检漏保护装置运行及试验制度

检漏保护装置运行及试验制度
检漏保护装置运行及试验制度

检漏保护装置运行及试验制度

为了保证矿井和人身安全,使煤矿井下低压检漏保护装置安全正常运行,根据山西焦煤集团公司下发的《煤矿井下低压检漏保护装置的安装、运行、维护与检修细则》的相关要求,特制定本制度。

1、井下各变电所的低压馈电线上,应装设带漏电闭锁的检漏保护装置或有选择性的检漏保护装置。

煤电钻、照明信号馈电线上,必须装设有自动切断漏电馈电线的检漏保护装置。

低压真空起动器应具备漏电闭锁功能。

2、运行中的检漏保护装置性能必须可靠,严禁任意拆除或停用,否则对责任人罚50元,队长联责50元,造成事故的追究相关人员责任。

3、值班电钳工每天应对检漏保护装置的运行情况进行检查试验,作好记录,并及时向调度室汇报。检漏保护装置不得出现漏试、不试或者谎报试验结果,否则对责任人每台次罚款50元。检查试验内容如下:

⑴、观察欧母表的指示数值是否正常。

当电网绝缘1140V低于50ΚΩ、660V低于30ΚΩ、127V低于10ΚΩ时,就及时采取措施,设法提高电网绝缘电阻值,尽量避免自动跳闸。

⑵、安装位置必须平稳可靠,周围应清洁,无淋水现象。

⑶、局部接地极和辅助接地极的安设应良好。

⑷、外观检查检漏保护装置的防煤性能必须合格。

⑸、用试验按钮对检漏保护装置进行跳闸试验。

煤电钻综合保护装置每班试验一次,照明信号综合保护装置每天试验一次,对具有选择性功能的检漏保护装置,各支路应每天做一次

跳闸试验,总检漏保护装置每天做一次跳闸试验。试验时间为,煤电钻综合保护装置每班接班后、照明信号综合保护装置和具有选择性功能的检漏保护装置每天四点班接班后。试验负责人员规定:配电室低压馈电开关试验人为配电室当班配电工,煤电钻综合保护装置、照明信号综合保护装置试验人为各队组当班电钳工。

4、检漏保护装置试验程序及规定

⑴、配电室低压馈电开关检漏保护装置试验程序及规定

各队组电钳工(包括维运队水泵司机、压风机司机)接班→各队组电钳工(维运队水泵司机、压风机司机)向调度室申请进行漏电试验→调度室命令维运队配电工进行漏电试验→用电队组和维运队电钳工向调度室汇报试验情况→试验正常,调度室命令维运队电钳工恢复送电。如试验不正常,该线路必须停止送电,维运队电钳工要立即对检漏保护装置存在的问题进行处理,处理好且试验正常后向调度室汇报,调度室命令维运队电钳工恢复送电。

配电工对馈电开关进行漏电跳闸试验后,没有调度室的命令严禁恢复送电,否则一次对配电工罚款50元。

为防止漏电跳闸试验过程中,开拓队和运输队绞车发生跑车事故,特别规定在每天下午16:30-17:00期间,两队的任何绞车不得运行,在此期间进行漏电跳闸试验。

在每天下午17:00前,某低压馈电开关如果没有接到队组漏电试验申请,则维运队配电工要对此开关进行强制性试验,试验结束后不得送电并向调度室汇报。

⑵、各队组煤电钻综合保护装置和照明信号综合保护装置试验程序及规定

各队组电钳工接班→当班电钳工进行漏电试验→试验正常,恢复送电并向调度室汇报。如试验不正常,当班电钳工要立即对检漏保护

装置存在的问题进行处理,处理好且试验正常后向调度室汇报。

⑶、井下各队组检漏保护装置试验情况由调度室值班员做好记录,内容包括试验时间、地点、开关(综保)用途、试验情况、隐患处理情况。

5、各队包机组长每旬至少对检漏保护装置进行一次详细检查,

内容除第3条所规定之外,应检查:

⑴、各处导线是否良好,有无破损及受潮。

⑵、闭锁装置及继电器动作是否可靠。

⑶、各处接头、触点是否良好,有无松动脱落和烧毁现象。

⑷、内部元件、插件板、熔断器及指示灯有无松动、破损。

6、进行远方人工漏电跳闸试验

由机电科组织,维运队及各用电队组参加,在瓦斯检查员的配合下,对新安装的检漏保护装置在首次投入运行前做一次远方人工漏电跳闸试验。运行中的检漏保护装置,每月至少做一次远方人工漏电跳闸试验。有选选择性的检漏保护装置做远方人工漏电跳闸试验时,总检漏保护装置应在分支开头断开后在分支开关入口处做人工漏电跳闸试验,其余分路开关应分别做一次远方人工漏电跳闸试验。

6、检漏保护装置的维护、检修及试验工作,当班电钳工应记入专门的检漏保护装置运行记录簿内。

电力微机保护定值计算公式

定值整定原则及公式 一.定值整定原则 1.以下整定原则与公式均取系统容量Sj=1000MV A,参考书籍为《工业与民用配电设计手册》第三版,相应参考页码标注均取与此。 二.系统阻抗以及各元件阻抗 (1)电缆P133 表4-12 ZR-YJV型系统阻抗Sj=1000MV A时,每千米阻抗标幺值X: 150mm2 0.080 185mm2 0.077 电缆阻抗X=X*L L-电缆长度 (2)变压器P128 表4-2 X=(Uk%/100)*(Sj/Sr) Uk%-变压器短路阻抗基准容量Sj=1000MV A Sr-变压器额定容量(3)系统阻抗(由天津滨海供电分公司提供) 110kV入口处系统阻抗最大运行方式下0.5357 最小运行方式下0.9880 下一电压等级的系统阻抗均为入口处的阻抗加上相应的线路以及变压器的阻抗。 三.基准电压基准电流P127 表4-1 基准容量Sj=1000MV A 基准电压Uj 系统标准电压Un 系统基准电流Ij Un(kV) 0.38 6 35 110 Uj(kV) 400 6.3 37 115 Ij(kV) 1443 91.6 15.6 5 四.短路电流计算P134 4-13 短路点三相短路电流Ik=Ij/X Ij为所在电压级别额基准电流 X为短路点的系统阻抗 短路点两相短路电流为此短路点三相短路电流的0.866倍 一般三相短路电流用来计算速断值,两相短路电流用来核算灵敏度. 五.定值计算公式 定值计算中用到的各个系数的取值及符号定义 可靠系数Krel P336 用于过负荷计算时作用与发信号取1.05 作用与跳闸取1.2 用于过流计算时取 1.1

继电保护定值整定计算公式大全(最新)

继电保护定值整定计算公式大全 1、负荷计算(移变选择): cos de N ca wm k P S ?∑= (4-1) 式中 S ca --一组用电设备的计算负荷,kVA ; ∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。 综采工作面用电设备的需用系数K de 可按下式计算 N de P P k ∑+=max 6 .04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ; wm ?cos --一组用电设备的加权平均功率因数 2、高压电缆选择: (1)向一台移动变电站供电时,取变电站一次侧额定电流,即 N N N ca U S I I 13 1310?= = (4-13) 式中 N S —移动变电站额定容量,kV ?A ; N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。 (2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即 3 1112ca N N I I I =+= (4-14) (3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为 3 ca I = (4-15) 式中 ca I —最大长时负荷电流,A ; N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;

N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比; wm ?cos 、η wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。 3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算 ① 支线。所谓支线是指1条电缆控制1台电动机。流过电缆的长时最大工作电流即为电动机的额定电流。 N N N N N ca U P I I η?cos 3103?= = (4-19) 式中 ca I —长时最大工作电流,A ; N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ?cos —电动机功率因数; N η—电动机的额定效率。 ② 干线。干线是指控制2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流ca I ,取2台电动机额定电流之和,即 21N N ca I I I += (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流ca I ,用下式计算 wm N N de ca U P K I ?cos 3103?∑= (4-21) 式中 ca I —干线电缆长时最大工作电流,A ; N P ∑—由干线所带电动机额定功率之和,kW ; N U —额定电压,V ;

高压漏电保护整定方案

井下10(6)kV供电系统漏电保护整定方案 (修订版) 为提高煤矿供电的安全运行水平,更好利用井下高压防爆开关综合保护装置,确保漏电保护选择性和可靠性,特制定井下10(6)kV 供电系统漏电保护整定方案。 方案一: 该方案适合于煤矿井下综合保护装置采用零序电流型、功率方向型的高压防爆开关、矿井电网中性点不接地系统。 (一)高压漏电保护整定原则 1、煤矿井下高压漏电保护装置主要用于10(6)kV供电系统中,对井下供电系统的漏电(或接地)实现有选择性保护。高压馈电线路上必须装设有选择性的单相接地保护装置;供移动变电站的高压馈线上,必须装设有选择性的动作于跳闸的单相接地保护装置。 2、高压漏电保护装置的动作参数有二次零序电压和一次零序电流,其取值范围如下。 最低起动二次零序电压:U0≥3V; 最高整定二次零序电压:U0≤25V; 最低起动一次零序电流:I0≥; 最高整定一次零序电流:I0≤6A。 3、高压漏电保护系统各级纵向之间的配合选择,按时间阶梯整定。原则上最上一级时间最长,最下一级时间最短,从最下一级向上级整

定时间逐渐延长。 4、移动变电站应动作于跳闸,高压电动机应动作于跳闸,一般生产线路的变压器应动作于跳闸,风机、水泵应动作于报警信号,向下级变电所馈出线路应动作于报警信号,变电所内总进线开关应动作于报警信号。 (二)漏电保护整定方案 1、电网对地电容及零序电流值的确定 (1)电缆线路的对地电容与单相接地电容电流 煤矿高压10(6)kV电网的单相接地电流I d与电网的对地电容∑C 有一一对应的关系,由公式(1-1)来计算。 I d=ωU∑C×10-3/(1-1) 式中I d——电网的单相接地(电容)电流,A; ω——三相交流电的角频率,ω=314; U——电网线电压有效值,kV; ∑C——电网三相对地总电容,μF。 电缆的型号、截面不同时,其分布电容值也有所不同,生产厂家根据理论设计和出厂测试的数据,将不同电压等级、型号、截面电缆的单位长度三相对地总电容值与相应的单相接地电容电流值见表1-1,供用户参考。 表1-1 10(6)kV电力电缆三相对地总电容∑C及单相接地电容电流I d

微机的保护整定计算原则

微机保护装置定值整定原则 一、线路保护测控装置 装置适用于10/35kV的线路保护,对馈电线,一般设置三段式电流保护、低周减载、三相一次重合闸和后加速保护以及过负荷保护,每个保护通过控制字可投入和退出。为了增大电流速断保护区,可引入电压元件,构成电流电压连锁速断保护。在双电源线路上,为提高保护性能,电流保护中引入方向元件控制,构成方向电流保护。其中各段电流保护的电压元件和方向元件通过控制字可投入和退出。 (一)电流速断保护(Ⅰ段) 作为电流速断保护,电流整定值I dzⅠ按躲过线路末端短路故障时流过保护的最大短路电流整定,时限一般取0~0.1秒,写成表达式为: I dzⅠ=KI max I max =E P/(Z P min+Z1L) 式中:K为可靠系数,一般取1.2~1.3; I max为线路末端故障时的最大短路电流; E P 为系统电压; Z P min为最大运行方式下的系统等效阻抗; Z1为线路单位长度的正序阻抗; L为线路长度 (二)带时限电流速断保护(Ⅱ段)

带时限电流速断保护的电流定值I dzⅡ应对本线路末端故障时有不小于1.3~1.5的灵敏度整定,并与相邻线路的电流速断保护配合,时限一般取0.5秒,写成表达式为: I dz.Ⅱ=KI dzⅠ.2 式中:K为可靠系数,一般取1.1~1.2; I dzⅠ.2为相邻线路速断保护的电流定值 (三)过电流保护(Ⅲ段) 过电流保护定值应与相邻线路的延时段保护或过电流保护配合整定,其电流定值还应躲过最大负荷电流,动作时限按阶梯形时限特性整定,写成表达式为: I dz.Ⅲ=K max{I dzⅡ.2 ,I L} 式中:K为可靠系数,一般取1.1~1.2; I dzⅡ.2为相邻线路延时段保护的电流定值; I L 为最大负荷电流 (四)反时限过流保护 由于定时限过流保护(Ⅲ段)愈靠近电源,保护动作时限愈长,对切除故障是不利的。为能使Ⅲ段电流保护缩短动作时限,第Ⅲ段可采用反时限特性。 反时限过电流保护的电流定值按躲过线路最大负荷电流条件整定,本线末端短路时有不小于1.5的灵敏系数,相邻线路末端短路时,灵敏系数不小于1.2,同时还要校核与相邻上下一级保护的配合情况。

风电整定计算说明

风电场整定计算说明 风电场一般由进线、升压变、35kV母线、集电线路、接地变、SVG无功补偿装置、站用变、箱变、风机发电机。所涉及到的电压风机一般有主变高压侧(220kV、110kV),主变低压侧(35kV),SVG连接变低压侧(10kV),箱变低压侧(690V),站用变低压侧(0.4kV)。 一般风电场一次接线图如下所示: 整定计算依据: DL/T 684-2012《大型发电机变压器继电保护整定计算导则》 DL/T 584-2007《3kV~110kV电网继电保护装置运行整定规范》 GB 14285-2006《继电保护和安全自动装置技术规程》 保护装置厂家说明书、设备参数和电气设计图纸 整定计算参考资料: 《大型发电机组继电保护整定计算与运行技术》高春如 《发电厂继电保护整定计算及其运行技术》许正亚 《宁夏电网2015年继电保护整定方案及运行说明》 关于风电场继电保护整定计算与核算,由于目前风电机组短路电流计算模型尚不成熟,现阶段在保护定值计算中都将将风电场当做负荷对待。随着风电、光伏对系统的影响越来越大,因此在电网设备选择、校验和继电保护配置整定时,应该考虑风电对故障时短路电流的影响,为此特制定以下原则: 1风电场输电线保护整定原则:

风电场输电线:指系统与风电场升压变压器高压侧母线连接的输电线路 1.1配置:风电场输电线应为光差保护配置。 整定原则:与其它同电压等级的常规输电线路保护整定原则相同。 1.2 主保护: 两侧主保护正常投入; 1.3 后备保护: 1.3.1 系统侧: 后备保护均投入并带方向;方向由母线指向线路,整定原则按照相应规程执行。 1.3.2 风电场侧110kV 及以上线路: 单回线零序电流保护、距离后备保护考虑与系统侧其它110kV 馈线适当配合后可投入运行,零序I段退出运行,距离I 段可投入,整定原则按照相应规程执行。双馈式异步发电机的暂态波形含有非工频的衰减交流分量,导致距离元件、相突变量方向元件及选相元件等工作不正常,使距离I 段保护会超范围动作,建议以双馈式异步发电机为主的风电场送出线路距离I 段退出运行。 双回线整定原则同系统双回并列短线路负荷侧后备保护整定原则,零序I 段退出。 1.3.3 风电场侧35kV 线路: 速断保护退出;投入限时速断及过电流保护,不带方向,按与风电场升压变高压侧过流保护配合。 1.4 重合闸: 两侧均投入。一侧无电压检定,另一侧同期检定。对未配置线路抽取PT 的,尽快完善设备,以实现有条件重合闸方式。没完善前可暂时退出重合闸。 2 风电场升压变保护整定原则: 风电场升压变:指接入各台风机组的汇集线与系统之间配置的两卷或三卷变压器 2.1 配置: 变压器差动保护;两段式过电流保护,可带方向。 2.1.1 主保护整定原则: 差动保护整定原则按照整定规程整定; 2.1.2 高压侧后备保护: 一段带方向,方向由高压母线指向变压器,考虑与变压器低压侧带方向段过流配合;一段不带方向,作为变压器的总后备,考虑与高压侧出线、低压侧不带方向过流配合,保证升压变低压母线故障时灵敏度≥1.2; 零序保护应作为系统的后备保护,由调度下发。根据《3kV~110kV电网继电保护装置运行规程》DLT584-2007;对于风电等新能源中的主变等与电网配合有关的电力变压器,中性点直接接地的变压器零序电流保护主要作为变压器内部、接地系统母线和线路接地故障的后备保护,一般由两段零序电流保护组成。 变压器零序电流保护中,应有对本侧母线接地故障灵敏度系数不小于1.5的保护段。 对于单侧中性点直接接地变压器的零序电流I段电流定值,按保母线有1.5灵敏度系数整定,动作时间与线路零序电流I段或II段配合,动作后跳母联断路器,如有第二时间,则可跳本侧断路器。 零序电流II段电流和时间定值应与线路零序电流保护最末一段配合,动作后跳变压器各侧断路器,如有两段时间,动作后以较短时间跳本侧(或母联断路器),以较长时间跳变压器各侧断路器。 2.1.3 低压侧后备保护: 一段带方向,方向由变压器指向低压母线,考虑与低压侧出线的速断或限时速断配合,

电流保护整定计算例题

例1: 如图所示电力系统网络中,系统线电压为115kV l E =,内部阻抗.max =15s Z Ω,.min =12s Z Ω, 线路每公里正序阻抗1=0.4z Ω,线路长度L AB =80m, L BC =150m, rel 1.25K =Ⅰ,rel 1.15K =Ⅱ ,试保护1 的电流I 、II 保护进行整定计算。 解:1. 保护电流I 段保护整定计算 (1) 求动作电流 set.1 rel k.B.max rel s.min AB == 1.25 1.886kA +E I K I K Z Z ?? ==Ⅰ Ⅰ Ⅰ (2) 灵敏度校验 min .max set.1111=1539.54m 0.4s L Z z ???=-?=???????? min AB 39.5410049.480 L L =?=%%%>15% 满足要求 (3) 动作时间:1 0s t =Ⅰ 2. 保护1电流II 段整定计算 (1) 求动作电流 set.2rel k.C.max rel s.min AB BC == 1.250.7980kA +E I K I K Z Z Z ? ? ==+ⅠⅠⅠ s e t .1r e l s e t .2==1.15 0.798=0.9177kA I K I ?ⅡⅡⅠ (2) 灵敏度校验 k.B.min s.max AB I k.B.min sen set.1 1.223 = ==1.331 1.30.9177I K I >Ⅱ 满足要求 (3)动作时间: 1 20.5s t t t =+?=Ⅱ Ⅰ 例2:图示网络中,线路AB 装有III 段式电流保护,线路BC 装有II 段式电流保护,均采用两相星形接线方式。计算:线路AB 各段保护动作电流和动作时限,并校验各段灵敏度。

发电机保护装置主要定值整定原则

发电机保护装置主要定值整定原则 (仅供参考) DGP-11数字发电机差动保护装置 DGP-12数字发电机后备保护装置 DGP-13数字发电机接地保护装置 北京美兰尼尔电子技术有限公司

1 DGP-11 数字发电机差动保护主要定值整定原则 纵差保护 1.1.1 差动速断保护动作电流整定 差动速断保护动作电流一般按躲过机组非同期合闸产生的最大不平衡电流整定。一般可取3~4倍额定电流。 1.1.2 比率差动保护 1.1. 2.1 最小动作电流(I do)整定 I do为差动保护最小动作电流值,应按躲过正常发电机额定负载时的最大不平衡 )整定,即: 电流(I unb ·o 或I do=K k×2× I do =K k·I unb ·o 式中:K k—可靠系数,取; I unb·o—发电机额定负荷状态下,实测差动保护中的不平衡电流; I f2n—发电机二次额定电流。 一般可取I do=(~0.3 I n),通常整定为0.2 I n。如果实测I unb 较大,则 ·o 增大的原因,并予消除,避免因I do整定过大而掩盖一、二次应尽快查清I unb ·o 设备的缺陷或隐患。 发电机内部短路时,特别是靠近中性点经过渡电阻短路时,机端或中性点侧的三相电流可能不大,为保证内部短路时的灵敏度,最小动作电流I do不应无根据地增大。 1.1. 2.2 拐点电流定值(I ro)整定 定子电流等于或小于额定电流时,差动保护不必具有制动特性,因此,I ro 可整定为: I ro=(~)I f2n 1.1. 2.3 比率制动系数(K)整定 发电机差动保护比率制动系数按下式整定: K=K k·K ap·K cc·K er 式中:K k—可靠系数,取; K ap—非周期分量系数,取; K cc—电流互感器同型系数,取; K er—电流互感器比误差,取。 在工程实用中,通常为安全可靠取K=。 1.1. 2.4 灵敏度校验 按上述原则整定的比率制动特性的差动保护,当发电机机端两相金属性短路时,差动保护的灵敏度一定满足要求,不必进行灵敏度校验。 横差保护

煤矿1140V及以下电压等级的保护配置及整定计算方法培训教案

煤矿1140V及以下电压等级的保护配 置及整定计算方法

2013年05月

煤矿1140V及以下电压等级的保护配置及 整定计算方法 一、《煤炭安全规程》中关于电气保护的相关规定 第455条井下高压电动机、动力变压器的高压控制设备,应具有短路、过负荷、接地和欠压释放保护。井下由采区变电所、移动变电站或配电点引出的馈电线上,应装设短路、过负荷和漏电保护装置。低压电动机的控制设备,应具备短路、过负荷、单相断线、漏电闭锁保护装置及远程控制装置。 第456条井下配电网路(变压器馈出线路、电动机等)均应装设过流、短路保护装置;必须用该配电网路的最大三相短路电流校验开关设备的分断能力和动、热稳定性以及电缆的热稳定性。必须正确选择熔断器的熔体。 必须用最小两相短路电流校验保护装置的可靠动作系数。保护装置必须保证配电网路中最大容量的电气设备或同时工作成组的电气设备能够起动。 第457条矿井高压电网,必须采取措施限制单相接地电容电流不超过20A。 地面变电所和井下中央变电所的高压馈电线上,必须装设有选择性的单相接地保护装置;供移动变电站的高压馈电线上,必须装设有选择性的动作于跳闸的单相接地保护装置。 井下低压馈电线上,必须装设检漏保护装置或有选择性的漏电保护装置,保证自动切断漏电的馈电线路。

每天必须对低压检漏装置的运行情况进行1次跳闸试验。 二、供电系统继电保护原理 1、继电保护的任务 ①、监视电力系统的正常运行,当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。当系统和设备发生的故障足以损坏设备或危及电网安全时,继电保护装置能最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。(如:单相接地、变压器轻、重瓦斯信号、变压器温升过高等)。 ②、反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同发出信号,提示值班员迅速采取措施,使之尽快恢复正常,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。 ③、实现电力系统的自动化和远程操作,以及工业生产的自动控制。如:自动重合闸、备用电源自动投入、遥控、遥测等。 2、继电保护装置的组成 一般而言,整套继电保护装置由测量比较元件、逻辑判断环节和执行输出元件三部分组成。 1)测量比较部分 测量比较部分是测量通过被保护的电气元件的物理参量,并

微机保护整定计算举例汇总

微机继电保护整定计算举例

珠海市恒瑞电力科技有限公司 目录 变压器差动保护的整定与计算 (3) 线路保护整定实例 (6) 10KV变压器保护整定实例 (9) 电容器保护整定实例 (13) 电动机保护整定计算实例 (16) 电动机差动保护整定计算实例 (19)

变压器差动保护的整定与计算 以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH 、UM 、UL(KV),各侧二次电流分别为IH 、IM 、IL(A),各侧电流互感器变比分别为n H 、n M 、n L 。 一、 平衡系数的计算 电流平衡系数Km 、Kl 其中:Uhe,Ume,Ule 分别为高中低压侧额定电压(铭牌值) Kcth,Kctm,Kctl 分别为高中低压侧电流互感器变比 二、 差动电流速断保护 差动电流速断保护的动作电流应避越变压器空载投入时的励磁涌流和外部故障的最大不平衡电流来整定。根据实际经验一般取: Isd =(4-12)Ieb /nLH 。 式中:Ieb ――变压器的额定电流; nLH ――变压器电流互感器的电流变比。 三、 比率差动保护 比率差动动作电流Icd 应大于额定负载时的不平衡电流,即 Icd =Kk [ktx × fwc +ΔU +Δfph ]Ieb /nLH 式中:Kk ――可靠系数,取(1.3~2.0) ΔU ――变压器相对于额定电压抽头向上(或下)电压调整范围,取ΔU =5%。 Ktx ――电流互感器同型系数;当各侧电流互感器型号相同时取0.5,不同时取1 Fwc ――电流互感器的允许误差;取0.1 Δfph ――电流互感器的变比(包括保护装置)不平衡所产生的相对误差取0.1; 一般 Icd =(0.2~0.6)Ieb /nLH 。 四、 谐波制动比 根据经验,为可靠地防止涌流误动,当任一相二次谐波与基波之间比值大于15%-20%时,三相差动保护被闭锁。 五、 制动特性拐点 Is1=Ieb /nLH Is2=(1~3)eb /nLH Is1,Is2可整定为同一点。 kcth Uhe Kctm Ume Km **= 3**?=kcth Uhe Kctl Ule Kl

发电机保护整定计算技术规范

发电机保护整定计算技术规范

定子绕组内部故障主保护 一、纵差保护 1 固定斜率的比率制动式纵差保护 1)、比率差动起动电流I op.0:I op.0= K rel K er I gn /n a 或 I op.0= K rel I unb.0 一般取I op.0=(0.1~0.3) I gn /n a ,推荐取I op.0=0.2 I gn /n a 。 2)、制动特性的拐点电流I res.0 拐点电流宜取I res.0=(0.8~1.0)I gn /n a ,一般取I res.0=0.8I gn /n a 。 3)、比率制动特性的斜率S : 0 .r max .r 0.op max .op I I I I S es es --= ① 计算最大不平衡电流I unb.max : I unb.max =K ap K cc K er I k.max / n a 式中:K a p ——非周期分量系数,取 1.5~2.0; K cc — —互感器同型系数,取0.5; K er ——互感器比误差系数,取0.1; I k.max ——最大外 部三相短路电流周期分量。 ② 差动保护的最大动作电流I op.max 按躲最大外部短路时产生的最大暂态不平衡电流计 算: I op.max =K rel I unb.max 式中:K rel ——可靠系数,取1.3~1.5。 ③ 比率制动特性的斜率S

一般I res.max =I k.max /n a ,则 0 .r a max .k 0.op unb.max rel 0 .r max .r 0.op max .op I n /I I I K I I I I S es es es --= --≥ 2、变斜率的比率制动式纵差保护 1)、比率差动起动电流I op.0:同4.1.1.1“比率差动起动电流”的 整定。 2)、制动特性的拐点电流I res.1: 对于发电机保护,装置固定取 I res.1=4I gn /n a 。 对于发电机变压器组保护,装置固定取 I res.1=6I gn /n a 。 3) 、比率制动特性的起始斜率S 1 S 1=K rel K cc K er 式中:K rel ——可靠系数,取1.5;K cc ——互感器的同型系数,取0.5; K er ——互感器比误差系数,取0.1; 一般取S 1=0.1 4) 、比率制动特性的最大斜率S 2: ① 计算最大不平衡电流I unb.max : I unb.max =K ap K cc K er I k.max /n a 式中:K a p ——非周期分量系数,取 1.5~2.0; K cc ——互 感器同型系数,取0.5; K er ——互感器比误差系数,取0.1; I k.max ——最大外部三 相短路电流周期分量, 若I k.max 小于I res.1(最大斜率时的拐点电流)时,取 I k.max =I res.1 。 ② 比率制动特性的斜率S : a gn a max .k a gn 10.op max .u 2n /I 2n /I n /I 2I I S ---≥ S nb

2三段式电流保护的整定及计算

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取1.2~1.3。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验:

式中: X1— —线 路的 单位 阻抗, 一般 0.4Ω /KM; Xsmax ——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则: 不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取1.1~1.2; △t——时限级差,一般取0.5S; 灵敏度校验:

规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一般 取1.15~1.25; Krel——电流继电器返回系数,一般取0.85~0.95; Kss——电动机自起动系数,一般取1.5~3.0; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥1.3~1.5 作远后备使用时,Ksen≥1.2

110kV线路继电保护整定原则

3~110kV线路继电保护整定计算原则 1一般要求 1.1整定计算使用的正常检修方式是在正常运行方式的基础上,考虑N-1的检修方式,一般不考虑在同一厂(站)的母线上同时断开所联接的两个及以上运行设备(线路、变压器等)。 1.2保护装置之间的整定配合一般按相同动作原理的保护装置之间进行配合,相邻元件各项保护定值在灵敏度和动作时间上一般遵循逐级配合的原则,特殊情况设置解列点。 1.3保护动作整定配合时间级差一般取0.3秒。 1.4线路重合闸一般均投入三相重合闸,系统联系紧密的线路投非同 期重合,发电厂出线联络线路少于4回时电源侧重合闸投检同期合闸、对端投检无压合闸,重合时间一般整定为对端有全线灵敏度段最长时间加两个时间级差。 2.快速保护整定原则 2.1高频启信元件灵敏度按本线路末端故障不小于2.0整定,高频停信元件灵敏度按本线路末端故障不小于1.5~2.0整定。 2.2高频保护线路两侧的启信元件定值(一次值)必须相同。 2.3分相电流差动保护的差动电流起动值按躲过被保护线路合闸时的最大充电电流整定,并可靠躲过区外故障时的最大不平衡电流,同时保证线路发生内部故障时有足够灵敏度,灵敏系数大于2,线路两侧一次值动作值必须相同。 2.4分相电流差动保护的其它起动元件起动值应按保线路发生内部故

障时有足够灵敏度,灵敏系数大于2整定,同时还应可靠躲过区外故障时的最大不平衡电流。 3后备保护的具体整定原则: 以下各整定原则中未对其时间元件进行具体描述,各时间元件的定值整定应根据相应的动作配合值选取。 1 相间距离 Ⅰ段: 原则1:“按躲本线路末端故障整定”。 所需参数:可靠系数K K =0.8~0.85 计算公式:L K DZ Z K Z ≤Ⅰ 变量注解:ⅠDZ Z ――定值 L Z ――线路正序阻抗 原则2:“单回线终端变运行方式时,按伸入终端变压器内整定”。 所需参数:线路可靠系数K K =0.8~0.85 变压器可靠系数KT K ≤ 0.7 计算公式:' T KT L K D Z Z K Z K Z +≤Ⅰ 变量注解:'T Z ――终端变压器并联等值正序阻抗。 原则3:“躲分支线路末端故障”。 所需参数:线路可靠系数K K =0.8~0.85 计算公式: )(21L L K DZ Z Z K Z +≤Ⅰ 变量注解:1L Z ――应该是截止到T 接点的线路正序阻抗。 2L Z ――应该是分支线路的正序阻抗。

三段式电流保护整定计算(答案)

4、下图所示网络,其中各条线路均装设三段式电流保护。试整定线路AB装设的三段式电流保护(计算三段式电流保护中各段动作电流、动作时限并校验灵敏性)。 s s .s x min .s x 已知:线路AB正常运行时流过的最大负荷电流为230A; B、C、D母线处发生短路故障时的最大及最小短路电流分别为A k 509 .1 )3( max . = KB I、A k 250 .1 )2( min . = KB I,A k 722 .0 )3( max . = KC I、A k 612 .0 )2( min . = KC I,A k 638 .0 )3( max . = KD I、A k 542 .0 )2( min . = KD I;整定计算使用的可靠系数:25 .1 = I rel K、1.1 = II rel K、15 .1 = III rel K; 自启动系数:5.1 A = st K;返回系数85 .0 = re K;时间级差s5.0 = ?t;并且,电流II段的灵敏度系数应大于1.2,电流III段作为远后备及近后备时的灵敏度系数应分别大于1.1、1.5。 解:对保护1的三段式电流保护进行整定计算。 (1)电流I段(瞬时电流速断保护): 动作电流计算,kA 886 .1 509 .1 25 .1 )3( max . 1. = ? = = KB I rel I op I K I 动作时限计算,s0 1 = I t 校验灵敏性, 最小保护范围计算为: % 5. 51 % 100 ] 14 886 .1 2 3 115 3 [ 80 4.0 1 % 100 ] 2 3 [ 1 (%) max . 1. 1 min . = ? - ? ? ? ? = ? - = s I op AB p x I E l x lφ % 20 ~ 15 (%) min . > p l,可见满足要求。 (2)电流II段(限时电流速断保护): 动作电流计算, (1)与保护2的I段配合时:kA 993 .0 ) 722 .0 25 .1( 1.1 2. 1. = ? ? = =I op II rel II op I K I (2)与保护3的I段配合时:kA 877 .0 ) 638 .0 25 .1( 1.1 3. 1. = ? ? = =I op II rel II op I K I 取大者,于是kA 993 .0 1. = II op I

母差保护装置分析及整定

微机母线保护及其整定计算 朱晓华(广东省电力调度中心,广东广州510600) 在计算机技术高速发展的今天,微机继电保护装臵在使用中由于有原理先进,可靠性高,操作简单,维护管理方便等优势,广东省220KV以上电网继电保护装臵中的线路保护已基本实现微机化,元件保护也正在向全面微机化过渡。如今广东省变电站和电厂共有220KV母线保护约170多套,其中各种型号的微机母线保护约有90多套。 一母线保护的作用母线故障如未装设专用的母线保护,需靠相邻元件的保护作为后备,将延长故障切除时间,并且往往要扩大停电范围,甚至酿成系统性大面积停电。由于母线保护涉及开关较多,误动作后果特别严重,所以要求它比其他保护具有更高的安全性。在《继电保护和安全自动装臵技术规程》中规定高压电网母线保护的装设应遵循以下原则:对220~500KV母线,应装设能快速有选择地切除故障的母线保护。对一个半断路器接线,每组母线宜装设两套母线保护。 二母线差动保护的原理母线差动保护的动作原理建立在基尔霍夫电流定律的基础上。把母线视为一个节点,在正常运行和外部故障时流入母线电流之和为零,而内部短路时为总短路电流。假设母线上各引出线电流互感器的变比相同,二次侧同极性端连接在一起,按照图一接线则在正常及外部短路时继电器中电流为零。 实际上由于电流互感器有误差,在外部短路时继电器中有不平衡电流出现,差动保护的启动电流必须躲开最大的不平衡电流才能保证选择性。 三微机母差要解决的几个问题 1 区外故障电流互感器饱和的问题在外部短路情况下,该母线的引出线路中,故障线路电流是所有非故障线路电流之和。如图一,故障线路电流很大,其电流互感器饱和,二次侧电流很小。此时差动保护的不平衡电流很大。差动保护在此情况下应不失去选择性。 由于饱和CT有以下两个特点: a.无论一次电流有多大,在系统发生故障瞬间,CT不可能同时发生饱和。从故障发生到CT饱和至有1/4周波的时间,CT能正确传变一次电流。 b. CT进入饱和后,二次电流波形出现畸变、缺损,但在一次电流过零点附近,饱和CT二次侧仍有一个线性传变区。 1) WMZ-41母线保护装臵使用的抗CT饱和方案称为同步识别法,即判别“故障

10KV继电保护整定计算

继电保护整定计算 一、10KV 母线短路电抗 已知10母线短路参数:最大运行方式时,短路容量为MVA S d 157 )3((max)1.=,短路电流为KA U S I e d d 0647.91031573)3((max)1.)3((max)1.=?=?=,最小运行方式时,短路容量为 MVA S d 134) 3((min)1.=,短路电流为KA U S I e d d 7367.71031343)3((min)1.) 3((min)1.=?=?=,则 KA I I d d 77367.7866.0866.0)3((min)1.)2((min)1.=?==。 取全系统的基准功率为MVA S j 100=,10KV 基准电压KV U j 5.101.=,基准电流为KA U S I j j j 4986.55.10310031 .1.=?=?=;380V 的基准电压KV U j 4.02.=,基准电流是KA U S I j j j 3418.1444.0310032.2.=?=?= 二、1600KV A 动力变压器的整定计算(1#变压器, 2#变压器) 已知动力变压器量MVA S e 6.1=,KV 4.010,高压侧额定电流 A U S I H e e H e 38.9210316003..=?=?=,低压侧额定电流 A U S I L e e L e 47.23094.0316003..=?=?=,变压器短路电压百分比%5.4%=s V , 电流CT 变比305 150==l n ,低压零序电流CT 变比0n 。变压器高压侧首端最小运行方式下两相断路电流为KA I d 38.6)2((min)2.= 1、最小运行方式下低压侧两相短路时流过高压的短路电流 折算到高压侧A I d 1300 )`2((min)3.= 2、最大运行方式下低压侧三相短路时流过高压的短路电流 折算到高压侧A I d 1500 )`3((max)3.= 3、高压侧电流速断保护

继电保护整定计算课程设计指导书

继电保护定值计算课程设计指导书 一、课程设计的目的、要求和依据 (一)课程设计的目的 1.巩固《电力系统继电保护原理》课程的理论知识,掌握运用所学知识分析和解决生产实际问题的能力。 2.通过对国家行业颁布的有关技术规程、规范和标准学习,建立正确的设计思想,理解我国现行的技术政策。 3.初步掌握继电保护设计的内容、步骤和方法。 4.提高计算、制图和编写技术文件的技能。 (二)对课程设计的要求 1.理论联系实际。对书本理论知识的运用和对规程、规范的执行必须考虑到任务书所规定的实际情况,切忌机械地搬套。 2.独立思考。在课程设计过程中,既要尽可能参考有关资料和主动争取教师的指导,也可以在同学之间展开讨论,但必须坚持独立思考,独自完成设计成果。 3.认真细致。在课程设计中应养成认真细致的工作作风,克服马虎潦草不负责的弊病,为今后的工作岗位上担当建设任务打好基础。 4.按照任务书规定的内容和进度完成。 (三)课程设计所依据的文件 《电力装置继电保护和自动装置设计规范》GB50062—92 《3~110kV电网继电保护装置运行整定规程》 《220~750kV电网继电保护装置运行整定规程》 二、课程设计的内容 (一)相间保护整定计算 1. 110kV单电源环形网络相间短路保护整定计算 (1). 短路计算 考虑到35~110kV单电源环形网络相间短路保护可能采用带方向或不带方向的电流电压保护,因此在决定保护方式前,必须较详细地计算各短路点短路时,流过有关保护的短路电流和保护安装处的残余电压。然后根据计算结果,在满足“继电保护和自动装置技术规程”和题目给定的要求条件下,尽可能采用简单的保护方式。计算短路电流和残余电压的步骤及注意事项如下。 a. 系统运行方式的考虑 除考虑发电厂发电容量的最大和最小运行方式外,还必须考虑在设备检修或

段式电流保护的整定及计算

段式电流保护的整定及 计算 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取~。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验: 式中: X1——线路的单位阻抗,一般Ω/KM;

Xsmax —— 系统 最大 短路 阻 抗。 要求 最小 保护 范围 不得 低于 15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则:不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取~; △t——时限级差,一般取;灵敏度校验: 规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备以及相邻线路或元件的远后备。动作电流按躲过最大负荷电流整定。 式中: KⅢrel——可靠系数,一般取~; Krel——电流继电器返回系数,一般取~;

Kss——电动机自起动系 数,一般取~;动作时间 按阶梯原则递推。 灵敏度分别按近后备和远 后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短 路电流。即:最小运行方式下,两相相间短路电 流。 要求:作近后备使用时,Ksen≥~ 作远后备使用时,Ksen≥注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端; 4、三段式电流保护整定计算实例 如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。已知:1)线路AB长20km,线路BC长30km,线路电抗每公里欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。试对AB线路的保护进行整定计算并校验其灵敏度。 解:(1)短路电流计算注意:短路电流计算值要注意归算至保护安装处电压等级,否则会出现错误;双侧甚至多侧电源网络中,应取流经保护的短路电流值;在有限系统中,短路电流数值会随时间衰减,整定计算及灵敏度校验时,精确计算应取相应时间处的短路电流数值。 B母线短路三相、两相最大和最小短路电流为: =1590(A)

电气设备继电保护装置的整定计算原则及方法

地面电气设备继电保护装置的整定计算原则 一、一般规定 (一)煤矿供电系统继电保护装置检验前,必须按本规程总则的要求制定整定方案。对新装的继电保护装置,如供电系统和负荷参量没有改变,可按设计计算的方案整定检验。当供电系统和负荷参量有较大变动时,应按变动后的参量重新计算整定方案,报主管部门审批后执行。 (二)整定计算前,应根据所在电力系统提供的各种运行方式的参量,对本系统进行一次短路电流计算,并绘制从地面变电所到各计算终端(包括井下终于变电所、采取变电所)的计算系统图,和等价网络通作为方案编制中定值计算和灵敏系数的依据。 (三)计算继电保护装置的动作值,应依据使保护装置动作达到有选择性、快速性、灵敏性和可靠性的四个基本要求为原则,综合分析全部数据合理的确定保护动作值。 1.选择性:当系统发生故障时,保护装置只将故障设备切除,保证无故障部分继续运行,尽量减少停电面积,要求上、下级保护之间的配合达到如下要求: 1)时间阶梯差: △t=t1-t2 式中 t1——上级保护动作时限(秒); t2——下级保护动作时限(秒)。 对定时限继电器△t 取0.5~0.7秒,反时限继电器△t 取0.6~1.0秒。 2)配合系数: 式中:Idz.1——下级保护动作电流(安); Idz.1——下级保护动作电流(安); 3)反时限继电器或定、反时限继电器的上、下级配合,要通过计算,绘制出实现特征性曲线,在曲线上要求时限和定制均达到1)、2)项的配合条件。 2.快速性:保护装置应以足够小的动作时限切除故障。 1.12 1≥=dz dz ph I I K

3.灵敏性:保护装置应有较高的灵敏度,灵敏度用灵敏系数表示: 1)对于反映故障时参量增加的保护装置: 灵敏系数=保护区末端金属性短路时故障参数的最小计算值/保护装置动作参数的整定值 2)对于反映故障时参量降低的保护装置: 灵敏系数=保护装置动作参数的整定值/保护区末端金属性短路时故障参数的最大计算值 保护装置的灵敏系数应根据不利的运行方式和故障类型进行计算,但对可能性很小的情况可不考虑。各类保护装置的灵敏系数不宜低于附表3——1的要求。

相关文档
最新文档