工业废水除磷方法
含磷工业废水处理分析
关键词:含磷工业废水;化学沉淀法;生物方法引言制药行业作为我国国民经济的重要组成,具有很好的发展前景。
但在其发展过程中,需要使用磷酸二氢钾等物质作为辅助性原料开展生产工作,但该物质的利用率较低,会残留在生产废水中。
若是没有对工业含磷废水进行有效处理,使其满足相关排放要求,会直接影响周围环境,造成水体等环境污染。
因此,研究含磷工业废水处理方法是十分必要的。
1分析处理含磷工业废水的必要性医药厂家在发展过程中为国家创造了巨大的经济价值,但同时也带来较为严重的环境污染问题,磷元素,就是污染形成主要因素。
造成的具体影响有:(1)影响河流、湖泊等水体的透明程度。
由于磷的过量会导致富营养化的出现,为藻类的生长提供良好的环境,进而使藻类规模扩大,影响水体通透度。
同时,水中植物无法进行光合作用,造成水体局部DO的缺乏和饱和,导致水生动物的死亡,不利于我国生物多样性的发展。
(2)在出现的大量藻类中,部分藻类会释放有毒物质,影响水体质量,影响人畜的生命安全。
(3)对水体生态平衡造成影响。
一般情况下,水体处于相对平衡的状态,但富营养化的出现导致藻类等生物的大量生长,其他生物的死亡,从而导致其生态失衡。
(4)对航运以及当地的旅游业造成影响。
富营养化的出现会导致藻类的大量繁殖,航道会被堵塞,且水体会变的浑浊,失去其美观性,旅游业受到影响。
2制药废水除磷研究现状从目前现状来看,在制药废水的处理方面具有多种处理磷元素的方法,也取得了较为丰硕的成果。
但是,不同于其他工业废水,制药含磷废水具有较强的多样性和复杂性,无法对其进行统一处理,且在选择含磷工业废水处理方法时需要考虑废水的水质等问题。
而且,制药废水的产出量每日能达到上百吨,浓度也较高,对于高浓度难以降解的制药废水,需要采用组合处理方法开展除磷工作。
例如,使用化学或物理方法对其进行预处理或是部分处理,降低其浓度,之后,再使用点解等方法将含磷工业废水中的磷元素彻底去除,使其满足我国工业废水排放要求。
化学除磷原理
化学除磷原理化学除磷是指利用化学方法将水体中的磷污染物去除的过程。
磷是一种重要的营养元素,但过量的磷会导致水体富营养化,引发藻类大量繁殖,造成水质恶化。
因此,化学除磷在水环境治理中起着重要的作用。
化学除磷的原理主要是利用化学物质与水中的磷形成沉淀,从而将磷去除。
常用的化学除磷方法包括铁铝混凝、硫酸盐沉淀和氢氧化铁沉淀等。
首先,铁铝混凝是一种常用的化学除磷方法。
在水处理过程中,向水中加入适量的铁盐或铝盐,通过混凝作用,使水中的磷与铁铝形成沉淀物,从而达到除磷的效果。
这种方法操作简单,除磷效果好,广泛应用于城市污水处理厂和工业废水处理系统中。
其次,硫酸盐沉淀也是一种常见的化学除磷方法。
在水处理过程中,向水中加入适量的硫酸盐,通过与水中的磷反应生成难溶的磷酸钙沉淀,从而将磷去除。
这种方法适用范围广,除磷效果稳定,但需要注意控制投加量和pH值,以确保除磷效果。
另外,氢氧化铁沉淀也是一种常用的化学除磷方法。
在水处理过程中,向水中加入适量的氢氧化铁,通过与水中的磷反应生成难溶的磷酸铁沉淀,从而将磷去除。
这种方法除磷效果好,操作简便,但需要注意控制投加量和搅拌时间,以确保除磷效果。
总的来说,化学除磷是一种重要的水环境治理方法,通过利用化学物质与水中的磷形成沉淀,从而将磷去除。
不同的化学除磷方法有着各自的特点和适用范围,可以根据实际情况选择合适的方法进行除磷处理。
同时,在进行化学除磷过程中,需要严格控制投加量、搅拌时间和pH值,以确保除磷效果。
化学除磷的原理和方法对于改善水体质量、保护水资源具有重要意义。
含磷酸盐的废水处理常用方法
含磷酸盐的废水处理常用方法
一、含磷废水的排放标准
磷酸盐在工业和农业中都是应用十分广泛,并且大部分的磷酸盐都是易溶于水,进而导致含磷废水的产生,这也是含磷酸盐的废水处理都会需要除磷的主要原因之一。
二、含磷酸盐的废水处理常用方法
1、生化法
这种含磷酸盐的废水处理方法主要是利用聚磷菌及反硝化的原理让水中磷被消化或转化,其除磷率差不多在70%左右。
应用场所:污水处理厂
2、吸附除磷法:
利用活性炭、活性氧化铝等材料对废水中的含磷物质进行物理吸附,以此减少污水中磷的含量。
应用场所:电镀行业+线路板行业+机械行业
3、化学除磷法
通过投加除磷药剂,使之与水中污染物发生化学反应,生成难溶性磷酸盐,再通过固液分离的方法,达到含磷酸盐的废水处理除磷的目的
应用场所:生活污水+各行业工业废水,包括磷酸盐的废水处理。
脱氮除磷的水污染处理工艺
脱氮除磷的水污染处理工艺近几十年来,水污染问题日益严重。
其中,氮和磷的排放是造成水体富营养化的主要原因之一。
为了解决这个问题,脱氮除磷的水污染处理工艺被广泛应用。
本文将对脱氮除磷的工艺进行详细介绍。
一、脱氮工艺1.生物法生物法是目前广泛使用的脱氮工艺。
主要包括生物硝化脱氮和生物反硝化技术两种方式。
生物硝化脱氮:通过硝化作用将氨氮先转化为亚硝酸盐,然后进一步转化为硝酸盐,最终转化成氮气释放。
生物硝化脱氮技术适合于高温和中温条件下的工业和城市污水处理。
生物反硝化技术:通过微生物将污水中的硝态氮还原成分子态氮。
生物反硝化技术在低温条件下和含有高浓度有机物或有毒物质的废水中有着较好的效果。
2.生物化学联合法生物化学联合法是将化学脱氮和生物脱氮相结合的方法。
将化学氮移除和Nitrifier-Denitrifier反应器相结合,可以同时去除废水中的氨氮、硝酸盐和有机氮。
二、除磷工艺1.生物法生物法反应器中添加特定的微生物种类,通过细胞内聚磷体的形成来去除废水中的磷。
生物法可以采用常温条件下的生物除磷法和PRB(磷酸根还原菌)方法。
生物除磷法:将一部分有机质转化为聚磷体,降低了废水中的磷浓度。
其中产生的胞外聚磷体通过化学加药破坏,从而将磷元素移除。
PRB技术:利用磷酸酯酶降解废水中的聚磷体,释放出其身上的磷元素,然后在还原本身成为无磷物质。
2.化学法化学法是使用化学物质来去除废水中的磷。
包括化学沉淀法和吸附法。
化学沉淀法:添加化学药剂,生成难溶的沉淀物,从而使废水中的磷以沉淀物的形式存在,达到去除的效果。
吸附法:利用化学吸附剂吸附废水中的磷元素,将其移除。
在吸附剂表面形成的吸附床与污水中的磷发生交换,达到去除的效果。
三、联合工艺脱氮除磷联合工艺是将脱氮和除磷相结合的工艺。
其中包括生物化学联合法、化学-生物工艺和物理化学-生物工艺。
联合工艺相比于单纯的脱氮或除磷工艺,具有去除效率高、运行稳定等优势。
综上所述,脱氮除磷是解决水污染的重要手段之一。
工业生产废水中磷(膦)的去除
工业生产废水中磷(膦)的去除一、引言水源中磷的含量的提高会导致水源的富营养化是一个不争的事实。
前些年太湖蓝藻事件的出现,就是由于随着工业化进程以及农业的面源污染,排入天然水域的磷总量逐年积累而导致的。
地方政府和各级环保部门都已经认识到消减总磷排放量对于缓解湖泊富营养化难题具有重要的意义。
各级环保部门数年来逐步抓紧了对工业企业外排污水的总磷等污染物的管控(尽管某些地方政府为了当地的GDP、就业和税收等“政绩”在某种程度对污水中磷的去除处理睁一眼,闭一眼)。
二、磷污染的主要来源据我们对江苏各地不完全的了解,由于向水体中排入磷导致水体磷污染和富营养化的主要污染源是:1、农业生产中的面源污染农业生产中大量使用化学肥料,过剩的磷肥通过地表径流和地下水向自然水体大量排入,这已经成为水体富营养化的主要污染源。
推广测土施肥,推广新型节水节肥农业生产技术是减少农业面源污染的主要措施。
2、居民生活污水磷污染由于近年来大力推广使用无磷洗涤剂使得居民生活污水中磷的浓度并不高,普遍在2mg /l及以下。
在江苏地区(尤其是苏南地区)对于居民生活废水的处理是通过建立区域性污水处理站来进行集中处理。
原则上只要处理措施得当,各污水处理企业真正按照要求实行处理,控制生活废水的磷的排放应该是没有问题的。
但事实上,由于处理成本以及处理企业的社会责任心等问题,有相当的污水处理企业并没有积极地采取措施使总磷排放标准达标。
尽管这部分废水中总磷浓度较低,但由于排放的总水量很大,使得年度总磷排放量仍相当可观。
3、工业企业含磷污水排放涉磷(膦)废水排放的企业主要是一些化工企业和食品及食品原料企业。
比如电镀行业、以PCl3为原料的化工行业、含磷(膦)农药生产企业或者是农药中间体生产企业、磷系列阻燃剂生产企业、金属表面处理行业、医药中间体生产企业,某些使用磷酸盐或聚合磷酸盐作为化学反应催化剂的生产,以及酒类及酒精等食品生产加工企业等。
如果说高浓度的磷将导致水体的富营养化问题,那么膦化合物(如含磷的农药、除草剂、阻燃剂等)排放到水体中,其潜在的生物毒性危害也是一个重大的威胁。
磷的去除与回收技术
技术应用与案例分析
生物法应用
某污水处理厂采用生物法去除磷,处理效果 稳定,运行成本较低,具有较好的经济效益 和社会效益。
化学沉淀法应用
某工业废水处理采用化学沉淀法去除磷,处理后水 质稳定达标,满足了环保要求。
吸附法应用
某研究机构研发了一种新型吸附剂,用于去 除废水中的磷,处理效果显著,具有较好的 应用前景。
工业废水中磷的回收
工业废水中的磷主要来源于各种生产过程中产生的含磷废水,如化工、制药、食品加工等。这些废水 中含有的磷会对水体造成污染,因此需要对其进行处理和回收。
工业废水中磷的回收方法主要包括沉淀法、吸附法、离子交换法等。沉淀法是通过投加药剂使废水中 的磷酸根离子转化为沉淀物,再通过固液分离的方法将沉淀物去除。吸附法和离子交换法则是利用吸 附剂或离子交换剂来吸附或交换废水中的磷离子,从而实现磷的回收。
02
磷的去除技术
化学沉淀法
总结词
通过向废水中添加化学药剂,使磷以沉淀物的形式从废水中 分离出来。
详细描述
化学沉淀法是一种常用的除磷技术,通过向废水中添加适当 的化学药剂,如石灰、硫酸铝、铁盐等,使磷与药剂发生化 学反应,生成难溶的磷酸盐或金属磷酸盐,然后通过沉淀、 过滤等方法将磷从废水中分离出来。
政策与法规的影响
政策推动
政府将出台相关政策鼓励磷的去除与回 收技术的研发和应用,推动技术的产业 化进程。
VS
法规约束
相关法规将加强对磷排放的限制,促使企 业采用先进的磷去除与回收技术,减少磷 排放。
社会经济因素对磷去除与回收的影响
市场需求驱动
随着社会对环境保护的日益重视,市场需求 将进一步扩大,推动磷去除与回收技术的研 发和应用。
部分工业生产过程中使用磷作为原料,废 水排放时磷含量超标。
有机磷农药废水的处理方法
水体中氮、磷的排入引起水体中藻类大量生长和其他浮游植物迅速繁殖,使水体中的溶解氧下降,造成生物大面积死亡。
水中藻类数量取决于总磷,总磷是限制浮游藻类生长的主要因素,治理水体富营养化,必须控制含磷废水中的总磷的含量。
含磷废水来源广泛,特别来源化学工业的含磷废水,如化肥,农药、石油化工等行业,有机磷农药废水排放量大、成分复杂,对于这类含磷废水的主要方法有化学沉淀法、吸附法和生物法。
1.化学沉淀法(1)化学沉淀法原理是向含磷废水中投加一定量的化学药剂,使之与磷酸盐发生反应生成难溶于水的沉淀,再通过排泥去除废水中的磷。
(2)化学法除磷特点:工艺流程简单,除磷效率高,操作方便,占地面积小的优点,一般化学沉淀工艺由于药剂投加量控制不好或人工操作的不规范,导致化学污泥量的增加、维护成本高,甚至造成二次污染。
(3)鉴于有机磷农药废水种类繁多,存在难处理的现象,而投加药剂会增加运行成本,湛清环保基于有机磷农药废水的难处理特征,在化学沉淀的基础上,设计特种磷处理设备SPT-IE,考察处理有机磷废水浓度、除磷剂投加量、PH、反应时间等对除磷效果的影响。
结果表明,一体化除磷设备对不同的有机磷废水均有较好的除磷效果,并具有运行维护简便、投药精准不浪费、总磷去除率能达到90%的优点。
在选择除磷方法时,要根据具体的水质特性和环境条件,合理选择除磷工艺流程,化学沉淀法一体化除磷设备对有机磷农药废水比较有效,其中酸碱度是主要的控制因素。
2.吸附法吸附法去除农药废水中有机磷常用的吸附材料有活性炭、树脂、金属氧化物等,它们对大部分有机物都具有吸附作用,但是因为吸附材料昂贵、对进水水质要求高、解吸再生过程困难、解析后产生的浓水难处理等问题造成了其在有机磷废水处理的实际应用中并不广泛。
以活性炭吸附为例,其原理是其物理吸附与化学吸附共同作用的结果,并非是对有机磷的定向吸附过程,所以导致了活性炭在吸附有机磷的同时,也会吸附其他有机物分子,占用吸附容量,导致吸附效率低下,而且活性炭解吸过程困难,产生浓水难处理,就注定了活性炭吸附在有机磷废水处理中难以广泛应用。
化学除磷产泥
化学除磷产泥
化学除磷是利用无机金属盐作为沉淀剂,与污水中的磷酸盐类物质反应形成难溶性含磷化合物与絮凝体,将污水中的溶解性磷酸盐分离出来。
其过程中会产生大量的污泥,这些化学除磷污泥一般需要经过预处理、稳定化处理和脱水三个步骤进行处理:
- 预处理:主要是对污泥进行初步处理,包括混合、加药和沉淀等步骤。
在加药过程中,通常采用氯化铁、聚合氯化铝等化学药剂作为絮凝剂,在混合过程中充分混合以促进絮凝物的生成。
沉淀是将混合后的污泥在沉淀池中进行沉淀处理,以便将污泥和清水分离。
- 稳定化处理:对沉淀后的化学除磷污泥进行化学稳定化处理,以减少有机物含量和臭味的产生。
处理方法通常采用添加氧化剂如过氧化氢、氧气等,同时加入酸、碱等调节pH 值的药剂,使其能够稳定地存放。
稳定化处理可有效降低污泥的体积和重量,减少后续处理的成本。
- 脱水:将稳定化后的污泥进行脱水处理,以减少水分含量和提高干固含量。
脱水处理方法通常采用压滤机、离心机等设备进行处理。
在脱水过程中,需要注意控制污泥的含水率,避免过度脱水导致污泥变硬难以处理,也不能脱水不足导致污泥含水率过高。
PhoStrip侧流除磷工艺及其应用实例
PhoStrip侧流除磷工艺及其应用实例PhoStrip侧流除磷工艺及其应用实例引言:随着人口的增加和工业的发展,水环境污染问题日益突出,其中磷污染是最为严重的一种环境问题,对水体生态系统造成了严重的破坏。
因此,开发高效的磷污染治理技术对于保护水环境具有重要意义。
本文将介绍一种名为PhoStrip侧流除磷工艺及其应用实例。
一、PhoStrip侧流除磷工艺概述PhoStrip侧流除磷工艺是一种基于化学沉淀和吸附的先进污水处理技术,专门用于高浓度磷污水的处理。
它包括预处理、化学沉淀、吸附和沉淀剂再生等几个步骤。
1.1 预处理在进入PhoStrip系统之前,废水需要进行适当的预处理。
主要的预处理方法包括调节废水pH值、去除悬浮固体和颗粒物等。
预处理的目的是消除废水中的干扰物质,为后续的化学沉淀和吸附步骤提供良好的操作条件。
1.2 化学沉淀化学沉淀是PhoStrip工艺的核心步骤。
在该步骤中,通过添加适量的沉淀剂,使水中的磷形成沉淀,并与沉淀剂形成复合物。
常用的沉淀剂有氢氧化钙、氯化铁等。
化学沉淀的主要原理是通过沉淀剂与磷的物理和化学相互作用,使得磷从水中得以去除。
沉淀后的磷可以通过沉淀剂一并去除,进一步减少废水中磷的浓度。
1.3 吸附在化学沉淀步骤之后,用于去除磷的沉淀剂已经被使用,需要再次更新。
为了回收这些沉淀剂,可以通过吸附来实现。
吸附是利用吸附剂对磷的高亲和力,将废水中的残余磷吸附到吸附剂表面,并形成磷吸附剂复合物。
常用的吸附剂有活性炭、氧化铁等。
1.4 沉淀剂再生经过吸附步骤后,沉淀剂已经被用于吸附磷,需要进行再生。
沉淀剂再生是将吸附剂和磷分离的过程,一般采用热解或酸洗等方法。
通过沉淀剂再生,不仅可以回收沉淀剂,还可以减少废水中磷的排放量,实现资源的循环利用。
二、PhoStrip侧流除磷工艺的应用实例下面将介绍PhoStrip侧流除磷工艺在实际应用中的几个典型例子。
2.1 污水处理厂PhoStrip工艺已经在一些污水处理厂中得到了成功应用。
反硝化除磷工艺原理以及
反硝化除磷的影响因素
污水中有机物浓度
污水中氮、磷浓度
有机物浓度越高,反硝化细菌和聚磷菌的 代谢活性越强,反硝化除磷效果越好。
氮、磷浓度越高,反硝化细菌和聚磷菌的 生长速率越快,反硝化除磷效果越好。
污水中pH值
污水中温度
pH值对反硝化细菌和聚磷菌的生长和代谢 活性有重要影响,适宜的pH值范围为6.57.5。
反硝化除磷的优势与挑战
反硝化除磷的优势
高效率
反硝化除磷工艺能够在短时间内高效 去除污水中的氮和磷,达到国家排放 标准。
适应性强
该工艺适用于多种类型的污水,包括 生活污水、工业废水和农田径流等。
节能环保
反硝化除磷工艺不需要添加化学药剂 ,节省了用药成本,同时也减少了二 次污染。
生物降解
该工艺利用微生物进行生物降解,相 比化学方法更有利于保护生态环境。
厌氧-缺氧-好氧(A2/O)工艺
一种常用的反硝化除磷工艺,通过在厌氧、缺氧、好氧三个不同环境条件下,利 用微生物的代谢作用将污水中的有机物、氮、磷等污染物去除。
反硝化除磷的原理
反硝化作用
在缺氧条件下,反硝化细菌利用硝酸盐氮作为电子受体,将有机物转化为氮气。
除磷原理
在厌氧条件下,聚磷菌吸收污水中的有机物,并将其转化为能量储存物质——聚磷酸盐;在好氧条件下,聚磷菌 将储存的聚磷酸盐分解为正磷酸盐,并释放能量;在缺氧条件下,反硝化细菌将正磷酸盐还原为磷元素,并将其 以磷酸盐的形式去除。
反硝化除磷工艺在污水处理厂中的应用,可以有效地改善水 质,减少水体富营养化的风险,同时也可以降低污水处理厂 的运营成本。
工业废水处理
工业废水处理是反硝化除磷工艺应用 的另一个重要场景。在工业废水处理 中,由于废水中含有大量的氮、磷等 污染物,因此需要采用有效的处理工 艺进行去除。
树脂吸附除磷
树脂吸附除磷树脂吸附除磷是一种常见的水处理技术,可以有效地去除水中的磷,减少对环境的污染。
下面将从以下几个方面详细介绍树脂吸附除磷技术。
一、树脂吸附除磷原理树脂吸附除磷是利用具有亲磷性的树脂材料,通过化学反应将水中的无机磷离子(如PO4)吸附到树脂表面,从而实现去除水中磷的目的。
具体来说,树脂表面上的阴离子基团(如羟基、胺基等)与无机磷离子之间形成静电作用或氢键作用,使无机磷离子被吸附在树脂表面上。
二、树脂材料选择选择合适的树脂材料是保证树脂吸附除磷效果良好的关键。
目前市场上常用的树脂材料包括阳离子交换树脂和阴离子交换树脂两种。
阳离子交换树脂主要用于软化水和去除重金属等,而阴离子交换树脂则适用于去除水中的无机磷。
在阴离子交换树脂中,常用的有强碱型树脂和弱碱型树脂两种。
强碱型树脂具有较高的吸附能力和较长的使用寿命,但其价格较贵;而弱碱型树脂则价格相对便宜,但吸附能力和使用寿命较短。
三、工艺流程树脂吸附除磷技术的工艺流程一般包括前处理、吸附处理和再生处理三个环节。
1.前处理:主要是对原水进行预处理,去除悬浮物、沉淀物等杂质,以保证后续操作的顺利进行。
2.吸附处理:将经过前处理的水通过装有树脂材料的固定床或流动床,使其与树脂接触,从而实现磷离子被吸附到树脂表面上。
3.再生处理:当树脂达到饱和状态时,需要进行再生。
一般采用酸洗法或盐洗法来实现再生。
酸洗法是指用稀酸溶液将树脂表面的吸附物质溶解掉,再用水冲洗干净;盐洗法则是指用盐水(如NaCl)将树脂表面的吸附物质溶解掉,再用水冲洗干净。
四、优缺点1.优点:树脂吸附除磷技术具有去除效率高、处理量大、操作简便等优点。
同时,树脂材料具有较长的使用寿命和较好的再生性能,可以循环使用多次。
2.缺点:树脂吸附除磷技术也存在一些缺点,如成本较高、对水质要求较高(如pH值、温度等)、再生过程中会产生废液等。
五、应用前景随着环境污染问题日益严重,树脂吸附除磷技术在水处理领域中应用越来越广泛。
工业废水除磷加药实验总结
工业废水除磷加药试验总结一、第一组试验:1、配置10%的药剂溶液取50克铁盐除磷剂(下文简称1号药剂)放入500ML烧杯中,向烧杯中加入纯净水,水位达到500ML刻度线后充分搅拌。
2、测试原水浓度取一杯PH值为8.5的原水,测试其总锌浓度为3.766mg/L。
3、加药试验(1)取三杯500ML PH值为8.5的原水,分别编号为1#、2#、3#。
(2)向1#烧杯中加入7.5毫升1号药剂溶液(1500PPM),充分搅拌,再加入4.5毫升浓度为千分之一的聚丙烯酰胺(9PPM),充分搅拌并沉淀20分钟。
(3)向2#烧杯中加入10毫升1号药剂溶液(2000PPM),充分搅拌,再加入4.5毫升浓度为千分之一的聚丙烯酰胺(9PPM),充分搅拌并沉淀20分钟。
(4)向3#烧杯中加入15毫升1号药剂溶液(3000PPM),充分搅拌,再加入8.5毫升浓度为千分之一的聚丙烯酰胺(17PPM),充分搅拌并沉淀20分钟。
4、观察沉淀效果(1)1#试验样絮状物细小,沉淀速度缓慢且沉淀物少,上清液清澈。
(2)2#试验样絮状物细粗大,沉淀速度块且沉淀物多,上清液清澈。
(3)3#试验样絮状物细粗大,沉淀速度块且沉淀物多,上清液清澈。
5、检测上清液总磷浓度(1)1#样上清液总磷浓度为3.003毫克每升。
(2)2#样上清液总磷浓度为0.934毫克每升。
(3)3#样上清液总磷浓度为0.546毫克每升。
二、第二组试验:1、配置10%的药剂溶液取50克铝铁复合除磷剂(下文简称2号药剂)放入500ML烧杯中,向烧杯中加入纯净水,水位达到500ML刻度线后充分搅拌。
2、测试原水浓度取一杯PH值为8.5的原水,测试其总锌浓度为3.766mg/L。
3、加药试验(1)取三杯500ML PH值为8.5的原水,分别编号为4#、5#。
(2)向4#烧杯中加入15毫升2号除磷剂溶液(3000PPM),充分搅拌,再加入7.5毫升浓度为千分之一的聚丙烯酰胺(15PPM),充分搅拌并沉淀20分钟。
脱氮除磷污水处理工艺
BCFS工艺是在帕斯韦尔氧化沟(Pasveersloot)与 UCT工艺及原理的基础上开发的生物除磷脱氮新工 艺,它由5个功能相对专一的反应器组成,通过控 制反应器之间的3个循环来优化各反应器内细菌的 生存环境,具有污泥产率低、除磷脱氮效率高(均 大于90%)等特点,其出水总氮<5mg/L,正磷酸 盐含量几乎为零。
该工艺的本质是通过控制环境温度造成两类细菌不同的增长 速率,利用该动力学参数的不同造成“分选压力” 。使用无需污 泥停留(以恒化器方式运行,其SRT=HRT)的单个CSTR反应器来实 现,在较短的HRT(即SRT)和30 ~40℃的条件下,可有效地通过种群 筛选产生大量的亚硝酸盐氧化菌,并使硝化过程稳定地控制在亚 硝化阶段,以
NO2-为硝化终产物。SHARON工艺适用于含高浓度氨 (>500mg/L)废水的处理工艺,尤其适用于具有脱氮要求的预处 理或旁路处理,如污泥消化池上清夜的处理。目前荷兰已有两家 污水处理厂采用了此工艺。
SHARON工艺主要有2个反应条件,一是碱度,另一是温 度。从方程式中可看出1molNH+4需要1molHCO-3,若 碱度供应不足,pH会迅速下降,若降至6 4以下,反应将停止,这与 传统的硝化反应相似。另一方面温度要求25℃以上。温度是用 以使亚硝化菌占优势从而控制硝化过程。图1显示了温度对亚硝 化菌和硝化菌的最小泥龄的影响。当温度高于15℃时,亚硝化菌 的最小泥龄低于硝化菌的最小泥龄,因此在高温度条件下(图中为 35℃)通过控制泥龄,可将长泥龄的硝化菌清洗出系统,保证硝化 过程停留在半硝化(NO-2)阶段。
污水处理方法之除磷、脱氮
污水处理方法之除磷、脱氮污水处理方法之除磷、脱氮:除磷:城市废水中磷的主要来源是粪便、洗涤剂和某些工业废水,以正磷酸盐、聚磷酸盐和有机磷的形式溶解于水中。
常用的除磷方法有化学法和生物法。
A、化学法除磷:利用磷酸盐与铁盐、石灰、铝盐等反应生成磷酸铁、磷酸钙、磷酸铝等沉淀,将磷从废水中排除。
化学法的特点是磷的去除效率较高,处理结果稳定,污泥在处理和处置过程中不会重新释放磷造成二次污染,但污泥的产量比较大。
B、生物法除磷:生物法除磷是利用微生物在好氧条件下,对废水中溶解性磷酸盐的过量吸收,沉淀分离而除磷。
整个处理过程分为厌氧放磷和好氧吸磷两个阶段。
含有过量磷的废水和含磷活性污泥进人厌氧状态后,活性污泥中的聚磷商在厌氧状态下,将体内积聚的聚磷分解为无机磷释放回废水中。
这就是“厌氧放磷”。
聚磷菌在分解聚磷时产生的能量除一部分供自己生存外,其余供聚磷菌吸收废水中的有机物,并在厌氧发酵产酸菌的作用下转化成乙酸背,再进一步转化为PIIB(聚自-短基丁酸)储存于体内。
进入好氧状态后,聚磷菌将储存于体内的PHB进行好氧分解,并释放出大量能量,一部分供自己增殖,另一部分供其吸收废水中的磷酸盐,以聚磷的形式积聚于体内。
这就是“好氧吸磷”。
在此阶段,活性污泥不断增殖。
除了一部分含磷活性活泥回流到厌氧池外,其余的作为剩余污泥排出系统,达到除磷的目的。
脱氮:生活废水中各种形式的氮占的比例比较恒定:有机氮50%~60%,氨氮40%〜50%,亚硝酸盐与硝酸盐中的氮占0〜5机它们均来源于人们食物中的蛋白质。
脱氮的方法有化学法和生物法两大类。
A、化学法脱氮:包括氨吸收法和加氯法。
a、氨吸收法:先把废水的PH值调整到10以上,然后在解吸塔内解吸氨b、加氯法:在含氨氮的废水中加氯。
通过适当控制加氯量,可以完全除去水中的氨氮。
为了减少氯的投加量,此法常与生物硝化联用,先硝化再除去微量的残余氨氮。
B、生物法脱氮:生物脱氮是在微生物作用下,将有机氮和氨态氮转化为氮气的过程,其中包括硝化和反硝化两个反应过程。
污水处理中的化学除磷的工艺和方法
污水处理中的化学除磷的工艺和方法磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求;化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1;实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异;FeCl3+K3PO4→FePO4↓+3KCl 式1污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程;在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除;如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物取决于PH值;另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体;最后通过固—液分离步骤,得到净化的污水和固一液浓缩物化学污泥,达到化学除磷的目的;根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙熟石灰;许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物;出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰;这些药剂是以溶液和悬浮液状态使用的;二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用;Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3;Al3++PO43-→AlPO4↓pH=6~7 式2Fe3++PO43-→FePO4↓pH=5~式3与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5;Al3++3OH-→AlOH3↓ 式4Fe3++3OH-→FeOH3 式5金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒;需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程;沉析效果是受PH值影响的,金属磷酸盐的溶解性同样也受PH的影响;对于铁盐最佳PH值范围为~,对于铝盐为~,因为在以上PH值范围内FePO4或AIPO4的溶解性最小;另外使用金属盐药剂会给污水和污泥处理还会带来益处,比如会降低污泥的污泥指数,有利于沼气脱硫等;由于金属盐药剂的投加会使污水处理厂出水中的Cl-或SO2-4离子含量增加;如果沉析药剂溶液中另外含有酸的话,则需特别加以注意;投加金属盐药剂后相应会降低污水的碱度,这也许会对净化产生不利影响;当在同步沉析工艺中使用硫酸铁时,必须考虑对硝化反应的影响;另外,如果污水处理厂污泥用于农业,使用金属盐药剂除磷时必须考虑铝或者铁负荷对农业的影响;除了金属盐药剂外,氢氧化钙也用作沉析药剂;在沉折过程中,对于不溶解性的磷酸钙的形成起主要作用的不是Ca2+,而是OH-离子,因为随着pH值的提高,磷酸钙的溶解性降低,采用CaOH2除磷要求的pH值为以上;磷酸钙的形成是按反应式6进行的:5Ca2++3po43-+OH-→Ca5PO43OH↓ pH ≥ 式6但在pH值为到的范围内除了会产生磷酸钙沉析外,还会产生碳酸钙,这也许会导致在池壁或渠、管壁上结垢,反应式如式7;Ca2++CO32-→CaCO3 式7与钙进行磷酸盐沉析的反应除了受到PH值的影响,另外还受到碳酸氢根浓度碱度的影响;在一定的PH值惰况下,钙的投加量是与碱度成正比的;对于软或中硬的污水,采用钙沉析时,为了达到所要求的PH值所需要的钙量是很少的,具有强缓冲能力的污水相反则要求较大的钙投加量;化学沉析工艺是按沉析药剂的投加地点来区分的,实际中常采用的有:前沉析、同步沉析和后沉析或在生物处理之后加絮凝过滤;1前沉析前沉析工艺的特点是沉析药剂投加在沉砂池中,或者初次沉淀池的进水渠管中,或者文丘里渠利用涡流中;其一般需要设置产生涡流的装置或者供给能量以满足混合的需要;相应产生的沉析产物大块状的絮凝体则在一次沉淀池中通过沉淀而被分离;如果生物段采用的是生物滤池,则不允许使Fe2+药剂,以防止对填料产生危害产生黄锈;前沉析工艺如图2所示特别适合于现有污水处理厂的改建增加化学除磷措施,因为通过这一工艺步骤不仅可以去除磷,而且可以减少生物处理设施的负荷;常用的沉析药剂主要是生灰和金属盐药剂;经前沉析后剩余磷酸盐的含量为,完全能满足后续生物处理对磷的需要;2同步沉析同步沉析是使用最广泛的化学除磷工艺,在国外约占所有化学除磷工艺的50%;其工艺是将沉析药剂投加在曝气池出水或二次沉淀池进水中,个别情况也有将药剂投加在曝气池进水或回流污泥渠管中;目前很多污水厂都采用,如广州大坦沙污水处理厂三期就是采用的同步沉析,加药对活性污泥的影响比较小;3后沉析后沉析是将沉析、絮凝以及被絮凝物质的分离在一个与生物设施相分离的设施中进行,因而也就有二段法工艺的说法;一般将沉析药剂投加到二次沉淀池后的一个混合池M池中,并在其后设置絮凝池F池和沉淀池或气浮池;对于要求不严的受纳水体,在后沉析工艺中可采用石灰乳液药剂,但必须对出水PH值加以控制,比如采用沼气中的CO2进行中和;采用气浮池可以比沉淀池更好地去除悬浮物和总磷,但因为需恒定供应空气而运转费用较高;物理法、化学法、物理化学法、生物法1.物理法:1沉淀法,主要去除废水中无机颗粒及SS;2过滤法,主要去除废水中SS和油类物质等;3隔油,去除可浮油和分散油;4气浮法,油水分离、有用物质的回收及相对密度接近于1的悬浮固体;5离心分离:微小SS的去除;6磁力分离,去除沉淀法难以去除的SS 和胶体等;2.化学法:1混凝沉淀法,去除胶体及细;2中和法,酸碱废水的处理;3氧化还原法,有毒物质、难生物降解物质的去除;4化学沉淀法,重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除;3.物理化学法:1吸附法,少量重金属离子、难生物降解有机物、脱色除臭等;2离子交换法,回收贵重金属,放射性废水、有机废水等;3萃取法,难生物降解有机物、重金属离子等;4吹脱和汽提,溶解性和易挥发物质的去除;4.生物法:有机物、氮磷、SS的去除;1活性污泥法,推流式活性污泥法、完全混合式活性污泥法、AB法、SBR及其变种工艺、氧化沟等;2生物膜法,生物滤池、生物转盘、生物接触氧化、曝气生物滤池等;3厌氧工艺,厌氧滤器AF、厌氧流化床反应器AFB、上流式厌氧污泥床反应器UASB、厌氧颗粒污泥膨胀床反应器EGSB、厌氧内循环反应器IC、厌氧折流板反应器ABR等;4生物脱氮除磷工艺,A/O法、A/A/O工艺、A/O/A/O工艺、Bardenpho工艺、UCT及改良UCT工艺、短程硝化/反硝化工艺、同步硝化/反硝化工艺、短程硝化-厌氧氨氧化工艺、反硝化除磷工艺等;污水中的磷主要来自生活污水中的含磷有机物、合成洗涤剂、工业废液、化肥农药以及各类动物的排泄物;如污水没有完全处理,磷还会流失到江河湖海中,造成这些水体的富营养化;除磷方法可分为物化除磷法和生物除磷法及人工湿地除磷法;物化除磷法包括化学沉淀法、结晶法、吸附法;根据磷在污水中不同的存在方式,应采用不同的除磷技术;1 污水除磷方法1. 1 化学沉淀法化学沉淀法除磷的基本原理是通过投加化学药剂形成不溶性磷酸盐沉淀,然后通过固液分离将磷从污水中除去,根据使用的药剂可分为石灰沉淀法和金属盐沉淀法;化学沉淀法具有管理方便、占地面积小、投资省、处理效率高等优点,但化学沉淀法投加药剂费用太贵,且产生的化学污泥含水量大,脱水困难,难以处理,容易产生二次污染;根据加药点的不同,化学沉淀法除磷工艺可分为预沉淀、同步沉淀、后沉淀及两点加药工艺;这几种工艺可以结合应用,但要注意混合与反应条件,通过紊流扩散与混合作用会出现良好的沉淀效果;1. 2 结晶法在污水中,特别是城市污水厂剩余污泥处理后的上清液及养殖废水中,含有浓度较高的磷酸盐,氨氮、钙离子、镁离子及重碳酸盐碱度,通过人为改变条件提高pH值或同时加入药剂增加金属离子浓度,使不溶性晶体物质析出,主要是磷酸铵镁晶体与羟基磷酸钙;结晶法除磷效率高,出水水质好,当其他水质指标达到规定值时,出水可满足中水回用的要求;结晶法除磷使水中的磷在晶种上以晶体的形式析出,理论上不产生污泥,不会造成二次污染;结晶法除磷操作简单,使用范围广,可用于城市生活污水厂二级出水的深度处理、去除污泥消化池中具有较高磷浓度的上清液等;1. 3 吸附法吸附法除磷是利用某些多孔或大比表面积的固体物质,通过磷在吸附剂表面的附着吸附、离子交换或表面沉淀来实现污水的除磷过程;吸附除磷的过程既有物理吸附,又有化学吸附;对于天然吸附剂主要依靠巨大的比表面积,以物理吸附为主,而人工吸附剂较之天然吸附剂孔隙率及表面活性明显提高,以化学吸附为主3 天然的吸附剂有粉煤灰、钢渣、沸石、膨润土、蒙托石、凹凸棒石、海泡石、活性氧化铝、海棉铁等;人工合成吸附剂在低磷浓度下仍有较高的吸附容量,有着巨大的优越性;现在已有Al,Mg ,Fe ,Ca , Ti ,Zr 和La 等多种金属的氧化物及其盐类作为选择材料;1. 4 生物除磷法在厌氧区无分子氧和硝酸盐,兼性厌氧菌将污水中可生物降解的有机物转化为VFAs 挥发性脂肪酸类,在厌氧条件下,聚磷菌吸收了这些以及来自原污水的VFAsVFAs 主要来自于污水中可生物降解的组分,生活污水中的VFAs 大约为总有机物的40%~50 %左右,将其运送到细胞内,同化成细胞内碳能源储存物PHB,所需能量来源于聚磷的水解及细胞内糖的酵解,并导致磷酸盐的释放;进入好氧状态后, 这些专性好氧的聚磷菌PAOs活力得到恢复,并以聚磷的形式摄取超过生长需要的磷量,通过PHB的氧化分解产生能量,用于磷的吸收和聚磷的合成,磷酸盐从液相中去除,产生的富磷污泥,通过剩余污泥排放,磷从系统中得以去除;反硝化聚磷菌DPB 能在缺氧无分子氧有硝酸盐环境下摄磷,反硝化除磷细菌DPB利用硝酸盐为电子受体,产生生物摄磷作用;在生物摄磷的同时,硝酸盐被还原为氮气,这使得摄磷和反硝化脱氮这两个不同的生物过程能够利用同一类细菌、在同一个环境中完成;1. 5 人工湿地法湿地对磷有很好的去除效果,理论上人工湿地对磷的去除是植物吸收、基质的吸附过滤和微生物转化三者的共同作用,各种附着生长和悬浮在水中的微生物,在生长繁殖过程中可以吸收和利用污水中的无机磷酸盐;部分研究发现:人工湿地植物根区磷酸酶活性与总磷的去除率相关性不是十分显着;也有研究表明,湿地生态系统中的磷主要被截留在土壤中,而在植物体内和落叶中很少,而且仅有少数的水生植物可以吸收磷,大多数种类植物的根部对磷的吸收能力较弱,所以植物和微生物对磷的去除起得作用不大,不是除磷的主要过程;所以最主要的是基质对磷的吸附和沉淀作用;一般湿地的除磷效率不是很高,在40 %~60 %之间;为了提高除磷效果,基质的选取有着重要的作用;目前常有的基质主要有:浮石、砂、活性多孔介质L ECA 、硅灰石和工业废弃物的高炉渣和石灰等;2 磷回收从磷的可持续发展、回收磷潜在的市场价值的角度来看,磷的回收势在必行;在目前对污水回收磷的研究与应用中,以鸟粪石形式回收磷的实例居多,其次是磷酸钙和磷酸铝;鸟粪石磷酸铵镁含有氮、磷元素,所以其回收必然会降低剩余污泥中的氮、磷含量,特别是对于磷元素的影响将非常明显;污水中氮磷比通常为8∶1 ,而鸟粪石中二者比例为1∶1,所以理论上回收鸟粪石可以使污水中的氮降低12. 5 % ;如图1 所示,在稳定区内Mg2 + ,NH4+ 以及PO4 3 - 浓度较低,浓度较高,其离子积大于溶度积,极易生成颗粒微小的晶体即化学沉淀,沉淀法形成的化学污泥含水率高,磷酸盐也难以达到太高的纯度,回收困难;两曲线之间的这个区称为亚稳区,这时Mg2 + ,NH+4 以及PO4 3 - 离子积小于浓度积,通常不会产生沉淀;若在反应器中投加晶种,则可以加快晶体成核速度,使其结晶于晶体表面,同时有利于晶体与水的分离,减少因晶粒微细所造成的随出水流失,以提高除磷效率与回收率;所要做的就是将反应控制在亚稳定区,这时磷酸铵镁反应处在结晶过程,晶体可以自发的析出到晶种上,以此实现磷的回收;目前荷兰开发出DHV —结晶法,南非开发了CSIR 流化床,日本有Kurita 固定床—结晶沉淀;另外,对污泥进行加热是一种实现磷回收的简单有效的方法,在70 ℃对污泥加热1 h ,能使生物固体中的聚磷酸盐大量分解释放,再加入氯化钙进行沉淀,能获得污泥中总磷的75 %左右;还可以利用具有高吸附能力的物质对磷吸附截留实现磷回收,反应所得混合物可以用来作肥料;3 结语随着时代的发展,污水除磷技术也在不断地进步,可以根据不同的条件,合理选择不同的除磷方法,以期达到最好的效果;当前,为了实现磷的可持续发展,有必要从现在起研发从污水或污泥中分离磷的技术,最大限度地实现污水磷回收;无论是应用广泛的化学沉淀法、生物处理法,还是日益受到重视的吸附法和结晶法,都存在各自的弊端,因此,还需进一步加强对除磷技术的基础研究,研制开发适合我国国情的新型除磷工艺。
mbr脱氮除磷原理
mbr脱氮除磷原理
MBR脱氮除磷原理是一种先进的污水处理技术,它可以同时去除废水中的氮和磷,从而达到净化水质的目的。
MBR技术是膜生物反应器的缩写,它是一种将生物反应器和膜分离技术结合起来的处理方法。
MBR脱氮除磷原理的核心是利用微生物的作用来去除废水中的氮和磷。
在MBR反应器中,废水首先进入生物反应器,通过生物反应器中的微生物进行氮和磷的去除。
微生物会将废水中的氮和磷转化为微生物体内的有机物,从而实现废水的净化。
在MBR反应器中,还需要使用膜分离技术来实现废水的过滤和分离。
膜分离技术是一种利用膜的特殊性质来实现物质分离的技术。
在MBR反应器中,膜可以将微生物和废水分离开来,从而实现废水的净化。
MBR脱氮除磷原理的优点是可以同时去除废水中的氮和磷,从而达到更好的净化效果。
此外,MBR技术还具有处理效率高、占地面积小、操作简单等优点。
因此,MBR技术在城市污水处理、工业废水处理等领域得到了广泛的应用。
MBR脱氮除磷原理是一种先进的污水处理技术,它可以同时去除废水中的氮和磷,从而实现废水的净化。
MBR技术具有处理效率高、占地面积小、操作简单等优点,因此在污水处理领域得到了广泛的
应用。
化学除磷原理
化学除磷原理化学除磷是指利用化学方法去除水体中的磷,以改善水质。
磷是一种重要的营养元素,但过多的磷会导致水体富营养化,引发藻类过度生长,从而破坏水体生态平衡。
因此,化学除磷在水环境治理中具有重要的意义。
一、化学除磷的原理。
化学除磷的原理主要是通过添加化学药剂,使水中的磷形成难溶的沉淀物,从而将磷从水体中去除。
常用的化学药剂包括氢氧化铁、氢氧化铝等。
这些化学药剂在水中与磷结合生成难溶的沉淀物,然后沉淀到水底或被过滤去除,从而达到除磷的目的。
二、常用的化学除磷方法。
1. 氢氧化铁法,氢氧化铁是一种常用的化学除磷剂。
当氢氧化铁与水中的磷结合时,会生成铁磷沉淀物。
这种沉淀物具有较高的稳定性,能够有效地将磷去除。
氢氧化铁法除磷效果好,操作简便,是目前较为常用的化学除磷方法之一。
2. 氢氧化铝法,氢氧化铝也是一种常用的化学除磷剂。
它与水中的磷结合生成铝磷沉淀物,同样能够有效地去除水体中的磷。
氢氧化铝法适用范围广,除磷效果稳定,是化学除磷的重要方法之一。
三、化学除磷的应用。
化学除磷广泛应用于城市污水处理厂、工业废水处理厂、农村污水处理等领域。
在污水处理过程中,通过添加适量的化学除磷剂,可以有效地去除水体中的磷,改善水质,减少水体富营养化的发生。
此外,化学除磷也可应用于湖泊、河流等自然水体的治理。
通过定期投放适量的化学除磷剂,可以有效地控制水体中的磷含量,减缓水体富营养化的发展,保护水体生态环境。
四、化学除磷的注意事项。
在使用化学除磷剂时,需要注意控制投药量,避免过量使用导致水体中产生过多的沉淀物。
同时,化学除磷剂的选择应根据水质特点和具体情况进行合理选择,以达到最佳的除磷效果。
另外,化学除磷过程中产生的沉淀物需要进行适当处理,避免对水体环境造成二次污染。
因此,在化学除磷过程中,需要合理处理沉淀物,减少对水体的影响。
总之,化学除磷是一种重要的水环境治理方法,通过合理应用化学除磷技术,可以有效地改善水体质量,保护水生态环境,促进水环境可持续发展。
污水处理中的深度磷去除技术
04 深度磷去除技术应用
工业污水处理
工业废水中的磷主要来源于生产过程中使用的各种洗涤剂、冷却水、化学反应剂 等,去除工业废水中的磷对于控制水体富营养化和保护水资源具有重要意义。
深度磷去除技术可以有效去除工业废水中的磷,常用的方法包括化学沉淀法、吸 附法、生物法等。
生活污水处理
生活污水中磷的来源主要是人类排泄物和洗涤剂,磷在自然 环境中不易被降解,因此生活污水中磷的去除对于水体保护 同样重要。
03 深度磷去除技术概览
化学沉淀法
总结词
通过向污水中投加化学药剂,使磷与 药剂反应生成不溶性沉淀物的过程。
详细描述
化学沉淀法是利用化学药剂与污水中 的磷反应,生成不溶于水的磷酸盐沉 淀物,通过固液分离达到去除磷的目 的。常用的化学药剂包括铝盐、铁盐 和石灰等。
吸附法
总结词
利用固体吸附剂的吸附作用将磷从污水中去除的方法。
开展跨学科合作,将深度磷去 除技术与生态修复、资源回收 等领域相结合,实现污水处理 与资源化利用的双重目标。
THANKS FOR WATCHING
感谢您的观看
详细描述
吸附法是利用具有吸附性能的固体材料,如活性炭、粘土矿物等,对污水中的 磷进行吸附去除。吸附剂通过物理吸附或化学吸附作用将磷分子固定在表面, 达到深度除磷的效果。
生物法
总结词
利用微生物的代谢作用将污水中的磷转化为不溶性物质或被微生物吸收利用的过 程。
详细描述
生物除磷技术是利用聚磷菌等微生物在厌氧和好氧条件下对磷的吸收和释放特性 ,通过厌氧释磷和好氧吸磷的作用,实现磷的去除。生物法具有处理效果好、节 能环保等优点,是当前研究的热点之一。
利用人工智能、大数据等先进技术,实现 污水处理过程的智能化控制,提高处理效 率并降低能耗。
国内外常用除磷方法
三、国内外常用除磷方法1.化学沉淀法。
该方法是通过投加化学沉淀剂与废水中的磷酸盐生成难溶沉淀物,可把磷分离出去,同时形成的絮凝体对磷也有吸附去除作用。
常用的混凝沉淀剂有石灰、明矾、氯化铁、石灰与氯化铁的混合物等。
为了降低废水的处理成本,提高处理效果,学者们在研制开发新型廉价高效化学沉淀剂方面做了大量工作。
研究发现,原水含磷10mg/L时,投加300mg/L的A12(S04)3或90mg/L的FeCl3,可除磷70%左右,而在初沉时加入过量石灰,一般总磷可去除80%左右。
他根据化学凝聚能增加可沉淀物质的沉降速度,投加新型净水剂碱式氯化铝,沉降效果达80%~85%,很好地解决了生产用水的磷污染。
该方法具有简便易行,处理效果好的优点。
但是长期的运行结果表明,化学沉淀剂的投加会引起废水pH值上升,在池子及水管中形成坚硬的垢片,还会产生一定量的污泥。
2.生物法。
20世纪70年代美国的Spector发现,微生物在好氧状态下能摄取磷,而在有机物存在的厌氧状态下放出磷。
含磷废水的生物处理方法便是在此基础上逐步形成和完善起来的。
目前,国外常用的生物脱磷技术主要有3种:第一,向曝气贮水池中添加混凝剂脱磷;第二,利用土壤处理,正磷酸根离子会与土壤中的Fe和Al的氧化物反应或与粘土中的OH-或SiO32-进行置换,生成难溶性磷酸化合物;第三种方法是活性污泥法,这是目前国内外应用最为广泛的一类生物脱磷技术。
生物除磷法具有良好的处理效果,没有化学沉淀法污泥难处理的缺点,且不需投加沉淀剂。
但要求管理较严格,成本较高。
3.离子交换法。
该方法是利用强碱性阴离子交换树脂,与废水中的磷酸根阴离子进行交换反应,将磷酸根阴离子置换到交换剂上予以除去的方法。
离子交换树脂脱除PO43-户的交换容量比较稳定,其再生后交换容量也比较稳定。
但离子交换树脂的价格较高,树脂再生时需用酸、碱或食盐,运行费用较高4.吸附法。
20世纪80年代,多孔隙物质作为吸附剂和离子交换剂就已应用在水的净化和控制污染方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学镀磷酸盐的处理技术
化学镀次亚磷酸盐废水处理 工艺流程图:
深圳市杜邦环保科技有限公司除磷工艺
铝阳极氧化,电解抛光,磷化酸洗除磷工艺流程图: :
除磷
沁尔清除磷粉 物理性质:黑色粉体; 物理性质:黑色粉体; 化学性质:强碱性, 化学性质:强碱性,脱色能 力强,可取代漂水脱色, 力强,可取代漂水脱色,可 取代片碱,石灰。 取代片碱,石灰。 除磷剂 专利号: 专利号:200810124827.8; ; 物理性质:无色透明液体; 物理性质:无色透明液体; 化学性质:强酸性高聚物。 化学性质:强酸性高聚物。 次、亚磷酸盐专用去除剂 物理性质:红色液体; 物理性质:红色液体; 化学性质:强酸性。 化学性质: