频率,同时还要受到分子结构 和外界条件的影响。
同一种基团,由于其周围的化学环境不同,其特征吸 收频率会有所位移,不是在同一个位置出峰。
基团的吸收不是固定在某一个频率上,而是在一个范围 内波动。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

最新如何解析红外光谱图

最新如何解析红外光谱图

如何解析红外光谱图一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中:n:化合价为4价的原子个数(主要是C原子),4:化合价为3价的原子个数(主要是N原子),n3n:化合价为1价的原子个数(主要是H,X原子)1(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。

3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。

红外光谱谱图解析

红外光谱谱图解析

• 倍频峰又分为一级倍频峰、二级倍频峰等 等。当非谐振子从n = 0向n = 2振动能级 跃迁时所吸收光的频率称为一级倍频峰, 从n = 0向n = 3振动能级跃迁时所吸收光 的频率称为二级倍频峰 • 一级倍频峰很弱,二级倍频峰更弱
• 一级倍频峰的波数并非正好等于基频峰波 数的两倍。一级倍频总是小于基频的两倍, 这是因为非谐振子振动能级是不等距的, 其能级间隔随着振动量子数n的增加而慢慢 减小
6
倍频峰 (Overtone)
• 根据谐振子选择定则,谐振子只能在相邻的 两个振动能级之间跃迁, 即Δn=±1。而且 各个振动能级之间的间隔都是相等的
• 实际分子不是谐振子。量子力学证明,非谐 振子的选择定则不再局限于Δn=±1。Δn可 以等于其它整数,即Δn=±1,±2, ±3,……。也就是说,对于非谐振子,可以 从振动能级n = 0向n = 2或n = 3,或向更高 的振动能级跃迁。非谐振子的这种振动跃迁 称为倍频振动。倍频振动频率称为倍频峰
苯的拉曼光谱
反对称伸缩振动
(Asymmetric Stretching Vibration)
直线形三原子基团反对称伸缩振动
弯曲形三原子基团反对称伸缩振动 H2O,-CH2-,-NH2,-NO2
CO2
平面形四原子基团反对称伸缩振动
四面体形五原子基团反对称伸缩振动
NO3-,BO3-,CO32-
NH4+,SO42+,PO43+ ,SiO42-
H N O O H
H
平面型 硝酸钠中的NO3- 的对称伸缩振动 1071cm-1(拉曼活性)
四面体型 甲基-CH3的对称伸缩振动 2872±5cm-1
O
S
O O
O

红外光谱解析

红外光谱解析
48
讲授提要
第一节:朗勃-比尔定律与紫外吸收光谱图 第二节:电子跃迁的类型 第三节:各类有机化合物的电子跃迁 第四节:紫外光谱在有机化学中的应用
49
远紫区: 4~200nm 紫外光区:4 ~400nm (也称真空紫外区)
近紫区: 200~400nm 可见光区: 400~800nm 紫外光谱仪所用波长: 200~800nm UV:200~800nm (近紫和可见光区)
(CH3)2C = C(CH3)2
HC
CH
不产生吸收.
2、频率相同的峰彼此重叠。
3、强的宽峰掩盖与它频率相近的弱峰。
4、有时吸收频率在仪器的工作频率之外。
7
第二节 红外光谱的表示
横坐标:波长(λ)、波数(ν)表示吸收的位置; 纵坐标:透射百分率(T%)或吸光度(A)表示吸收的强度。8
第三节 影响红外吸收的主要因素
51
二、紫外吸收光谱图
λmax :279nm(吸收位置) 溶剂:环己烷
εmax :14.8 (吸收强度)
52
第二节 电子跃迁的类型
σ*
能 量 ΔE
π* n
π
σ
E E E E * > n * > * > n *
53
第三节 各类有机化合物 的电子跃迁
一、饱和有机化合物的电子跃迁
41
根据红外光谱判断化合物类型:
~1715cm-1酮羰基
42
缔合羟基吸收峰:醇
43
~1810cm-1酰氯羰基
44
根据红外光谱判断化合物的结构式:
45
46
47
第二部分 紫外光谱(UV)
λ = 200 ~ 800nm △E = 145 ~ 627KJ.mol-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档