光谱分析仪器

光谱分析仪器
光谱分析仪器

光谱分析仪器

仪器分析是通过测量物质的某些物理或物理化学性质的参数来确定其化学组成、含量或结构的分析方法。在测量过程中,利用物质的这些性质获得定性、定量、结构以及解决实际问题的信息。仪器分析一般分为电化学分析法、色谱分析法和光谱分析法。

光谱分析是基于物质发光或光与物质相互作用的一类分析方法。光谱分析法可按不同的电磁波谱区、产生光谱的基本粒子、辐射传递的情况等进行分类。表1列出不同光谱区相应的光谱分析法,各种光谱分析法的应用范围见表2。

原子发射光谱或原子吸收光谱法常用于痕量金属的测定;紫外-可见分光光度法和荧光光谱法可用于金属、非金属和有机物质的测定;红外吸收光谱常用于有机物官能团的检出及结构分析。核磁共振波谱主要用于结构分析。

表1光谱区及对应的光谱分析法

表2 光谱分析法的应用范围

光谱分析法一般基于吸收、荧光、磷光、散射、发射和化学发光等六种现象。各种仪器的组成略有不同,但都包含五个部分:(1)光源;(2)样品池;(3)单色器;(4)检测器;(5)讯号处理显示器或记录仪。五个部分的三种不同搭配方式构成了六种光谱测量的分析仪器(见图1)。

a.吸收光谱法

b.荧光、磷光及散射光谱法

c.发射光谱法及化学发光

图1光谱分析仪器框图

(一)光源

光谱测量使用的光源要求稳定,强度大。一般采用高压放电或加热的方式获得,而且用稳压装置以保证获得稳定的外加电压。光源有连续光源、线光源等.也可将光源分作激发光源和背景光源。

1.原子发射光谱仪的光源

原子发射光谱仪的光源主要有火焰、直流电弧、交流电弧、火花、电感耦合高频等离子体(ICP)、微波等离子体、激光光源等。其性质及应用见表3。

表3 几种常见原子发射光源的性质及应用

电感耦合高频等离子体光源是最常用的原子发射光谱法光源,获得电感耦合高频等离子体装置的原理示意图如图2所示。通常,它是由高频发生器、感应线圈、等离子矩管和供气系统等四部分组成。

炬管通常由三根石英管组合而成,并相应通入外气流、中气流和内气流。外气流常称作冷却气,主要是将高温等离子体与石英管隔开,以防石英管被烧坏,另外,高流量的冷却气的“热箍缩”效应可压缩等离子体,有助于等离子体的稳定。中气流主要作用是调节等离子体放电高度,并保护石英内管。其流量通常为1L·min-1,有时可以关闭不用。内气流称作载气,其主要作用是打通中心通道和把样品载入ICP,其流量大小对中心通道的形成、通道内温度、样品的停留时间等均有很大影响,必须仔细加以选择和控制。

图2 电感耦合高频等离于体光源示意图

当感应线圈中有高频电流通过时,周围空间产生高频电磁场,磁力线为椭圆闭合曲线,在炬管内是轴向的。用电子打火枪向辅助气或冷却气中引入电子和(或)阳离子,即“种子”。这些种子带有电荷,被高频电场加速,在炬管内沿闭合电路流动,形成涡流。由于涡流的热效应,使气体温度上升,更多的气体电离,从而形成了等离子体。此时,感应线圈象一个高频变压器的初级线圈,等离子体相当于只有一匝的短路次级,高频能量通过感应线圈耦合给等离子体,而使放电维持不灭。

2.原子吸收光谱仪的光源

原子吸收光谱仪的光源主要采用空心阴极灯。空心阴极灯的结构如图3所示。

图3 空心阴极灯结构示意图

1-紫外玻璃窗口;2-石英窗口,3-密封4-玻璃套,5-云母屏蔽;

6-阳极;7-阴极;8-支架;9-管座,10-连接管脚

它是一种阴极呈空心圆柱形的气体放电管,在阴极内腔衬上或熔入被测元素的金属或它的化合物,阳极材料用钨、镍、钛或钽等有吸气性能的金属制成,灯内充有一定压力的惰性气体氖或氩,这种气体也称载气。

空心阴极灯就是以中空圆柱体为阴极的辉光放电灯。在电极间加上电压(200~500V)后,从阴极发出的电子在电场作用下被加速,并向阳极运动。这些原子与载气原子实现碰撞电离,产生离子和电子。其中正离子向阴极移动,由于高电位梯度,正离子被大大加速而获得很大能量,撞击在阴极表面并溅射出阴极材料原子。这些溅射出来的原子与充入气体的原子、电子或离子发生非弹性碰撞而被激发发光。

3.紫外-可见分光光度计的光源

(1)氘灯

紫外连续光源主要采用氢灯或氘灯。氘灯的灯管内充有氢的同位素氘,它们在低压下以电激发的方式所产生的连续光谱的范围为160~375nm,在同样的条件下,氘灯产生的光谱强度比氢灯大3~5倍,而且寿命也比氢灯长。

(2)钨灯

可见光源通常使用钨灯和碘钨灯。在大多数仪器中,使用的工作温度约为2870K,光谱波长范围为320~2500nm.

4.红外光谱仪的光源

(1)能斯特灯

能斯特灯是由铈、锆、钍和钇等氧化物烧结而成的长约2cm、直径约1mm的实心或空心棒组成,工作温度可达1300~1700℃,其发射的波长范围约为1~30μm,它的寿命较长、稳定性好。对短波范围辐射效率优于硅碳棒,但价格较贵,操作不如硅碳棒方便。

(2)硅碳棒

硅碳棒是由碳化硅烧结而成的实心捧,工作温度达1200~1500℃。对于长波,其辐射效率高于能斯特灯,其使用波长范围比能斯特灯宽,发光面大,操作方便、廉价。

5.荧光光谱仪的光源

高压氙弧灯是目前荧光分光光度计中应用最广泛的一种光源。这种光源是一种短弧气体放电灯,外套为石英,内充氙气,室温时其压力为5×105Pa,工作时压力约为20×105Pa。在250~800nm光谱区呈连续光谱。工作时,在相距约8mm的钨电极间形成一强阳电子流(电弧),氙原子与电子流相撞而离解为氙正离子,氙正离子与电子复合而发光。

氙灯无论是在平时或工作时都处于高压之下,存在着爆裂的危险,安装时要特别小心,应戴上安全眼镜,防止意外。为避免氙灯因受污染而失效,安装时手指不要接触到石英外套。如果不慎接触到,则应该用酒精等溶剂清洗,以免残留的指纹油污焦化,导致窗灯失效。氙灯装于氙灯室中,氙灯室起着导走氙灯的热气流和臭氧的作用。工作时,氙灯光线很强,其射线会损伤肉眼视网膜,紫外线会损伤内眼角膜,因此,应避免直视光源。氙灯使用寿命大约为2000h,报废的氙灯应裹上厚纸并把石英壳敲碎,以免留下隐患。

氙灯需用优质电源,以便保持氙灯的稳定性和延长其使用寿命。氙灯的电源亦很危险,例如450W氙灯的电流为25A,电压为20V,起动氙灯需用20~40kV 电压,这种电压可能击穿皮肤,强电流能威胁人的生命安全。

(二)样品室

紫外-可见分光光度计和荧光分光光度计的样品室内装有比色皿,可以是玻璃或石英比色皿。可见光范围用玻璃比色皿,紫外光范围用石英比色皿。原子吸收光谱仪的样品室为原子化器,常用的原子化器有火焰和石墨炉。

(三)单色器

单色器是一种把来自光源的混合光分解为单色光并可随意改变波长的装置,单色器由入射狭缝和出射狭缝、准直镜以及色散元件,如棱镜或光栅组成。如图4所示:

图4 单色器

1.棱镜

棱镜的色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率,常用的棱镜有考纽棱镜和立特鲁棱镜,如图5所示。

图5 棱镜的折射

前者是一个顶角为60°的棱镜,为了防止生成双像,该60°棱镜是由两个30°棱镜组成。一边为左旋石英,另一边为右旋石英,后者由左旋或右旋石英做成30°棱镜,在其纵轴表面上镀上铝或银。棱镜的色散能力用色散率和分辨率表示。

棱镜的色散率,即折射率对波长的变化率。线色散率,它表示两条谱线在焦面上被分开的距离对波长的变化率。在实际工作中常采用线色散率

的倒数表示,值越大色散率越小。

棱镜的分辨率R是指将两条靠的很近的谱线分开的能力,可表示为

式中为两条谱线的平均波长,为刚好能分开的两条谱线间的波长差。

分辨率与棱镜底边的有效长度b和棱镜材料的色散率成比例。

mb为m个棱镜的底边长度。

2.光栅

光栅是一种多狭缝部件,光栅光谱的产生是多狭缝干涉和单狭缝衍射两者联合作用的结果。多缝干涉决定光谱线出现的位置,单狭缝衍射决定谱线的强度分布。

光栅分为平面透射光栅和反射光栅,反射光栅应用更广泛。反射光栅又可分为平面反射光栅(或称闪耀光栅)和凹面反射光栅。

(1)平面透射光栅

它由在一块透明的材料上刻有很多等距离、等宽度的平行狭缝所构成。当一束平行的单色光照射在该光栅上时,每条狭缝将发生衍射,产生相互干涉,如图6所示。

图6 光栅衍射示意图

图中b为狭缝宽度,d为光栅常数,它等于狭缝宽度加两狭缝之间的距离,即相邻两刻痕间的距离。θ为衍射角。i为入射角,当光以垂直方向照射光栅即i=0°,则

,±1,±2,……,

式中n为整数,称为干涉的级。

因此,可以得到称为零级、一级、二级、……的光栅光谱。若入射光不是垂直地照射在光栅上,而是有一定的角度,则上式写为

该式称为平面衍射光栅方程,简称光栅方程。

(2)闪耀光栅

如图7所示,i是入射角,θ是衍射角,β是光栅,刻痕小。反射面与光栅平面的夹角,称为闪耀角。

图7 闪耀光栅

由图7可知,I

1和I

2

两束光在入射和反射时的总光程差为:

BC-AD=d(sin i-sinθ)

若入射角与衍射角在光栅法线N同侧,I

2总比I

1

超前,其总光程差为d(sini

+sinθ)。当光程差是波长的整数倍时,相互形成增强干涉,光栅方程式:

入射角和衍射角在光栅法线N同侧,用正号;在异侧,用负号。在入射角i、衍射角θ和闪耀角β相等时,光栅衍射的光线最强,则

式中,λ

β称为闪耀波长。

光栅的色散能力用色散率表示,平面光栅的线色散率为

式中f为聚光透镜的焦距。光栅色散率与光栅常数d、光谱级n以及汇聚透镜的焦距有关。光栅的分辨率为

式中N为光栅的总刻线数,它等于单位长度刻线数与光栅宽度的乘积。光栅的宽度越大,总刻线数越多,分辨率越大。

对同一线光谱而言,光栅的分辨率是常数,不随波长而变化。

3.滤光片

在简易的比色计中,使用滤光片能够获得有限波长范围的光。滤光片分为吸收滤光片和干涉滤光片两种。吸收滤光片由有色玻璃或内夹在两玻璃片之间的有色染料的明胶所组成,这种滤光片适用于可见光区。干涉滤光片是根据光的干涉原理设计的,它是由透明的电解质(如氟化钙或氟化镁),夹在两块内侧涂有一层半透明金属(如银)簿膜的玻璃或石英片之间所组成。电解质的厚度必须严格控制。这种滤光片适用于紫外光区。

4.导光系统

(1)狭缝

分光器中,入射狭缝起限制杂散光的作用。准直镜是将入射光束变成平行光。物镜是将来自色散元件的平行光聚焦于出射狭缝,而出射狭缝将起限制通带宽度的作用,并引出所需波长的光。通过转动色散元件,可改变分光器出射光的波长,通过调节入射、出射狭缝,可改变出射光束的通带宽度。

狭缝是由两片经过精密加工,且具有锐利边缘的金属片组成,其两边必须保持互相平行,并且处于同—平面上,如图8所示。

图8狭缝

单色器中的狭缝宽度有的是固定的,有的可自动调节。

(2)准直镜

准直镜的作用是将来自人射狭缝的光束变为平行光,此光束再经光栅或棱镜色散后经透镜聚焦在出射狭缝上,形成光谱像。

(四)检测器

1.光电池

如图9所示,将一层半导体硒涂在铁或铝的金属底板上。在硒表面再涂一层导电性和透光性良好的金属薄膜(如金、银等)作为收集极,然后再在金属薄膜表面涂一层保护层。

图9硒光电池

硒光电池,当光透过金属薄膜照射到半导体硒时,硒将释放出电子。在硒层中的电子只能向金属膜流动,电子的流动产生了电流,其大小为10~100Α。外电路的电阻小于200Ω时,其电流的大小与入射光强度呈线性关系。硒光电池光谱响应的波长范围为350~750nm,在550nm左右波长处最灵敏

2.光电管

光电管也称真空光电二极管,它是由一个半圆筒状的金属阴极和一个丝状阳极密封在透明的真空套管中组成,见图10。在阴极的内表面涂有碱金属氧化物,或碱金属氧化物与其他金属氧化物,如氧化铯,或氧化钾与氧化银等光电发射物质,从而组成光电阴极当光照射光电阴极时将发射出电子,电子被加在两电极间的外加电压(约90V直流电压)加速,并被阳极收集而产生电流.

图10光电管及其电流测量示意图

3.光电倍增管

光电倍增管如图11所示。它的阴极与光电管的阴极相似,但它还有一组称为打拿极的附加电极,打拿极的电位比阴极正。在光照射下,阴极发射的电子在高真空中被电场加速并向第一打拿极运动,当电子飞向第一个打拿极上时,每一个入射电子将平均使打拿极表面发射出几个电子,这就是二次发射过程。然后二次发射的电子又被加速并向第二个打拿极运动,电子数目再次被二次发射过程倍增。此过程多次重复,最后电子被收集在阳极上。

图11 光电倍增管示意图

1~9为打拿极

4.热电偶

它是由两根温差电位不同的金属丝焊接在一起,并将一接点安装在涂黑的接受面上。吸收了红外辐射的接受面及接点温度上升,就使它与另一接点之间产生了电位差。此电位差与红外辐射强度成比例。见图12。

图12真空热电偶

5.测热辐射计

将极薄的黑化金属片做受光面并作为惠斯顿电桥的一臂,当红外辐射投射到受光面而使它的温度改变,进而引起的电阻值改变,电桥就有信号输出此信号大小与红外辐射强度成比例。

6.热释电检测器

它是利用硫酸三苷肽(TGS)这类热电材料的单晶薄片做检测元件,将10~20μm厚的硫酸三苷肽薄片的正面镀铬,反面镀金,形成两电极,并连接至放大器,将TGS与放大器一同封入带有红外透光窗片的高真空玻璃外壳内,当红外辐射投射至TGS薄片上,温度上升,TGS表面电荷减少。这相当于TGS释放了一部分电荷,释放的电荷经放大后记录。

(五)读出装置

由检测器将光信号转变为电信号后,通过模数转换器送于计算机处理打印或用记录仪、数字显示和显示屏显示测量结果.

仪器分析作业参考答案

第二章 电化学分析法 6.计算[OH –] = 0.05 mol/L ,p(O2)=1.0×103 Pa 时,氧电极的电极电势,已知O2 +2H2O+4e= 4OH –,φθ=0.40 V 。 解:根据能斯特方程 ()ln (Re )RT a Ox nF a d θ??=+ 代入数据计算得?=0.438V 7. 试从有关电对的电极电势,如?θ(Sn2+/Sn )、?θ(Sn4+/Sn2+)及?θ(O2/H2O ),说明为什么常在SnCl2溶液加入少量纯锡粒以防止Sn2+被空气中的氧所氧化? 答:?θ值较大的电对中的氧化态物质能和?θ值较小的电对中的还原态物质反应。所以在SnCl2溶液加入少量纯锡粒以防止Sn2+被空气中的氧所氧化\ 11. 下述电池中溶液,pH = 9.18时,测得电动势为0.418 V ,若换一个未知溶液,测得电动势为0.312 V ,计算未知溶液的pH 值 玻璃电极)(H x s a a 或+饱和甘汞电极 答:根据pH 的实用定义公式:F /RT .E E 3032s x pHs pHx -+=, 代入数据得PH=7.39 12. 将ClO4-离子选择性电极插入50.00 mL 某高氯酸盐待测溶液,与饱和甘汞电极(为负极)组成电池,测得电动势为358.7 mV ;加入 1.00 mL 、0.0500 mol /L NaClO4标准溶液后,电动势变成346.1 mV 。求待测溶液中ClO4-浓度。 答:根据 /0.059(101)s s x n E x c V c V ±?=-,代入数据 Cx=1.50?10-3mol/L 第五章 气相色谱分析法 6.当下述参数改变时: (1)增大分配比,(2) 流动相速度增加, (3)减小相比, (4) 提高柱温,是否会使色谱峰变窄?为什么? 答:(1)保留时间延长,峰形变宽; (2)保留时间缩短,峰形变窄; (3)保留时间延长,峰形变宽; (4)保留时间缩短,峰形变窄。 11. 分析某种试样时,两个组分的相对保留值r21=1.11, 柱的有效塔板高度H=1mm ,需要多长的色谱柱才能完全分离? 解:根据公式 2121212111(()r r R r r --= 得L=3.67 m

仪器分析考试题及答案

仪器分析练习题及答案 第2章气相色谱分析 一.选择题 1.在气相色谱分析中, 用于定性分析的参数是( ) A保留值 B 峰面积 C 分离度 D 半峰宽 2. 在气相色谱分析中, 用于定量分析的参数是( ) A保留时间 B 保留体积 C 半峰宽 D 峰面积 3. 使用热导池检测器时, 应选用下列哪种气体作载气, 其效果最好?( ) A H2 B He C Ar D N2 4. 热导池检测器是一种( ) A浓度型检测器 B 质量型检测器 C 只对含碳、氢的有机化合物有响应的检测器 D 只对含硫、磷化合物有响应的检测器 5. 使用氢火焰离子化检测器, 选用下列哪种气体作载气最合适?( ) A H2 B He C Ar D N2 6、色谱法分离混合物的可能性决定于试样混合物在固定相中()的差别。 A. 沸点差, B. 温度差, C. 吸光度, D. 分配系数。 7、选择固定液时,一般根据()原则。 A. 沸点高低, B. 熔点高低, C. 相似相溶, D. 化学稳定性。 8、相对保留值是指某组分2与某组分1的()。 A. 调整保留值之比, B. 死时间之比, C. 保留时间之比, D. 保留体积之比。 9、气相色谱定量分析时()要求进样量特别准确。 A.内标法; B.外标法; C.面积归一法。 10、理论塔板数反映了()。 A.分离度; B. 分配系数;C.保留值;D.柱的效能。 11、下列气相色谱仪的检测器中,属于质量型检测器的是() A.热导池和氢焰离子化检测器; B.火焰光度和氢焰离子化检测器; C.热导池和电子捕获检测器;D.火焰光度和电子捕获检测器。 12、在气-液色谱中,为了改变色谱柱的选择性,主要可进行如下哪种(些)操作?() A. 改变固定相的种类 B. 改变载气的种类和流速 C. 改变色谱柱的柱温 D. (A)、(B)和(C) 13、进行色谱分析时,进样时间过长会导致半峰宽()。 A. 没有变化, B. 变宽, C. 变窄, D. 不成线性 14、在气液色谱中,色谱柱的使用上限温度取决于() A.样品中沸点最高组分的沸点, B.样品中各组分沸点的平均值。 C.固定液的沸点。 D.固定液的最高使用温度 15、分配系数与下列哪些因素有关() A.与温度有关; B.与柱压有关; C.与气液相体积有关; D.与组分、固定液的热力学性质有关。

仪器分析习题(色谱)

仪器分析习题(色谱) 一、问答题 1、简述气相色谱(气—固;气—液)分析法的分离原理 答:色谱分离法是一种物理分析方法,其分离原理是将被分离的组分在固定相与流动相之间进行多次分配,由于被分离组分之间物理化学性质之间存在微小差异,在固定相上的滞留时间不同,经过多次分配之后,其滞留时间差异被拉大,经过一定长度的色谱柱后,组分即按期与固定相之间作用强弱顺序流出色谱柱。由试验看出,实现色谱分离的必要条件是分离体系必须具有两相,即固定相与流动相,被分离组分与固定相之间的相互作用有差异。在分离过程中,固定相可以是固体吸附剂也可以是涂渍在惰性担体表面上的液态薄膜,在色谱分析中,此液膜称为固定液。流动相可以是惰性气体、液体或超临界流体。其惰性是指流动相与固定相和被分离组分之间无相互作用。色谱分离之所以能够实现,其内因是由于组分与固定相之间的吸附或分配性质的差异。其宏观表现是吸附与分配的差异。其微观解释是固定相与组分之间作用力的差别。分子间作用力的差异大小用组分在固定相与流动相之间的分配系数来表示。在一定的温度条件下分配系数越大,说明组分在固定相上滞留的越强,组分流出色谱柱越晚;反之,分配系数越,组分在固定相上滞留的越弱,组分流出色谱柱的时间越短。而气相色谱的流动相为气体。 2、保留时间和调整保留时间; 答:保留时间t R(retention time) 试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间,如图2~3中O’B。调整保留时间tR(adjusted retention time) 某组分的保留时间扣除死时间后,称为该组分的调整保留时间,即 tR=t R-t0 由于组分在色谱柱中的保留时间t r包含了组分随流动相通过柱子所需的时间和组分在固定相中滞留所需的时间,所以t r实际上是组分在固定相中停留的总时间。保留时间是色谱法定性的基本依据,但同一组分的保留时间常受到流动相流速的影响,因此色谱 3、区域宽度; 答:区域宽度(peak width) 色谱峰的区域宽度是色谱流出曲线的重要多数之一,用于衡量柱 效率及反映色谱操作条件的动力学因素。表示色谱峰区域宽度通常有三 种方法。 (1).标准偏差(standatd deviation) 即0.607倍峰高处色谱峰宽的一半,如图中距离的一半。 (2).半峰宽(peak width at half-height)Y1/2 即峰高一半处对应的峰宽。如图1中间的距离,它与标准偏差的关 系为 Y1/2=2.35 σ (3).峰底宽度W(peak width at base) 即色谱峰两侧拐点上的切线在基线上截距间的距离。如图2~3 中IJ的距离,它与标准偏差σ的关系是: Y=4 σ 4、正相液—液色谱和反相相液—液色谱; 答:正相液--液色谱:亲水性固定相,疏水性流动相,既固定相极性大于流动相;反相液--液色谱:疏水性固定相,亲水性流动相,既固定相极性小于流动相。

光谱仪的发展历史与现状学习资料

光谱仪的发展历史与 现状

光谱仪的发展历史与现状 【摘要】光谱分析方法作为一种重要的分析手段,在科研、生产、质量控制等方面发挥了重要作用。本文主要从光谱仪原理、光谱仪基本特性、发展历程、重要发明(UVS、AAS)以及未来展望等几个方面进行简要的阐述。 【关键词】光谱仪原理、基本特性、发展历程、UVS、AAS 1.光谱仪基本原理 光谱仪器是进行光谱研究和物质结构分析,利用光学色散原理及现代先进电子技术设计的光电仪器。它的基本作用是测量被研究光(所研究物质反射、吸收、散射或受激发的荧光等)的光谱特性,包括波长、强度等谱线特征[1]。因此,光谱仪器应具有以下功能: (1)分光:把被研究光按一定波长或波数的发布规律在一定空间内分开。(2)感光:将光信号转换成易于测量的电信号,相应测量出各波长光的强度,得到光能量按波长的发布规律。 (3)绘谱线图:把分开的光波及其强度按波长或波数的发布规律记录保存或显示对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分组成:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。 根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的经典光谱仪;另一类是基于调制原理分光的新型光谱仪。

经典光谱仪结构图 光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要专门设计照明系统[2]。 分光系统是任何光谱仪的核心部分,它一般是由准直系统、色散系统、成像系统三部分组成,主要作用是将照射来的光在一定空间内按照一定波长规律分开。如图2-1所示,准直系统一般由入射狭缝和准直物镜组成,入射狭缝位于准直物镜的焦平面上。光源和照明系统发出的光通过狭缝照射到准直物镜,变成平行光束投射到色散系统上。色散系统的作用是将入射的单束复合光分解为多束单色光。多束单色光经过成像物镜按照波长的顺序成像在透镜焦平面上;这样,单束的复合光经过分光系统后成功变成了多束单色光的像。目前主要的色散系统主要有物质色散(如棱镜)、多缝衍射(如光栅)和多光束干涉(如干涉仪)

仪器分析气相色谱分析习题答案

仪器分析气相色谱分析 习题答案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

气相色谱习题 一.选择题 ( ) 1.色谱图上一个色谱峰的正确描述是( ) A.仅代表一种组分; B.代表所有未分离组分; C.可能代表一种或一种以上组分; D.仅代表检测信号变化( )2.下列保留参数中完全体现色谱柱固定相对组分滞留作用的是( ) A.死时间; B.保留时间 ; C.调整保留时间; D.相对保留时间 ( )3.气-液色谱系统中,待分离组分的 k 值越大,则其保留值: A.越大; B.越小; C.不受影响; D.与载气流量成反比 ( )4.关于范第姆特方程式,正确的说法是: A.最佳线速这一点,塔板高度最大; B.最佳线速这一点,塔板高度最小; C.塔板高度最小时,线速最小; D.塔板高度最小时,线速最大 ( )5.根据范第姆特方程式 H=A+B/u+Cu,下列说法正确的是: A.H 越大,则柱效越高,色谱峰越窄,对分离有利; B.固定相颗粒填充越均匀,则柱效越高; C.载气线速越高,柱效越高; D.载气线速越低,柱效越高 ( )6.在范第姆特方程式中,涡流扩散项主要受下列哪个因素影响 A. 载体填充的均匀程度; B. 载气的流速大小; C. 载气的摩尔质量; D. 固定液的液膜厚度

( )7.用气相色谱法定量分析试样组分时,要求分离达 98%,分离度至少为: ( )8.在气相色谱中,当两组分未能完全分离时,我们说: A.柱效太低; B.柱的选择性差; C.柱的分离度低; D.柱的容量因子大 ( )9.分离非极性组分和极性组分混合物时,一般选用极性固定液,这是利用极性固定液的: A.氢键作用; B.诱导效应; C.色散作用; D.共轭效应 ( )10.苯和环已烷的沸点分别是 80.10°C 和 80.81°C,都是非极性分子。气相色谱分析中,若采用极性固定 液,则保留时间关系是: A.苯比环已烷长; B.环已烷比苯长; C.二者相同; D.无法确定 ( )11.已知苯的沸点为 80.10°C,环已烷的沸点为 80.81°C。当用邻苯二甲酸二壬酯作固定液分析这二种组 分时,环已烷比苯先出峰,其原因是固定液与被测组分间的: A.静电力; B.诱导力; C.色散力; D.氢键力 ( )12.使用热导池检测器时,一般选用 H 2 或 He 作载气,这是因为它们: A.扩散系数大; B.热导系数大; C.电阻小; D.流量大 ( )13.氢火焰离子化检测器优于热导检测器的主要原因是: A.装置简单; B.更灵敏; C.可以检出许多有机化合物; D.较短的柱能够完成同样的分离

仪器分析技术最新发展趋势及应用

仪器分析技术最新发展趋势及应用 摘要:本文阐述了现代科学技术发展中仪器分析发展的现状及其基础地位,仪器分析的特点及存在的局限性及最新发展趋势。特别是当今仪器分析技术吸取数学、物理学、计算机科学以及生物学中的新思想、新理念、新方法和新技术,不断完善现有的仪器分析技术,使仪器分析技术正朝着快速、准确、自动、灵敏以及适应特殊分析方向而迅猛发展,这就是当今仪器分析技术发展的总趋势! 关键词:仪器分析分析方法发展趋势 当代科学技术发展的主要特征是高度分化和高度综合,分析化学也不例外。分析化学是四大化学之一,包括两大范畴化学分析和仪器分析。化学分析是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类分析方法。仪器分析是以物质的物理性质和物理化学性质为基础建立起来的一种分析方法,常常需要使用比较复杂的仪器。仪器分析又分为基础仪器分析和现代仪器分析,现代仪器分析又分为波谱分析、光谱分析、电化学分析、色谱分析、电镜分析、放射化学分析等。 1 仪器分析技术的基础地位 现代仪器分析是一门信息科学,用于陈述事物的运动状态,促进人与环境的相互交流。现代仪器分析也是一门信息技术,涉及信息的生产、处理、流通、也包括信息获取、信息传递、信息存储、信息处理和信息显示等,有效地扩展了人类信息器官的功能。人们通常将信息与物质!能源相提并论,称为人类社会赖以生存发展的三大支柱。世界由物质组成的,没有物质世界便虚无缥缈。能量是一切物质运动的源泉,没有能源,世界便成为静寂的世界。信息则是客观事物与主观认识相结合的产物,没有信息交换,世界便成为没有生气的世界,人类无法生存和发展。 生产和科研的发展,特别是生命科学和环境科学的发展,对分析化学的要求不再局限于“是什么”、“有多少”?而是要求提供更多更全的信息,即从常量到微量分析,从微量到微粒分析,从痕量到超痕量分析,从组成到形态分析,从总体到微区分析,从表现分布到逐层分析,从宏观到微观结构分析,从静态到快速

仪器分析总习题及参考答案

1、试述“仪器分析”是怎样的一类分析方法有何特点大致分哪几类具体应用最广的是哪两 类 2、光谱法的仪器通常由哪几部分组成它们的作用是什么 光谱法的仪器由光源、单色器、样品容器、检测器和读出器件五部分组成。作用略。 3、请按照能量递增和波长递增的顺序,分别排列下列电磁辐射区:红外线,无线电波,可 见光,紫外光,X射线,微波。 能量递增顺序:无线电波、微波、红外线、可见光、紫外光、X射线。 波长递增顺序:X射线、紫外光、可见光、红外线、微波、无线电波。 4、解释名词电磁辐射电磁波谱发射光谱吸收光谱荧光光谱原子光谱 分子光谱特征谱线 电磁辐射――电磁辐射是一种以巨大速度通过空间传播的光量子流,它即有波动性,又具有粒子性. 电磁波谱――将电磁辐射按波长顺序排列,便得到电子波谱.电子波谱无确定的上下限,实际上它包括了波长或能量的无限范围. 发射光谱――原来处于激发态的粒子回到低能级或基态时,往往会发射电磁辐射,这样产生的光谱为发射光谱. 吸收光谱――物质对辐射选择性吸收而得到的原子或分子光谱称为吸收光谱. 荧光光谱――在某些情形下,激发态原子或分子可能先通过无辐射跃迁过渡到较低激发态,然后再以辐射跃迁的形式过渡到基态,或者直接以辐射跃迁的形式过渡到基态。通过这种方式获得的光谱,称为荧光光谱. 原子光谱――由原子能级之间跃迁产生的光谱称为原子光谱. 分子光谱――由分子能级跃迁产生的光谱称为分子光谱. 特征谱线――由于不同元素的原子结构不同(核外电子能级不同),其共振线也因此各有其特征。元素的共振线,亦称为特征谱线。

5、解释名词:灵敏线共振线第一共振线 共振线――由任何激发态跃迁到基态的谱线称为共振线. 主共振线――由第一激发态回到基态所产生的谱线;通常是最灵敏线、最后线 灵敏线――元素的灵敏线一般是指强度较大的谱线,通常具有较低的激发电位和较大的跃迁几率。 AAS 解释下列名词:多普勒变宽、谱线轮廓、光谱通带、释放剂、峰值吸收积分吸收锐线光源多普勒变宽――又称为热变宽,它是发射原子热运动的结果,主要是发射体朝向或背向观察器运动时,观测器所接收到的频率变高或变低,于是出现谱线变宽。 谱线轮廓――是谱线强度随波长(或频率)分布的曲线。 光谱通带――仪器出射狭缝所能通过的谱线宽度。 释放剂――当欲测元素和干扰元素在火焰中形成稳定的化合物时,加入另一种物质,使与干扰元素化合,生成更稳定或更难挥发的化合物,从而使待测元素从干扰元素的化合物中释放出来,这种加入的物质称为释放剂。 峰值吸收――采用发射线半宽度比吸收线半宽度小得多且发射线的中心与吸收线中心一致的锐线光源,测出峰值吸收系数,来代替测量积分吸收系数的方法。 6、试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc If=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源

仪器分析之气相色谱法试题及答案

气相色谱法练习 一:选择题 1.在气相色谱分析中,用于定性分析的参数是 ( A ) A保留值 B峰面积 C分离度 D半峰宽 2.在气相色谱分析中,用于定量分析的参数是 ( D ) A保留时间 B保留体积 C半峰宽 D峰面积 3.良好的气-液色谱固定液为 ( D ) A蒸气压低、稳定性好 B化学性质稳定C溶解度大,对相邻两组分有一定的分离能力 D A、B和C 6.色谱体系的最小检测量是指恰能产生与噪声相鉴别的信号时 ( B ) A进入单独一个检测器的最小物质量 B进入色谱柱的最小物质量 C组分在气相中的最小物质量 D组分在液相中的最小物质量 7.在气-液色谱分析中,良好的载体为 ( D ) A粒度适宜、均匀,表面积大 B表面没有吸附中心和催化中心 C化学惰性、热稳定性好,有一定的机械强度 D A、B和C 8.热导池检测器是一种 ( A ) A浓度型检测器 B质量型检测器 C只对含碳、氢的有机化合物有响应的检测器 D只对含硫、磷化合物有响应的检测器10.下列因素中,对色谱分离效率最有影响的是 ( A ) A柱温 B载气的种类 C柱压 D固定液膜厚度 三:计算题 1. 热导池检测器的灵敏度测定:进纯苯1mL,苯的色谱峰高为4 mV,半峰宽为1 min,柱出口载气流速为20mL/min,求该检测器的灵敏度(苯的比重为 0.88g/mL)。若仪器噪声为0.02 mV,计算其检测限。 解:mV·mL·mg-1 mg·mL-1 2.一根 2 m长的填充柱的操作条件及流出曲线的数据如下: 流量 20 mL/min( 50℃)柱温 50℃ 柱前压力:133.32 kpa 柱后压力101.32kPa

光谱分析仪器

光谱分析仪器 仪器分析是通过测量物质的某些物理或物理化学性质的参数来确定其化学组成、含量或结构的分析方法。在测量过程中,利用物质的这些性质获得定性、定量、结构以及解决实际问题的信息。仪器分析一般分为电化学分析法、色谱分析法和光谱分析法。 光谱分析是基于物质发光或光与物质相互作用的一类分析方法。光谱分析法可按不同的电磁波谱区、产生光谱的基本粒子、辐射传递的情况等进行分类。表1列出不同光谱区相应的光谱分析法,各种光谱分析法的应用范围见表2。 原子发射光谱或原子吸收光谱法常用于痕量金属的测定;紫外-可见分光光度法和荧光光谱法可用于金属、非金属和有机物质的测定;红外吸收光谱常用于有机物官能团的检出及结构分析。核磁共振波谱主要用于结构分析。 表1光谱区及对应的光谱分析法 表2 光谱分析法的应用范围

光谱分析法一般基于吸收、荧光、磷光、散射、发射和化学发光等六种现象。各种仪器的组成略有不同,但都包含五个部分:(1)光源;(2)样品池;(3)单色器;(4)检测器;(5)讯号处理显示器或记录仪。五个部分的三种不同搭配方式构成了六种光谱测量的分析仪器(见图1)。 a.吸收光谱法 b.荧光、磷光及散射光谱法 c.发射光谱法及化学发光 图1光谱分析仪器框图 (一)光源 光谱测量使用的光源要求稳定,强度大。一般采用高压放电或加热的方式获得,而且用稳压装置以保证获得稳定的外加电压。光源有连续光源、线光源等.也可将光源分作激发光源和背景光源。

1.原子发射光谱仪的光源 原子发射光谱仪的光源主要有火焰、直流电弧、交流电弧、火花、电感耦合高频等离子体(ICP)、微波等离子体、激光光源等。其性质及应用见表3。 表3 几种常见原子发射光源的性质及应用 电感耦合高频等离子体光源是最常用的原子发射光谱法光源,获得电感耦合高频等离子体装置的原理示意图如图2所示。通常,它是由高频发生器、感应线圈、等离子矩管和供气系统等四部分组成。 炬管通常由三根石英管组合而成,并相应通入外气流、中气流和内气流。外气流常称作冷却气,主要是将高温等离子体与石英管隔开,以防石英管被烧坏,另外,高流量的冷却气的“热箍缩”效应可压缩等离子体,有助于等离子体的稳定。中气流主要作用是调节等离子体放电高度,并保护石英内管。其流量通常为1L2min-1,有时可以关闭不用。内气流称作载气,其主要作用是打通中心通道和把样品载入ICP,其流量大小对中心通道的形成、通道内温度、样品的停留时间等均有很大影响,必须仔细加以选择和控制。

仪器分析习题(附答案)

1. 仪器分析法的主要特点是(D ) A. 分析速度快但重现性低,样品用量少但选择性不高 B. 灵敏度高但重现性低,选择性高但样品用量大 C. 分析速度快,灵敏度高,重现性好,样品用量少,准确度高 D. 分析速度快,灵敏度高,重现性好,样品用量少,选择性高 2. 仪器分析法的主要不足是(B ) A. 样品用量大 B. 相对误差大 C. 选择性差 D.重现性低 3. 下列方法不属于光分析法的是( D ) A. 原子吸收分析法 B. 原子发射分析法 C. 核磁共振分析法 D. 质谱分析法 4. 不属于电分析法的是( D ) A. 伏安分析法 B. 电位分析法 C. 永停滴定法 D. 毛细管电泳分析法 5. Ag-AgCl参比电极的电极电位取决于电极内部溶液中的( B )。 A. Ag+活度 B. C1-活度 C. AgCl活度 D.Ag+和C1-活度之和 6. 玻璃电极使用前,需要( C )。 A. 在酸性溶液中浸泡1 h B. 在碱性溶液中浸泡1 h C. 在水溶液中浸泡24 h D. 测量的pH不同,浸泡溶液不同 7. 根据氟离子选择电极的膜电位和内参比电极来分析,其电极的内充液中一定含有( A )。 A. 一定浓度的F-和Cl- B. 一定浓度的H+ C. 一定浓度的F-和H+ D. 一定浓度的Cl-和H+ 8. 测量pH时,需要用标准pH溶液定位,这是为了( D )。 A. 避免产生酸差 B. 避免产生碱差 C. 消除温度的影响 D. 消除不对称电位和液接电位的影响 9. 玻璃电极不包括( C )。 A. Ag-AgCl内参比电极 B. 一定浓度的HCl溶液 C. 饱和KCl溶液 D. 玻璃膜 10. 测量溶液pH通常所使用的两支电极为( A )。 A. 玻璃电极和饱和甘汞电极 B. 玻璃电极和Ag-AgCl电极 C. 玻璃电极和标准甘汞电极 D. 饱和甘汞电极和Ag-AgCl电极 11. 液接电位的产生是由于( B )。 A. 两种溶液接触前带有电荷 B. 两种溶液中离子扩散速度不同所产生的 C. 电极电位对溶液作用的结果 D. 溶液表面张力不同所致 12. 离子选择性电极多用于测定低价离子,这是由于( A )。 A. 高价离子测定带来的测定误差较大 B. 低价离子选择性电极容易制造 C. 目前不能生产高价离子选择性电极 D. 低价离子选择性电极的选择性好 13. 电位滴定中,通常采用( C )方法来确定滴定终点体积。 A. 标准曲线法 B. 指示剂法 C. 二阶微商法 D. 标准加入法 14. 离子选择电极的电极选择性系数可以用来估计( B )。 A. 电极的检测极限 B. 共存离子的干扰 C. 二者均有 D. 电极的响应时间 15. 用电位滴定法测定水样中的C1-浓度时,可以选用的指示电极为( C )。 A. Pt电极 B. Au电极 C. Ag电极 D. Zn电极 16. 用pH玻璃电极测定pH为13的试液,pH的测定值与实际值的关系为( B )。 A. 测定值大于实际值 B. 测定值小于实际值 C. 二者相等 D. 不确定 17. 用pH玻璃电极测定pH为0.5的试液,pH的测定值与实际值的关系为( A )。 A. 测定值大于实际值 B. 测定值小于实际值 C. 二者相等 D. 不确定 18. 用pH玻璃电极为指示电极,以0.2000 mol/L NaOH溶液滴定0.02000 m/learning/CourseImports/yycj/cr325/Data/FONT>苯甲酸溶液。从滴定曲线上求得终点时pH = 8.22,二分之一终点时溶液的pH = 4.18,则苯甲酸的Ka为( B )。 A. 6.0×10-9 B. 6.6××10-5 C. 6.6××10-9 D. 数据少无法确定 19. 当金属插人其金属盐溶液时,金属表面和溶液界面间会形成双电层,所以产生了电位差。此电位差为( B )。 A. 液接电位 B. 电极电位 C. 电动势 D. 膜电位 20. 测定溶液pH时,用标准缓冲溶液进行校正的主要目的是消除( C )。 A.不对称电位B.液接电位 C.不对称电位和液接电位D.温度 21. 用离子选择性电极标准加入法进行定量分析时,对加入标准溶液的要求为( A )。

食品仪器分析-气相色谱法参考答案

气相色谱习题 一、填空题 1.在气一固色谱柱内,各组分的分离是基于组分在吸附剂上的吸附、脱附能力的不同,而在气液色谱中,分离是基于各组分在固定液中溶解、挥发的能力的不同。 2.色谱柱是气相色谱的核心部分,色谱柱分为填充柱型和毛细管柱型两类,通常根据色谱柱内充填的固体物质状态的不同,可把气相色谱法分为气固色谱和气液色谱两种。 3.色谱柱的分离效能,主要由柱中填充物所决定的。 4.色谱分析选择固定液时根据“相似性原则”,若被分离的组分为非极性物质,则应选用非极性固定液,对能形成氢键的物质,一般选择极性或氢键型固定液。 5.色谱分析中,组分流出色谱柱的先后顺序,一般符合沸点规律,即低沸点组分先流出,高沸点组分后流出。 6.色谱分析从进样开始至每个组分流出曲线达最大值时所需时间称为保留时间,其可以作为气相色谱定性分析的依据。 7.一个组分的色谱峰其保留值可用于定性分析。峰高或峰面积可用于定量分析。峰宽可用于衡量柱效率,色谱峰形愈窄,说明柱效率愈高。 8.无论采用峰高或峰面积进行定量,其物质浓度和相应峰高或峰面积之间必须呈 关系,符合数学式mi=fA 这是色谱定量分析的重要依据。 9.色谱定量分析中的定量校正因子可分为绝对和相对校正因子。 10.色谱检测器的作用是把被色谱柱分离的组分根据其物理或物理化学特性,转变成电信号,经放大后由色谱工作站记录成色谱图。 11.在色谱分析中常用的检测器有热导、氢火焰、火焰光度、电子捕获等。 12.热导池检测器是由池体、池槽、热丝三部分组成。热导池所以能做为检测器,是由于不同的物质具有不同的热导系数。 13.热导池检测器在进样量等条件不变的前提下,其峰面积随载气流速的增大而减小,而氢火焰检测器则随载气流速的增大而增大。 14.氢火焰离子化检测器是一种高灵敏度的检测器,适用于微量有机化合物分析,其主要部件是离子室。

(完整版)仪器分析习题答案-光谱分析部分概要

仪器分析部分作业题参考答案 第一章绪论 1-2 1、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。 2、共同点:都是进行组分测量的手段,是分析化学的组成部分。 1-5 分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。 分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。仪器分析与分析仪器的发展相互促进。 1-7 因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。 第二章光谱分析法导论 2-1 光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。 各部件的主要作用为: 光源:提供能量使待测组分产生吸收包括激发到高能态; 单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器; 样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用; 检测器:将光信号转化为可量化输出的信号。

仪器分析思考题及答案

第一章总论(一) 1. 什么是分析化学发展的“三次变革、四个阶段?” 分析化学发展的四个阶段为:(1)经验分析化学阶段:分析化学在19世纪末以前,并没有建立起自己系统的理论基础,分析方法的发展、分析任务的完成主要凭借的是经验。(2)经典分析化学阶段:研究的是物质的化学组成,所用的定性和定量方法主要是以溶液化学反应为基础的方法,即所谓化学分析法。与经典分析化学密切相关的概念是定性分析系统、重量法、容量法(酸碱滴定、络合滴定、氧化还原滴定、沉淀滴定),比色法,溶液反应,四大平衡,化学热力学。这是经典分析化学阶段的主要特征。(3)现代分析化学阶段:以仪器分析为主,与现代分析化学密切相关的概念是化学计量学、传感器过程控制、自动化分析、专家系统、生物技术和生物过程以及分析化学微型化带来的微电子学,集微光学和微工程学等。(4)分析科学阶段:以一切可能的方法和技术(化学的、物理学的、生物医学的、数学的等等),利用一切可以利用的物质属性,对一切需要加以表征、鉴别或测定的化学组份(包括无机和有机组份)。 分析化学发展的三次变革为:(1)19世纪末20世纪初溶液化学的发展,特别是四大平衡(沉淀-溶解平衡; 酸-碱平衡;氧化-还原平衡;络合反应平衡)理论的建立,为以溶液化学反应为基础的经典分析化学奠定了理论基础,使分析化学实现了从“手艺”到“科学”的飞跃,这是分析化学的第一次大变革。(2)第二次世界大战前后,由于许多新技术(如X射线、原子光谱、极谱、红外光谱、放射性等)的广泛应用,使分析化学家拥有了一系列以测量物理或物理化学性质为基础的仪器分析方法,分析质量得以大大提高,分析速度也大大加快。(3)进入20世纪70年代,随着科学技术的突飞猛进和人们生活质量的迅速改善,客观上对分析化学提出了许多空前的要求,同时又为解决这些新问题提供了许多空前的可能性。分析化学逐渐突破原有的框框,开始介入形态、能态、结构及其时空分布等的测量。 2. 仪器分析与化学分析的主要区别是什么? 分析化学是研究物质的组成、状态和结构的科学,它包括化学分析和仪器分析两大部分。二者的区别主要有: 一、分析的方法不同:化学分析是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类 分析方法。测定时需使用化学试剂、天平和一些玻璃器皿。 仪器分析(近代分析法或物理分析法):是基于与物质的物理或物理化学性质而建立起来的分析方法。 这类方法通常是测量光、电、磁、声、热等物理量而得到分析结果,而测量这些物理量,一般要使用比较复杂或特殊的仪器设备,故称为“仪器分析”。仪器分析除了可用于定性和定量分析外,还可用于结构、价态、状态分析,微区和薄层分析,微量及超痕量分析等,是分析化学发展的方向。 二、仪器分析(与化学分析比较)的特点:1. 灵敏度高,检出限量可降低。如样品用量由化学分析的 mL、mg级降低到仪器分析的g、L级,甚至更低。适合于微量、痕量和超痕量成分的测定。2. 选择性好。 很多的仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。3. 操作简便,分析速度快,容易实现自动化。 仪器分析的特点(与化学分析比较)4. 相对误差较大。化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。5. 仪器分析需要价格比较昂贵的专用仪器。 三、仪器分析与分析化学的关系:二者之间并不是孤立的,区别也不是绝对的严格的。a. 仪器分析方 法是在化学分析的基础上发展起来的。许多仪器分析方法中的式样处理涉及到化学分析方法(试样的处理、

液相色谱分析--仪器分析

液相色谱分析法 -------复方阿司匹林有效成分的分析 姓名:高伟 班级:环工0801 学号:200829090119 知识准备: 复方阿斯匹林由阿斯匹林、非那西汀和咖啡因三种药物组成。阿司匹林分子式为C9H8O4,非那西汀,分子式为:C10H13NO2。咖啡因C8H10N4O2。。 容量分析法、胶束薄层色谱法、PLS-紫外分光光度法、区带毛细管电泳法分别对三个成分进行了成功测试,研究发现液相色谱分析法可以很好的分析复方阿司匹林的各种成分。 实验过程: a) 实验原理 由于阿司匹林类药品在生产和储运过程中容易吸潮分解生成水杨酸,此外样品在溶解和分析过程中有时也有降解现象,因此在APC片的分析测试中不可忽略其水解产物水杨酸的干扰因素。HPLC 技术在药物分析中有很多应用,以往对APC 的测定很少考虑其降解因素。本文实验发现,用二氯甲烷-乙腈混合溶剂溶解样品,在甲醇-水体系中加入少量乙酸和磷酸作为流动相,既能有效避免阿司匹林的进一步降解,又可以将三个组分与水杨酸很好分离,据此建立的HPLC 法可以同时测定APC 片中各种成分。 b) 仪器和试剂

岛津LC-10A高效液相色谱仪;十八烷基键合固定相色谱柱(岛津VP-ODS 150Lx4.6);20μL定量进样管;紫外检测器;甲醇和乙腈为色谱纯;二氯甲烷、乙酸和磷酸为分析纯;APC和水杨酸的对照品为分析纯;复方阿司匹林片。 c) 实验步骤 1) 混合对照品标准溶液的制备 按处方配比准确称取阿司匹林0.2268g、咖啡因0.0350g和非那西汀0.1620g,置于同一干净烧杯中,用二氯甲烷-乙腈(V:V=3:2)溶解后转入500mL容量瓶中,稀至刻度制成浓度为0.8476g ·L-1的混合对照品标准溶液。其中阿司匹林、咖啡因和非那西汀的浓度分别为0.4536g ·L- 1、0.0700g ·L-1和0.3240g ·L-1。 2) 样品储备溶液的制备 将准确称重的市售APC片20片(9.8741g)于乳钵中研细混匀,准确称取相当于1片的重量(0.4937g)置于干净烧杯中,用适量二氯甲烷-乙腈(V:V=3:2)充分溶解并滤除残渣后,转移至500mL容量瓶中稀至刻度。 色谱条件的选择流动相是甲醇—水—乙酸—磷酸,体积比 46:52:1.5:0.5;紫外检测波长为279nm;柱温35℃;洗脱速度为0.8 mL·min -1。 3) 测定方法 用注射器将适量待测物溶液(多于20μL)注入定量管,通过六通阀切入色谱流路进行分离测定,以色谱峰面积进行外标法定量。 d) 结果和讨论.. 线性关系和精密度 将0.8476 g ·L-1的混合对照品标准溶液分别稀释成150.0、80.0、50.0、25.0、10.0、5.0、2.5、1.0、.. 0.5μg·mL-1的标准系列溶液,在选定的色谱条件下进 样测定;由于混合对照品溶液中阿司匹林、非那西汀和咖啡因的质量浓度比为0.2268:0.162:0.035,据此可以准确算出标准系列中三个组分的准确质量浓度,分 别以各组分的峰面积对其质量浓度做回归方程可以发现都有很好的线性关系。此外,用10μg ·mL-1的标准系列溶液连续平行测定12次,计算其相对标准偏差。 各组分的线性关系和精密度

仪器分析习题答案

仪器分析习题答案 P28 2. 用双硫腙光度法测定Pb 2+。Pb 2+的浓度为0.08 mg /50mL ,用2 cm 吸收池在520 nm 下测得T=53%,求ε。 解: 1 143 1078.11000 50 2.2071008.0253100lg ---???=?????==cm mol L A εε 4. 取钢试样1.00 g ,溶解于酸中,将其中锰氧化成高锰酸盐,准确配制成250 mL ,测得其吸光度为131000.1--??L mol 4KMnO 溶液的吸光度的1.5倍。计算钢中锰的百分含量。 解: 设高锰酸钾的浓度为x c ,得下列方程 % 06.2%1001 10002501024.8%1024.894.54105.1105.15.110121231 33=????=??=??=??==??=-------W L g W L mol c bc A b A Mn x x εε 7. 异丙叉丙酮有两种异构体:333)(CH CO CH CH C CH --=-及3232)(CH CO CH CH C CH ---=。它们的紫外吸收光谱为:(a )最大吸收波长 在235 nm 处,1112000--??mL mol L =ε;(b )220 nm 以后没有强吸收。如何根据这两个光谱来判断上述异构体?试说明理由。 解:如果体系存在共轭体系,则其最大吸收波长的位置应比非共轭体系红移,并且其摩尔吸光系数较大,有强吸收,因此判断如果符合条件(1)的,就是CH 3-C (CH 3)=CH -CO -CH 3 9.其m ax λ的顺序为:(2)>(1)>(3) 因为(2)中存在共轭体系,而(1)(3)中只有双键没有共轭体系,但(1)中有两个双键,而(3)中只有一个。 P47 9. 以Mg 作为内标测定某合金中Pb 的含量,实验数据如下:

(完整版)新编仪器分析完整版高向阳(详细)..

第一章绪论 (1)灵敏度、精密度、准确度和检出限:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为方法的灵敏度;精密度是指使用同一方法,对同一试样进行多次测定所得测定结果的一致程度;试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度;某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。 1.仪器分析是以物质的物理组成或物理化学性质为基础,探求这些性质在分析过程中所产生分析信号与被分析物质组成的内在关系和规律,进而对其进行定性、定量、进行形态和机构分析的一类测定方法,由于这类方法的测定常用到各种比较贵重、精密的分析仪器,故称为仪器分析。与化学分析相比,仪器分析具有取样量少、测定是、速度快、灵敏、准确和自动化程度高的显著特点,常用来测定相对含量低于1%的微量、痕量组分,是分析化学的主要发展方向。 2.仪器分析的特点:速度快、灵敏度高、重现性好、样品用量少、选择性高局限性:仪器装置复杂、相对误差较大 3.精密度:是指在相同条件下对同一样品进行多次测评,各平行测定结果之间的符合程度。 4、灵敏度:仪器或方法的灵敏度是指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的该变量,它受校正曲线的斜率和仪器设备本身精密度的限制。 5.准确度:是多次测定的平均值与真实值相符合的程度,用误差或相对误差来描述,其值越小准确度越高。 6.空白信号:当试样中没有待测组分时,仪器产生的信号。它是由试样的溶剂、基体材质及共存组分引起的干扰信号,具有恒定性,可以通过空白实验扣除。 7.本底信号:通常将没有试样时,仪器所产生的信号主要是由随机噪声产生的信号。它是由仪器本身产生的,具有随机性,难以消除,但可以通过增加平行测定次数等方法减小;、 8.仪器分析法与化学分析法有何异同:相同点:①都属于分析化学②任务相同:定性和定量分析不同点:①与化学分析相比,仪器分析具有取样量少、测定快速、灵敏、准确和自动化程度高等特点②分析对象不同:化学分析是常量分析,而仪器分析是用来测定相对含量低于1%的微量、衡量组分,是分析化学的主要发展方向 9.仪器分析主要有哪些分类:①光分析法:分为非光谱分析法和光谱法两类。非光谱法:是不涉及物质内部能级跃迁的,通过测量光与物质相互作用时其散射、折射、衍射、干涉和偏振等性质的变化,从而建立起分析方法的一类光学分析法。光谱法:是物质与光相互作用时,物质内部发生了量子化的能级跃迁,从而测定光谱的波长和强度进行分析的方法,包括发射光谱法和吸收光谱法②电化学分析法:是利用溶液中待测组分的电化学性质进行测定的一类分析方法。③色谱分析法:利用样品共存组分间溶解能力、亲和能力、渗透能力、吸附和解吸能力、迁徙速率等方面的差异,先分离、后按顺序进行测定的一类仪器分析法称为分离分析法。(气相色谱-GC、薄层色谱法-TLC、高效液相色谱法-HPLC、离子色谱法-IC、超临界流体色谱-SFC)④其他分析方法:利用生物学、动力学、热学、声学等性质进行测定的仪器分析方法和技术,如质谱分析法(MS),超速离心法等。⑤分析技术联用技术:气相色谱—质谱(GC-MS),液相色谱—质谱(LC-MS) 10、仪器分析的联用技术有何显著优点? 多种现代分析技术的联用,优化组合,使各自的优点得到充分的发挥,缺点予以克服。展现了仪器分析在各领域的巨大生命力;与现代计算机智能化技术的有机融合,实现人机对话,更使仪器分析联用技术得到飞跃发展。开拓了一个又一个的新领域,解决了一个又一个技术上的难题。有分析仪器联用和分析仪器与计算机联用。如新的过程光二极管陈列分析仪与计算机等技术的融合,可进行多组分气体或流动液体的在线分析。1S内能提供1800多种气体,液体或蒸汽的测定结果,真正实现了高速分析。同时,分析的精密度、灵敏度、准确度也有很大程度的提高。 第二章分子吸光分析法 1、何谓光致激发?分子跃迁产生光谱的过程中主要涉及哪三种能量的改变? 处于基态的分子受到光的能量激发时,可以选择的吸收特征频率的能量而跃迁到较高的能级,这种现象称为光致激发。 分子跃迁产生光谱的过程中涉及电子能级Ee、振动能级Ev和转动能级Ef三种能级能量的改变。 1、为什么分子光谱是带状光谱?答:因为分子跃迁产生光谱的过程中涉及能级Ee,振动能级Ev 和转动能级Er三种能级的改变。△E总= △Ee+△Ev+△Er。如果分子吸收红外线,则引起分子的振动能级和转动能级跃迁,由于分子振动能级跃迁时,必然伴随着分子的转动能级跃迁,所以它常是由许多相隔很近的谱线或窄带所组成;如果分子吸收了200—800nm的UV-Vis时,分子发生电子能级跃迁时,必定伴随着振动能级和转动能级的跃迁,而许许多多的振动能级和转动能级是叠加在电子跃迁上的,所以UV-Vis光谱是带状光谱。 2、何为生色团,助色团,长移,短移,浓色效应,淡色效应,向红基团和向蓝基团? 答:生色团就是分子中能吸收特定波长光的原子或化学键。助色团是指与生色团和饱和烃相连且能吸收峰向长波方向移动,并使吸收强度增加的原子或基团,如-OH,-NH2。长移是指某些化合

相关文档
最新文档